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A nonlinear coordinated control of excitation and SVC of an electrical power system is proposed for transient stability, and voltage
regulation enhancement after the occurrence of a large disturbance and a small perturbation. Using the concept of Immersion
and Invariance (I&I) design methodology, the proposed nonlinear controller is used to not only achieve power angle stability,
frequency and voltage regulation but also ensure that the closed-loop system is transiently and asymptotically stable. In order to
show the effectiveness of the proposed controller design, the simulation results illustrate that, in spite of the case where a large
perturbation occurs on the transmission line or there is a small perturbation to mechanical power inputs, the proposed controller
can not only keep the system transiently stable but also simultaneously accomplish better dynamic properties of the system as
compared to operationwith the existing controllers designed through a coordinated passivation technique controller and a feedback
linearization scheme, respectively.

1. Introduction

As a result of power systems with the rapid increase of the
size and complexity, power system stability, including power
angle stability as well as frequency and voltage regulation, is
of great importance. In general, the stability margins of the
power system decrease as the electrical power transmission
levels increase. It is well known that recently the power system
operation is faced with the difficult task of maintaining
stability when small or large disturbances occur in the
power system. Therefore, more effective and efficient control
methodologies for improvement of power system stability are
desired. In particular, great attention has been paid to the
design of an advanced nonlinear controller design to not only
improve power system stability margins but also enhance
controllability and increase power transfer capability in the
literature for years.

Although there have been numerous studies for
improving power system stability, recently an effective
approach to improving the stability of power systems uses
generator excitation control in combination with Flexible
AC Transmission Systems (FACTS) devices. FACTS devices

[1, 2] are becoming increasingly important for improving
the controllability of power flows and voltages as well as
the stability of the power systems. FACTS devices include
SVC, STATCOM, TCSC, SSSC, TCPAR, and UPFC, and
these devices are often employed in interconnected and
long-distance transmission systems to improve power flow,
voltage control, interarea and system oscillations, reactive
power control, and steady-state and dynamic stability. In
this paper, among a family of these FACTS devices, Static
Var Compensator (SVC) is of interest since it is used in
power systems to regulate the system voltage and improve
power system stability: in particular it is capable of rapidly
injecting and absorbing active and reactive power in order to
increase grid transfer capability through enhanced dynamic
voltage stability, to provide smooth and rapid reactive power
compensation for voltage support, and to improve both
damping oscillations and transient stability [3–7].

To the best of our knowledge, although considerable
research has addressed the application of SVC, less attention
has been devoted to the coordination of generator excitation
and SVC controller for power systems through the nonlinear
control theory. In [8], the SVC controller was proposed using
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the exact linearization method. In [9], using the feedback
linearizationmethod and control of differential and algebraic
systems, a coordinated generator excitation and SVC con-
troller in power systems with nonlinear loads was proposed
and it can improve the power angle stability of generators and
the voltage behavior. In [10], a nonlinear controller design for
SVC to improve power system voltage stability using direct
feedback linearization technique was proposed. In [11], based
on adaptive and robust control technique, the SVC controller
was proposed to enhance power systemvoltage stability.More
recently, in [12], based on modifying adaptive backstepping
slidingmodel control methodology an adaptive backstepping
sliding mode H

∞
controller was proposed for static var

compensator alone. The controller not only attenuates the
influences of external disturbances on the system output but
also has strong robustness for system parameter variations.

This paper continues this line of investigation and
improves further transient response performance by using a
different technique based on the concept of Immersion and
Invariance (I&I) for the design of a nonlinear control law
for transient stability and voltage regulation enhancement of
power systems with SVC. Recently, relatively little prior work
using I&I technique has been devoted to the combination of
generator excitation and other FACTS such as STATCOM
[13] and CSC [14]. Nevertheless, note that the resulting
controllers are under the assumption of full state feedback.
This to not leads only an important drawback but also further
increases a difficulty in control design procedure due to
practically immeasurable states and particularly generator
internal transient voltage sources.

In this work, the assumption can be directly relaxed
by using all measurable states as state variables instead of
unmeasurable ones in the whole dynamic models. Therefore,
the proposed controller not only achieves power angle sta-
bility along with frequency and voltage regulation but also
keeps the system transiently stable. Simulation results are
provided for a single machine infinite bus (SMIB) power
system with excitation control of a synchronous generator
and SVC control.

The rest of this paper is organized as follows. In Section 2,
the problem formulation is provided. In Section 3, power
systemmodels used are briefly given.The I&I design method
used to construct a nonlinear control law is stated in Sec-
tion 4. In Section 5, simulation results are given. Finally, we
conclude in Section 6.

2. Problem Formulation

In this paper, we are interested in studying the system stability
enhancement of a nonlinear power system including gen-
erator excitation controller and SVC. The nonlinear system
considered can be written in the general form as follows:

𝑥̇ (𝑡) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (𝑥) , (1)

where 𝑥 ∈ R𝑛 is the state vector, 𝑢 ∈ R𝑚 is the control action,
and 𝑓(𝑥) and 𝑔(𝑥) are assumed to be smooth functions.

The problem of interest in this paper is the following:
given a stable equilibriumpoint 𝑥

𝑒
, find a stabilizing feedback
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Figure 1: Network with TCR-FC SVC.

controller 𝑢(𝑥) so that the closed-loop system satisfies the
following.

(1) The desired equilibrium point 𝑥
𝑒
is asymptotically

and transiently stable.
(2) Power angle stability, voltage, and frequency regula-

tion are simultaneously achieved.

In the next section, we mention simplified nonlinear
models of power systems and use these to design the stabiliz-
ing feedback control law that meets the requirements (1)-(2)
given above.

3. Power System Models

The power system models considered here consist of the
dynamics of a synchronous generator and SVC. A dynamic
model of the synchronous generator (SG) can be obtained
by representing the SG by a transient voltage source, 𝐸,
behind a transient reactance,𝑋󸀠

𝑑
. In this paper, as depicted in

Figure 1, a thyristor-controlled-reactor (TCR) fixed-capacitor
type of SVC is employed and the SVC can serve as a variable
susceptance connected in shunt (parallel) with the power
systems [12]. For simplicity, the dynamic behavior of the SVC
is often modeled as a first-order differential equation. As a
result, the dynamics of synchronous generatorwith excitation
control and the SVC regulator in SMIB power systems can be
modeled as follows [10]:
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, (3)

where 𝛿 is the power angle of the generator, 𝜔 denotes the
relative speed of the generator, 𝐷 ≥ 0 is a damping constant,
𝑃

𝐸
is the electrical power delivered by the generator to the
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voltage at the infinite bus𝑉
∞
, 𝜔
𝑠
is the synchronous machine

speed, 𝜔
𝑠
= 2𝜋𝑓,𝐻 represents the per unit inertial constant,

𝑓 is the system frequency, and 𝑀 = 2𝐻/𝜔

𝑠
. 𝑋󸀠
𝑑Σ

= 𝑋
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𝑑
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𝑋
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+𝑋

𝐿
is the reactance consisting of the direct axis transient

reactance of SG, the reactance of the transformer, and the
reactance of the transmission line 𝑋

𝐿
. Similarly, 𝑋
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𝑋
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+𝑋
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denotes the direct

axis reactance of SG. 𝑇󸀠
0
is the 𝑑-axis transient short-circuit

time constant. 𝑋
1
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, 𝑋
2
= 𝑋

𝐿
, 𝑢
𝑓
is the field

voltage control input. 𝑃
𝑚
is the mechanical input power to be

assumed constant throughout this paper. 𝐵
𝐿
and 𝐵

𝐶
are the

susceptance of the inductor in SVC (pu) and the equivalent
capacitor (pu.), 𝐵

𝐿0
is the initial value of the inductor in SVC

(pu.), 𝑢
𝑟
is the SVC control input to be designed, and 𝑇

𝑟
is a

SVC time constant.
In practice, the generator transient voltage (𝐸) is often

physically notmeasurable and𝐵
𝐿
−𝐵

𝐶
may not be convenient

to monitor as active electrical power; thus, the active power
𝑃

𝐸
can be divided into two new variables, namely, an active

electrical power of generation excitation alone 𝑃
𝑒
and a real

electrical power of the SVC device 𝑃svc, as follows:
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(4)

Differentiating both state variables and defining the state
variables 𝑥

1
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𝑠
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the dynamic model of power systems including SVC can be
expressed as the general form (1) as follows:
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where
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Further, the bus (terminal) voltage𝑉
𝑡
as shown in Figure 1 can

be found from the following expression:
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Additionally, the region of operation is defined in the
set D = {𝑥 ∈ S × R × R × R | 0 < 𝑥

1
< 𝜋/2}.

The open loop operating equilibrium is denoted by 𝑥
𝑒
=

[𝑥
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, 𝑥

2𝑒
, 𝑥

3𝑒
, 𝑥

4𝑒
]

𝑇

= [𝛿

𝑒
, 0, 𝑃

𝑚
, 0]

𝑇.
From the dynamic equations in (5), it is easy to see that

all state variables (𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) aremeasurable and such state

variables can be used to find the bus voltage𝑉
𝑡
.Therefore, the

objective of this paper is to design a state feedback control
law that meets the expected performance requirements (1)-
(2) given above.

Remark 1. Recently, there are numerous nonlinear control
design techniques, such as feedback linearization scheme
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and control Lyapunov function. One of the most effective
nonlinear control design techniques methods is a backstep-
ping design [15] which is a constructive design method for
nonlinear systems in a strict-feedback form. In (5), it is
obvious that the dynamics of the state variable 𝜔 rely on
not only the state variable 𝑃

𝑒
but also the state variable 𝑃svc.

Therefore, the dynamic equations in (5) are not the strict-
feedback form. In contrast to the I&I controller presented
in this paper, backstepping design needs to be extended for
the design of nonlinear controllers in the non-strict-feedback
form; see [16] for further details.

Remark 2. It is well known that a large interconnected
system can be usually represented by an infinite bus once its
voltage and frequency remain constant under all conditions.
In this work, based on the proposed controller, how power
system stability of the coordination of a generator excitation
and SVC can be enhanced, when connected to a large
interconnected system or an infinite bus, is investigated.
Even though in a large-scale power system there are several
generators, it is often possible to reduce the system to a
set of equivalent (one or two) machines that are of interest,
connected to an equivalent network (Thevenin equivalent
circuit) as shown in Figure 1. Roughly speaking, the SMIB
power systems considered in this paper can be regarded as
a subsystem of a multimachine power system. On the other
hand, if the reduced order power system is not an adequate
representation of the system for transient stability studies,
thenwe can extend the controlmethod proposed in this work
to multimachine systems with SVC which will be reported in
the future.

4. Immersion and Invariance

The I&I method for stabilizing nonlinear systems was pro-
posed in [17] and further developed as summarized in [18].
The method is based on the notion of invariant manifolds
and system immersion. This methodology carries out from
transforming the original state of the system 𝑥(𝑡) into two
new states, namely, 𝜉(𝑡) and 𝑧(𝑡). The dimension of state
𝜉(𝑡) becomes strictly less than the dimension of state 𝑥(𝑡).
The new reduced state 𝜉(𝑡) is called the target dynamics
and the transformation employed to get these states defines
the invariant manifold. The state 𝑧(𝑡) is called the off-the-
manifold state and complements the dimension of 𝜉(𝑡).
The resulting control law is designed to ensure that the
original state 𝑥(𝑡) is bounded, that the manifold is rendered
invariant, and that the off-line-manifold state 𝑧(𝑡) converges
asymptotically to the origin. Besides, the original state 𝑥(𝑡)
will converge to a desired equilibrium point with a dynamic
behavior converging to that of the target dynamical system.
Roughly speaking, the I&I concept relies upon selecting a
target dynamical system that is capable of capturing the
desired behavior of the closed-loop system to be controlled.
The control objective of this method is to find a stabilizing
control law that ensures that the closed-loop system behaves
asymptotically the same as the prespecified target system, that
is, achieves asymptotic model matching.

This method is applicable to practical control design
problems for many types of systems; refer to [18] for further
details. For transient stability and voltage regulation enhance-
ment of power systems with excitation control, see [19, 20],
with a controllable series capacitor (CSC), see [14], and with
a static var compensator (STATCOM), see [13].

Based on the principle of Immersion and Invariance
mentioned above, the following result [17] will be used for
our nonlinear controller design.

Theorem 3 (see [17, 18]). Consider the following nonlinear
system; it is assumed that all functions and mapping are
smooth, that is, C∞, throughout this paper:

𝑥̇ (𝑡) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (𝑥) , (8)

with state 𝑥 ∈ R𝑛 and control input 𝑢 ∈ R𝑚 and the vector
fields𝑓 : R𝑛 → R𝑛 and𝑔 : R𝑛 → R𝑛×𝑚 being Lipschitz along
with an assignable equilibrium point 𝑥

𝑒
∈ R𝑛 to be stabilized.

Let 𝑠 < 𝑛, and assume that there exist smooth mappings 𝛼 :
R𝑠 → R𝑠, 𝜋 : R𝑠 → R𝑛, 𝑐 : R𝑛 → R𝑚, 𝜙 : R𝑛 → R𝑛−𝑠,
and 𝜑 : R𝑛×(𝑛−𝑠) → R𝑚, such that the following hold.

(H1) Target system. The system

̇

𝜉 = 𝛼 (𝜉)
(9)

with state 𝜉 ∈ R𝑠 has an asymptotically stable
equilibrium at 𝜉

𝑒
∈ R𝑠 and 𝑥

𝑒
= 𝜋(𝜉

𝑒
).

(H2) Immersion condition. For all 𝜉 ∈ R𝑠,

𝑓 (𝜋 (𝜉)) + 𝑔 (𝜋 (𝜉)) 𝑐 (𝜋 (𝜉)) =

𝜕𝜋 (𝜉)

𝜕𝜉

𝛼 (𝜉) . (10)

(H3) Implicit manifold. The set identity

M := {𝑥 ∈ R
𝑛

| 𝑥 = 𝜋 (𝜉) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜉 ∈ R
𝑠

}

= {𝑥 ∈ R
𝑛

| 𝜙 (𝑥) = 0}

(11)

holds.
(H4) Manifold attractivity and trajectory boundedness. All

trajectories of the system

𝑧̇ =

𝜕𝜙 (𝑥)

𝜕𝑥

[𝑓 (𝑥) + 𝑔 (𝑥) 𝜑 (𝑥, 𝑧)] ,

𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝜑 (𝑥, 𝑧)

(12)

are bounded and satisfy

lim
𝑡→∞

𝑧 (𝑡) = 0. (13)

Then, 𝑥
𝑒
is a globally asymptotically stable equilibrium of

the closed loop system

𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝜑 (𝑥, 𝜙 (𝑥)) . (14)

Taken from [18],Theorem 3 can be interpreted as follows.
Given the nonlinear system (8) and the selected target
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dynamical system (9), find, if possible, a manifoldM = {𝑥 ∈

R𝑛 | 𝑥 = 𝜋(𝜉), 𝜉 ∈ R𝑠} that can be rendered invariant
and asymptotically stable and for which the restriction of the
closed-loop system to M is described by the target system
(H1). Note that the control input 𝑢 that makes the manifold
invariant is not unique; it is only uniquely defined onM; that
is, 𝜑(𝜋(𝜉), 0) = 𝑐(𝜋(𝜉)). According to (H4), in order to drive
the off-the-manifold coordinate 𝑧 to zero and keep the system
trajectories bounded, one of all possible controls is selected.

4.1. I&I Controller Design

4.1.1. Target System. In order to design a stabilizing controller
and verify the condition according to Theorem 3, we start
with selecting the target dynamics ( ̇𝜉 = 𝛼(𝜉)) as the
mechanical subsystems (e.g., a simple damped pendulum
system):

̇

𝜉

1
= 𝜉

2
,

̇

𝜉

2
= −

𝜕𝑉 (𝜉

1
)

𝜕𝜉

1

− 𝑅 (𝜉) 𝜉

2
,

(15)

where 𝑉(𝜉
1
) and 𝑅(𝜉) represent the potential energy and

a damping function of the pendulum systems, respectively,
which both are to be selected. The pendulum system con-
sidered with a stable equilibrium point 𝜉

𝑒
= (𝜉

1𝑒
, 0)

𝑇

has the potential energy 𝑉(𝜉
𝑖
) satisfying the following: (i)

(𝜕𝑉(𝜉

1𝑒
))/𝜕𝜉 = 0 and (ii) (𝜕2𝑉(𝜉

1𝑒
))/𝜕

2

𝜉 > 0, the damping
function verifying 𝑅(𝜉

𝑒
) ≥ 0, and the energy function𝐻(𝜉) =

(1/2)𝜉

2

2
+ 𝑉(𝜉

1
).

4.1.2. Immersion Condition. As the desired target systems are
selected, a mapping 𝜋 : S × R → S × R × R × R is the
following:

𝜋 (𝜉

1
, 𝜉

2
) := [𝜉

1
, 𝜉

2
, 𝜋

3
(𝜉) , 𝜋

4
(𝜉)]

𝑇

,
(16)

where 𝜋

3
(𝜉) and 𝜋

4
(𝜉) are to be selected. Besides, the

condition of Theorem 3 gives the constraints, namely, 𝜉
1𝑒
=

𝑥

1𝑒
, 𝜉
2𝑒
= 𝑥

2𝑒
= 0, 𝜋

3
(𝜉

𝑒
) = 𝑥

3𝑒
= 𝑃

𝑚
, and 𝜋

4
(𝜉

𝑒
) = 𝑥

4𝑒
= 0.

We can choose 𝜋
3
(𝜉) and 𝜋

4
(𝜉) to satisfy the condition (10) as

shown in

[

[

[

[

[

𝜉

2

1

𝑀

(𝑃

𝑚
− 𝜋

3
(𝜉) − 𝜋

4
(𝜉)) −

𝐷

𝑀

𝜉

2

𝑓

3
(𝜉)

𝑓

4
(𝜉)

]

]

]

]

]

+

[

[

[

[

0 0

0 0

𝑔

31
(𝜉) 0

𝑔

41
(𝜉) 𝑔

42
(𝜉)

]

]

]

]

[

𝑐

1
(𝜋 (𝜉))

𝑐

2
(𝜋 (𝜉))

]

=

[

[

[

[

[

[

[

[

1 0

0 1

𝜕𝜋

3

𝜕𝜉

1

𝜕𝜋

3

𝜕𝜉

2

𝜕𝜋

4

𝜕𝜉

1

𝜕𝜋

4

𝜕𝜉

2

]

]

]

]

]

]

]

]

[

[

𝜉

2

−

𝜕𝑉 (𝜉

1
)

𝜕𝜉

1

− 𝑅 (𝜉) 𝜉

2

]

]

.

(17)

We choose the potential energy 𝑉(𝜉
1
) satisfying two

conditions (i)-(ii)mentioned previously as𝑉(𝜉
1
) = −𝛽 cos ̃𝜉

1
,

̃

𝜉

1
= 𝜉

1
− 𝜉

1𝑒
, for some 𝛽 > 0, and 𝑅(𝜉) = (𝐷 + 𝛾

𝑑
)/𝑀.

Consider the second row; therefore, we have

1

𝑀

(𝑃

𝑚
− 𝜋

3
(𝜉) − 𝜋

4
(𝜉)) −

𝐷

𝑀

𝜉

2

= −

𝜕𝑉 (𝜉

1
)

𝜕𝜉

1

− 𝑅 (𝜉) 𝜉

2

= −𝛽 sin (̃𝜉
1
) −

𝐷 + 𝛾

𝑑

𝑀

𝜉

2
, 𝛾

𝑑
≥ 0.

(18)

From the expression in (17), in order to simplify our
derivations, we choose 𝜋

4
(𝜉

2
) = 𝑥

4𝑒
+ 𝛾

𝑑
𝜉

2
. Consequently,

we can compute 𝜋
3
(𝜉) as follows:

𝜋

3
(𝜉) = 𝑃

𝑚
+ 𝛽𝑀 sin ̃𝜉

1
+ 𝛾

𝑑
𝜉

2
− 𝜋

4
(𝜉) .

(19)

It is obvious that 𝜋
3
is a function of both 𝜉

1
and 𝜉
2
. As the

mapping 𝜋(𝜉) has been chosen, by using some lengthy, but
straightforward, calculations from the third and fourth rows,
respectively, we have the control input (𝑢

𝑓
/𝑇

󸀠

0
, 𝑢

𝑟
/𝑇

𝑟
)

𝑇

=

(𝑐

1
(𝜋(𝜉)), 𝑐

2
(𝜋(𝜉)))

𝑇 in (17) that renders the manifold M

invariant.

4.1.3. Implicit Manifold. From the result above, the mapping
𝜋(𝜉) has been defined and the condition in (11) is verified.
Therefore, the manifold M can be implicitly described by
M = {𝑥 ∈ S × R × R × R | 𝜙(𝑥) = 0} in which the mapping
𝜙(𝑥) can be defined as follows:

𝜙 (𝑥) = [

𝑥

3
− 𝜋

3
(𝑥

1
, 𝑥

2
)

𝑥

4
− 𝜋

4
(𝑥

2
)

] . (20)

4.1.4. Manifold Attractivity and Trajectory Boundedness. In
this subsection, a control law𝑢 = 𝜑(𝑥, 𝑧) is designed to ensure
that all trajectories of the closed-loop systemare bounded and
converge to the manifoldM. Let 𝑧 := 𝜙(𝑥) be the off-the-line
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manifold coordinate; substituting 𝑥̇
3
, 𝑥̇
4
into the expressions

below, then we have

𝑧̇

1
= 𝑥̇

3
− 𝜋̇

3
(𝑥

1
, 𝑥

2
)

= (−𝑎 + 𝑥

2
cot𝑥
1
) 𝑥

3
+

𝑏𝑉

∞
sin 2𝑥

1

2𝑋

󸀠

𝑑Σ

+

𝑉

∞
sin𝑥
1

𝑋

󸀠

𝑑Σ

⋅

𝜑

1
(𝑥, 𝑧)

𝑇

𝑓

−

𝜕𝜋

3

𝜕𝑥

1

𝑥̇

1
−

𝜕𝜋

3

𝜕𝑥

2

𝑥̇

2
,

𝑧̇

2
= 𝑥̇

4
− 𝜋̇

4
(𝑥

2
)

= 𝑓

4
(𝑥) + 𝑔

31
(𝑥) ⋅

𝜑

1
(𝑥, 𝑧)

𝑇

𝑓

+ 𝑔

42
(𝑥) ⋅

𝜑

2
(𝑥, 𝑧)

𝑇

𝑟

−

𝜕𝜋

4

𝜕𝑥

2

𝑥̇

2
.

(21)

In order to ensure that the trajectories of the off-the-manifold
coordinate 𝑧 are bounded and lim

𝑡→+∞
𝑧(𝑡) = 0 according to

condition (13), we take 𝑧̇
𝑖
= −𝛾

𝑖
𝑧

𝑖
, 𝛾
𝑖
> 0, 𝑖 = 1, 2 and then we

can write
𝑉

∞
sin𝑥
1

𝑋

󸀠

𝑑Σ

⋅

1

𝑇

𝑓

𝜑

1
(𝑥, 𝑧)

= − (−𝑎 + 𝑥

2
cot𝑥
1
) 𝑥

3
−

𝑏𝑉

∞
sin 2𝑥

1

2𝑋

󸀠

𝑑Σ

+

𝜕𝜋

3

𝜕𝑥

1

𝑥̇

1
+

𝜕𝜋

3

𝜕𝑥

2

𝑥̇

2
− 𝛾

1
𝑧

1
,

𝑔

42
(𝑥) ⋅

1

𝑇

𝑟

𝜑

2
(𝑥, 𝑧) = −𝑓

4
(𝑥) − 𝑔

41
(𝑥) ⋅

𝜑

1
(𝑥, 𝑧)

𝑇

𝑓

+

𝜕𝜋

4

𝜕𝑥

2

𝑥̇

2
− 𝛾

2
𝑧

2
.

(22)

4.1.5. The Control Law. FromTheorem 3, the control law can
be computed from the expression above as

𝑢

𝑓
= 𝜑

1
(𝑥, 𝜙 (𝑥))

=

𝑋

󸀠

𝑑Σ
𝑇

𝑓

𝑉

∞
sin𝑥
1

[− (−𝑎 + 𝑥

2
cot𝑥
1
) 𝑥

3
−

𝑏𝑉

∞
sin 2𝑥

1

2𝑋

󸀠

𝑑Σ

+

𝜕𝜋

3

𝜕𝑥

1

𝑥̇

1
+

𝜕𝜋

3

𝜕𝑥

2

𝑥̇

2
− 𝛾

1
(𝑥

3
− 𝜋

3
(𝑥

1
, 𝑥

2
))] ,

𝑢

𝑟
= 𝜑

2
(𝑥, 𝜙 (𝑥))

=

𝑇

𝑟

𝑔

42
(𝑥)

[−𝑓

4
(𝑥) − 𝑔

41
(𝑥) ⋅

𝜑

1
(𝑥, 𝑧)

𝑇

𝑓

+

𝜕𝜋

4

𝜕𝑥

2

𝑥̇

2
− 𝛾

2
(𝑥

4
− 𝜋

4
(𝑥

2
))] ,

(23)

where 𝜕𝜋
3
/𝜕𝑥

1
= 𝛽𝑀 cos(𝑥

1
− 𝑥

1𝑒
), 𝜕𝜋
3
/𝜕𝑥

2
= 0, 𝜕𝜋

4
/𝜕𝑥

2
=

𝛾

𝑑
, and 𝑓

4
(𝑥), 𝑔

41
(𝑥), 𝑔

42
(𝑥), and 𝑥̇

1
, 𝑥̇
2
are given in (5).

According to condition (H4), it is also necessary to prove
boundedness of the trajectories of the closed-system with the

control law 𝜑

𝑖
(𝑥, 𝜙(𝑥)), 𝑖 = 1, 2, and the off-the-manifold

coordinate 𝑧 as given in

𝑥̇

1
= 𝑥

2
,

𝑥̇

2
=

1

𝑀

(𝑃

𝑚
− 𝐷𝑥

2
− 𝑥

3
− 𝑥

4
) ,

𝑥̇

3
= (−𝑎 + 𝑥

2
cot𝑥
1
) 𝑥

3
+

𝑏𝑉

∞
sin 2𝑥

1

𝑋

󸀠

𝑑Σ

+

𝑉

∞
sin𝑥
1

𝑋

󸀠

𝑑Σ

⋅

𝑢

𝑓

𝑇

𝑓

,

𝑥̇

4
= 𝑓

4
(𝑥) + 𝑔

41
(𝑥) ⋅

𝑢

𝑓

𝑇

𝑓

+ 𝑔

42
(𝑥) ⋅

𝑢

𝑟

𝑇

𝑟

,

𝑧̇

1
= −𝛾

1
𝑧

1
,

𝑧̇

2
= −𝛾

2
𝑧

2
.

(24)

To begin, it can be seen that clearly 𝑥
1
∈ S is bounded

and 𝑧
1
and 𝑧

2
are exponentially decaying functions, that is,

𝑧

𝑖
(𝑡) = 𝑧

𝑖
(0)𝑒

−𝛾𝑖𝑡, 𝑖 = 1, 2, and also bounded. Substituting𝑥
3
=

𝑧

1
+ 𝜋

3
(𝑥

1
, 𝑥

2
) and 𝑥

4
= 𝑧

2
+ 𝜋(𝑥

2
) into the second equation

of (24), using the energy function 𝑊 = (1/2)𝑥

2

2
+ 𝑉(𝑥

1
) +

(𝑧

2

1
+ 𝑧

2

2
)/2, and using some lengthy, but straightforward,

calculation yield

̇

𝑊 = −

𝐷

𝑀

𝑥

2

2
−

𝑥

2
(𝑧

1
+ 𝑧

2
)

𝑀

− 𝛾

1
𝑧

2

1
− 𝛾

2
𝑧

2

2

≤ −

𝐷

𝑀

𝑥

2

2
−

1

𝑀

(

󵄨

󵄨

󵄨

󵄨

𝑥

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑥

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

2

󵄨

󵄨

󵄨

󵄨

) − 𝛾

1
𝑧

2

1
− 𝛾

2
𝑧

2

2

≤ −

(𝐷 + 1)

𝑀

𝑥

2

2
+ Δ (𝑧

1
, 𝑧

2
) ,

(25)

with Δ(𝑧
1
, 𝑧

2
) = −(𝛾

1
+ 1/2𝑀)𝑧

2

1
− (𝛾

2
+ 1/2𝑀)𝑧

2

2
, where the

first inequality follows from Young’s inequality (2𝑎𝑏 ≤ 𝑐𝑎2 +
(1/𝑐)𝑏

2) that eventually leads to the last inequality. From the
last inequality, with𝑀 and 𝛾

𝑖
, 𝑖 = 1, 2 being positive, and𝐷 ≥

0, it can be seen that there exists a time 𝑡
𝑓
such thatΔ(𝑧

1
, 𝑧

2
) =

0 (𝑧
𝑖
(𝑡) = 𝑧

𝑖
(0)𝑒

−𝛾𝑖𝑡, 𝑖 = 1, 2), for all 𝑡 ≥ 𝑡

𝑓
and eventually

we have ̇

𝑊 ≤ −((𝐷 + 1)/𝑀)𝑥

2

2
≤ 0. Therefore, there exists a

ball around the operating equilibrium, strictly contained inD
such that all trajectories starting in this set satisfy𝐻(𝑥

1
, 𝑥

2
) ≤

𝐻(𝑥

1
(0), 𝑥

2
(0)), thus resulting in boundedness of 𝑥

1
and 𝑥

2
.

This implies boundedness of 𝜋
3
(𝑥

1
, 𝑥

2
) and 𝜋

4
(𝑥

2
). Finally,

boundedness of 𝑥
3
, 𝑥
4
immediately follows from the fact that

𝑥

3
= 𝑧

1
+ 𝜋

3
(𝑥

1
, 𝑥

2
) and 𝑥

4
= 𝑧

2
+ 𝜋

4
(𝑥

2
).

With the help of LaSalle’s invariance principle, it can be
shown that the closed-loop system at the desired equilibrium
𝑥

𝑒
contained in the set D is asymptotically stable and the

desired equilibrium is asymptotically stable; therefore, 𝑥
3
=

𝜋(𝑥

1
, 𝑥

2𝑒
), 𝑥
4
= 𝜋

4
(𝑥

2𝑒
) = 0, respectively. Consequently, we

obtain
𝑥

3
= 𝜋

3
(𝑥

1
, 𝑥

2𝑒
)

= −𝛽𝑀 sin (𝑥
1
− 𝑥

1𝑒
) + 𝑃

𝑚
− 𝐷𝑥

2𝑒
− 𝑥

4𝑒
,

(26)
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Figure 2: A single line diagram of SMIB with TCR-FC SVC.

and then compare (26) with the second row of (5) at the
equilibrium 𝑥

𝑒
as follows:

𝑥

3𝑒
= 𝑃

𝑚
− 𝐷𝑥

2𝑒
− 𝑥

4𝑒
. (27)

It can be obviously seen that the only solution in D that can
make both (26) and (27) equal is 𝑥

1
= 𝑥

1𝑒
. This means that

𝑥

3
= 𝑥

3𝑒
and both 𝑥

1𝑒
and 𝑥

3𝑒
are contained in the setD.

Hence, boundedness of the trajectories of (24) and
lim
𝑡→+∞

𝑧(𝑡) = 0 has been shown. We can establish the main
result summarizing the I&I controller design in the following
proposition.

Proposition 4. The closed-loop systems in (24) with the
control laws in (23) are locally asymptotically stable in 𝑥

𝑒
.

Proof. The proof of Proposition 4 is based on the arguments
given above.

5. Simulation Results

In this section, simulation results using a combination of gen-
erator excitation and SVC controllers in a SMIB system are
shown using power angle stability, and voltage and frequency
regulation to point out the system stability enhancement, in
particular transient stability.

Consider the single line diagram as shown in Figure 2
with the SG connected through parallel transmission lines
to an infinite-bus. The SG delivers 1.0 pu. power while the
terminal voltage, 𝑉ref, is 0.9897 pu. and the infinite-bus
voltage is 1.0 pu. Suppos that there is a three-phase fault
occurring at point 𝑃, the midpoint of one of the parallel
transmission lines, thereby resulting in rotor acceleration and
voltage sag. Eventually, such a fault is cleared by opening and
reclosing the circuit breaker at each end of the affected line.

Besides, once there is a small perturbation, particularly
the mechanical input power, on the network, this causes
the system trajectories, induced by the perturbation, to be
confined to a limited region in a neighborhood of a nominal
operating trajectory.

We are, therefore, interested in the following two ques-
tions. One is whether, after the fault is cleared from the
network, the system will settle to a postfault equilibrium
state. The other is whether, after the small perturbation
disappears, the system can maintain stability. In this paper,
the fault of interest is a temporary fault sequence and a small

perturbation to mechanical power input to synchronous
generators in the system is taken into account.

The physical parameters (pu.) and initial conditions
(𝛿

𝑒
, 𝜔

𝑠
, 𝑃

𝑒𝑒
, 𝑃svce) for this power system model are given as

follows:

𝜔

𝑠
=

2𝜋𝑓 rad
𝑠

, 𝐷 = 0.2, 𝐻 = 5, 𝑓 = 60H𝑧,

𝑇

󸀠

0
= 4, 𝑇

𝑟
= 0.2; 𝑉

∞
= 1∠0

∘

, 𝜔 = 𝜔

𝑠
,

𝑋

𝑑
= 1.1, 𝑋

󸀠

𝑑
= 0.2, 𝑋

𝑇
= 0.1, 𝑋

𝐿
= 0.2,

𝑇

𝑟
= 0.02, 𝛿

𝑒
= 0.4964 rad,

𝑃

𝑒𝑒
= 𝑃

𝑚
= 1.0 pu., 𝐵

𝐿0
= 𝐵

𝐶
= 0.3.

(28)

The parameters of the control law are set as 𝛾
1
= 𝛾

2
= 𝛾

3
=

𝛽 = 100, 𝛾
𝑑
= 0.2.

In this paper, two cases with different disturbances are
investigated in the transient stability studies.

Case 1 (temporary fault). The system is in a prefault steady
state, a fault occurs at 𝑡

0
= 0.5 sec., the fault is isolated by

opening the breaker of the faulted line at 𝑡
𝑐
= 0.8 sec., and the

transmission line is recovered without the fault at 𝑡
𝑟
= 1.5 sec.

Afterward, the system is in a postfault state.

Case 2 (The mechanical input power increase). The system
is in the prefault state; there is a 20% perturbation in the
mechanical power 𝑃

𝑚
+ Δ𝑃

𝑚
(𝑡) where

Δ𝑃

𝑚
(𝑡) =

{

{

{

{

{

0, for 0.0 ≤ 𝑡 < 0.5 sec.
0.2𝑃

𝑚
, for 0.5 ≤ 𝑡 ≤ 2.5 sec.

0, for 𝑡 > 2.5 sec.
(29)

The effectiveness of the coordinated controller to improve
transient stability through power angle stability with voltage
and frequency regulation is determined by comparison with
a Coordinated Passivation Controller (CPC) [21] and a
Feedback Linearization (FBL) controller [8].

Fromour simulation results, it can be concluded that with
the help of the proposed controller in both cases, Figures 3–6
indicate the transient behavior of the power system using the
proposed controller. Evidently, transient stability is enhanced
as compared to the FBL controller and CPC.The closed-loop
system is transiently and asymptotically stable even when a
large disturbance (temporary fault) occurs on the network
and there is a mechanical input increase.

It is clear fromCase 1 that Figure 3 shows time trajectories
of power angle 𝛿, SG relative speed (frequency) 𝜔 − 𝜔

𝑠
,

transient voltage (𝐸), and SVC susceptance of three con-
trollers. It can easily be seen that the power angles (𝛿), the
SG relative speeds (𝜔 − 𝜔

𝑠
), transient voltages (𝐸), and SVC

susceptance of the three controllers restore to the prefault
values (𝛿 → 𝛿

𝑒
, 𝜔 − 𝜔

𝑠
→ 0, 𝐸 → 𝐸

𝑒
, 𝐵
𝐿
→ 𝐵

𝐿0
),

respectively; however, time histories of each controller have
the different damping levels. Clearly, the proposed controller
provides better transient response performance in terms of
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Figure 3: Case 1: time histories of power angle (𝛿), relative speed
(𝜔 − 𝜔

𝑠
), transient voltage (𝐸), and susceptance of SVC (𝐵

𝐿
). Solid:

I&I controller; dashed: Coordinated Passivation Controller (CPC);
dash-dotted: FBL.

reduced overshoot and faster reduction of oscillations except
for the power angles (𝛿) of both cases.

Figure 4 provides time trajectories of active electrical
power 𝑃

𝑒
and terminal voltage 𝑉

𝑡
of three controllers settling

to the prefault steady state (𝑃
𝑒
→ 𝑃

𝑚
and 𝑉

𝑡
→ 𝑉ref).

Further, power and voltage regulation of three controllers
are simultaneously achieved but when compared with the
CPC and FBL controllers, the proposed controller can more
quickly damp the oscillations and return to the prefault
values almost without sustained oscillations. Also, Figure 4
illustrates the off-the-manifold coordinates 𝑧

1
and 𝑧
2
showing

themanifoldM implicitly described by 𝜙(𝑥) = 0 as expected.
Similar to temporary fault case, it is evident from Case

2 that in Figure 5 time trajectories of power angle 𝛿, SG
relative speed (frequency) 𝜔 − 𝜔

𝑠
, transient voltage (𝐸), and

SVC susceptance of the proposed controller settle to the
prefault steady-state valuesmore quickly. In comparison with
both FBL controller and CPC, the I&I controller provides
obviously the fastest reduction of oscillation as well as the
smallest overshoot except for power angle and SG relative
speed. In a similar way, Figure 6 shows time trajectories of
active power and terminal voltage of three controllers along
with the off-the-manifold coordinates 𝑧

1
and 𝑧
3
getting back
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Figure 4: Case 1: time histories of active power (𝑃
𝑒
) and terminal

voltage (𝑉
𝑡
) and the off-the-line manifold coordinates 𝑧

1
, 𝑧
2
. Solid:

I&I controller; dashed: Coordinated Passivation Controller (CPC),
dash-dotted: FBL.

to the prefault steady states (𝑃
𝑒
→ 𝑃

𝑚
, 𝑉
𝑡
→ 𝑉ref, 𝑧1 → 0,

and 𝑧
2
→ 0) after the small perturbation vanishes.

From simulation results above, it can be overall concluded
that, regardless of the steady-state operating point of the
system, the I&I control design technique is capable of not
only achieving the expected performance requirements (1)-
(2) mentioned above but also accomplishing better dynamic
performance (improved transient responses for the closed-
loop system) after an occurrence of a temporary fault or a
small perturbation.

6. Conclusion

In this paper, we have shown that nonlinear coordinated
generator excitation and SVC control in SMIB power systems
can be effectively used to enhance the transient stability of
power systems after the occurrence of a large disturbance
and a small perturbation. Using a nonlinear system model
and the I&I design methodology, simulation results have
demonstrated the effectiveness of the proposed controller
capable of achieving closed-loop system transient stabil-
ity, accomplishing power angle stability along with voltage
and frequency regulation, and providing improved transient
response over the existing nonlinear controllers, that is, the
Feedback Linearization (FBL) and the coordinated passiva-
tion controller. Finally, it can be also seen that the proposed
controller is dependent on all measurable states which are
often monitored in practice; thus, our results of this work are
of practical significance and applicable value.
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Appendices

A. Feedback Linearization Controller [8]

In order to design a nonlinear coordinated controller based
on feedback linearization scheme used to compare with the
proposed controller, let us define the output as

𝑦

1
= ℎ

1
(𝑥) = 𝑃

𝑒
− 𝑃

𝑚
= Δ𝑃

𝑒

𝑦

2
= ℎ

2
(𝑥) = 𝑃svc − 𝑃svce = Δ𝑃svc;

(A.1)

then the power system (5) is a three-input three-output
nonlinear system which can be written as

𝑥̇ = 𝑓 (𝑥) + 𝑔

1
(𝑥)

𝑢

𝑓

𝑇

𝑓

+ 𝑔

2
(𝑥)

𝑢

𝑟

𝑇

𝑟

,

𝑦 = ℎ (𝑥) ,

(A.2)

where

𝑥 =

[

[

[

[

𝑥

1

𝑥

2

𝑥

3

𝑥

4

]

]

]

]

, 𝑓 (𝑥) =

[

[

[

[

𝑓

1
(𝑥)

𝑓

2
(𝑥)

𝑓

3
(𝑥)

𝑓

4
(𝑥)

]

]

]

]

,

𝑔

1
(𝑥) =

[

[

[

[

0

0

𝑔

31
(𝑥)

𝑔

41
(𝑥)

]

]

]

]

=

[

[

[

[

[

[

0

0

𝑉

∞
sin𝑥
1

𝑋

󸀠

𝑑Σ

̃

𝑀(𝑥

1
, 𝑥

3
, 𝑥

4
) 𝑔

31
(𝑥)

]

]

]

]

]

]

,

𝑔

2
(𝑥) =

[

[

[

[

0

0

0

𝑔

42
(𝑥)

]

]

]

]

=

[

[

[

[

0

0

0

−

̃

𝑁 (𝑥

1
, 𝑥

3
, 𝑥

4
)

]

]

]

]

.

(A.3)

With the help of the differential geometry theory, we have
that the relative degree of the nonlinear system (A.2) at 𝑥

𝑒

becomes 𝑟 = 1 + 1 = 2 < 4; therefore, based on the
stability theory of the zero dynamics, we select the change of
coordinates as follows:

Φ (𝑥) =

[

[

[

[

𝑧̃

1

𝑧̃

2

𝑧̃

3

𝑧̃

4

]

]

]

]

=

[

[

[

[

𝑥

1

𝑥

2

ℎ

1
(𝑥)

ℎ

2
(𝑥)

]

]

]

]

, (A.4)

and we assume that the Jacobian matrix of Φ(𝑥) at 𝑥
𝑒
is

nonsingular (det((𝜕Φ(𝑥)/𝜕𝑥)
|𝑥𝑒

) ̸= 0). Further, it is easy to
express the nonlinear system (A.2) as

[

[

[

[

[

̇

𝑧̃

1

̇

𝑧̃

2

̇

𝑧̃

3

̇

𝑧̃

4

]

]

]

]

]

=

[

[

[

[

[

𝑧̃

2

−

𝐷

𝐻

𝑧̃

2
−

𝜔

𝑠

𝐻

(𝑧̃

3
+ 𝑧̃

4
)

V
1

V
2

]

]

]

]

]
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=

[

[

[

[

[

0 1 0 0

0 −

𝐷

𝐻

−

𝜔

𝑠

𝐻

−

𝜔

𝑠

𝐻

0 0 0 0

0 0 0 0

]

]

]

]

]

[

[

[

[

𝑧̃

1

𝑧̃

2

𝑧̃

3

𝑧̃

4

]

]

]

]

+

[

[

[

[

0 0

0 0

1 0

0 1

]

]

]

]

[

V
1

V
2

]

= 𝐴𝑧̃ + 𝐵V.
(A.5)

For the linear system (A.5), the linear optimal law V can be
obtained as

V (𝑧̃) = [V1 (𝑧̃)V
2
(𝑧̃)

] = −𝐵

𝑇

𝑃𝑧̃, (A.6)

where 𝑃 is the positive definite matrix satisfying the Riccati
equation for linear systems (A.5). Hence, it is easy to obtain
the nonlinear coordinated and optimal control law based on
feedback linearization methodology as follows:

[

[

[

[

𝑢

𝑓

𝑇

𝑓

𝑢

𝑟

𝑇

𝑟

]

]

]

]

=

[

[

[

[

[

−

𝑓

3
(𝑥) − V

1
(𝑥)

𝑔

31
(𝑥)

−

𝑔

41
(𝑥) (𝑓

3
(𝑥) − V

1
(𝑥))

𝑔

31
(𝑥) 𝑔

42
(𝑥)

−

𝑓

4
(𝑥) − V

2
(𝑥)

𝑔

42
(𝑥)

]

]

]

]

]

.

(A.7)

B. Coordinated Passivation Controller [21]

For simplicity, let us define the state variable by 𝑥
1
= 𝛿 − 𝛿

𝑒
,

𝑥

2
= 𝜔−𝜔

𝑠
, 𝑥
3
= 𝑃

𝑒
−𝑃

𝑚
, 𝑦 = 𝑃svc−𝑃svce; therefore, the power

system considered in (5) is output strictly passive under the
following Coordination Passivation Controller

𝑉

∞
sin𝑥
1

𝑋

󸀠

𝑑Σ
𝑇

𝑓

𝑢

𝑓
=

𝑥

2
+ 𝑐

1
𝑥

1

𝑀

− 𝑐

3
(𝑥

3
− 𝛼 (𝑥

1
, 𝑥

2
))

− (−𝑎 + 𝑥

2
cot (𝑥

1
+ 𝛿

𝑒
)) (𝑥

3
+ 𝑃

𝑚
)

−

𝑏𝑉

∞
sin 2 (𝑥

1
+ 𝛿

𝑒
)

2𝑋

󸀠

𝑑Σ

+

𝜕𝛼

𝜕𝑥

1

𝑥

2
+

𝜕𝛼

𝜕𝑥

2

̇

𝑥̃

2
,

𝑔

42
(𝑥)

𝑢

𝑟

𝑇

𝑟

= −𝑓

4
(𝑥, 𝑦) − 𝑔

41
(𝑥, 𝑦)

𝑢

𝑓

𝑇

𝑓

−

𝑥

2
+ 𝑐

1
𝑥

1

𝑀

𝑦 + V,

(B.1)

where 𝛼(𝑥
1
, 𝑥

2
) = −(1/𝑀)(𝑐

2
(𝑥

2
+𝑐

1
𝑥

1
)+𝑥

1
+(𝑐

1
−𝐷/𝐻)𝑥

2
),

and in this paper tuning parameters are chosen as 𝑐
1
= 𝑐

2
=

𝑐

3
= 20. Further, if V = − ̃𝛽𝑦 ( ̃𝛽 > 0) and 𝑐

1
+ 𝑐

2
+ 𝑐

3
> (𝐷/𝐻),

the closed-loop system is asymptotically stable.
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