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THE SECTIONAL CATEGORY OF SPHERICAL FIBRATIONS

DON STANLEY

(Communicated by Ralph L. Cohen)

This paper is dedicated to my son Russell

Abstract. We give homological conditions which determine sectional cate-

gory, secat, for rational spherical fibrations. In the odd dimensional case the
secat is the least power of the Euler class which is trivial. In the even dimen-
sional case secat is one when a certain homology class in twice the dimension
of the sphere is −1 times a square. Otherwise secat is two. We apply our
results to construct a fibration p such that secat(p) = 2 and genus(p) = ∞.
We also observe that secat, unlike cat, can decrease in a field extension of Q.

1. Introduction

The study of sectional category, or secat, goes back at least to Krasnosel’skii [8]
and Yang [14] who studied genus and B-index respectively. These can be considered
as special cases of secat. Still the main reference for secat is the paper of Švarc [11]
(who also used the term genus). Let p : E −→ B be a fibration. Then secat(p) is
the least number of open subsets of B over which p has a section that it takes to
cover B. If E ' ∗, then secat(p) = cat(B)+1 so we see that secat is a generalization
of LS category. secat also has many other applications which include critical point
theory and embedding theory (see [11]).

This paper is concerned with the secat of fibrations with fibre a sphere. The
secat of such fibrations has been previously studied [11]. By restricting ourselves
to the rational case we can completely solve the problem of determining secat.

We work in the category of spaces having the homotopy type of a CW-complex
[9]. For any map p we will always let Fib(p) denote the homotopy fibre of p. We
give another definition of secat. They were shown to be equivalent by Švarc [11].

Definition 1.1. Let p(n) :∗nBE → B be the n-fold fibrewise join of p with itself
(see [7]). If B is a point, we denote ∗n∗E by ∗nE. Then sec(p) ≤ n if and only if
p(n) has a section.

The fact that this definition is equivalent to the open set one follows from [7]
together with two facts. The fact that CW-complexes have the homotopy type of
paracompact spaces and the fact that secat of a fibration induced by a homotopy
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equivalence into the base is the same as secat of the original fibration. Observe that
our definition of∗nE coincides with the usual one. We state a few facts about the
n-fold fibrewise join.

Proposition 1.2. 1) p(n) is natural in p. In other words a diagram

E
-

E′

p
? ?

p′

B
-

B′

gives us a diagram

∗nBE - ∗nBE′
p(n)
? ?

p′(n)

B
-

B′.

If the first diagram is a pullback, then so is the second.
2) Fib p(n) '∗n Fib p

Proof. 1) is proved by Doeraene [2]. 2) follows from 1) when we let E ' Fib p and
B ' ∗.

We will use the following fact about secat. It is due to Švarc.

Theorem 1.3. Let p : E −→ B be a fibration. Assume (kerH∗(p))r−1 6= 0. Then
secat p ≥ r.

Proof. See [11] or [7].

We also need to use the Lusternik-Schnirelmann category of a map.

Definition 1.4. Let f : X −→ Y be a map. Then

cat(f) = min |{Ui ⊂ X |Ui open,
⋃
Ui = X, f |ui ' ∗}| − 1.

We define cat(X) = cat(idX).

The following facts about cat(f) are easy to prove.

Proposition 1.5. Let X,Y, Z be spaces and f ′, f : X −→ Y , g : Y −→ Z be maps.
Then cat(gf) ≤ cat(Y ). If there exists a cell decomposition of X with r cells, then
cat(X) ≤ r − 1. If f ' f ′, then cat(f) = cat(f ′).

Proof. See [7].

2. Odd dimensional fibre

Let F i−→ E
p−→ B be a fibration sequence such that E and B are simply

connected and of finite type. Assume F ' S2n+1. We work over the rationals.
This means that all spaces and cohomology are rational. In this section we show
that secat(p) is the smallest r such that ker(H∗(p))r = 0 (Corollary 2.4).
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Notice that F is a K(Q, 2n+1). So it follows from the theory of relative Postnikov
systems [13] that p is a principle fibration. (This can also be seen by looking at
Sullivan models.) So p is the inclusion of the fibre of a fibration

f : B −→ K(Q, 2n+ 2).

In this situation we have the following theorem of Schwartz.

Theorem 2.1. secat(p) = cat(f) + 1.

Proof. See [11], Theorem 19” or [7].

Definition 2.2. f : B −→ K(Q, 2n + 2) corresponds to α ∈ H2n+2(B). We call
α the Euler class of p. Since B is simply connected, this is the same as the usual
Euler class.

Theorem 2.3. Let α be the Euler class of p. Let r be the least integer such that
αr = 0. Then secat(p) = r.

Proof. Assume αr = 0. Then f factors through the fibre G of the map

K(Q, 2n+ 2) −→ K(Q, (2n+ 2)r)

which represents ιr ∈ H(2n+2)r(K(Q, 2n+2)). Of course G is just the (2n+2)(r−1)
skeleton of K(Q, 2n+ 2) and so cat(G) ≤ r − 1. (To see cat(G) ≤ r − 1 calculate
that H∗G ∼= P (a)/(ar). So G can be built with r cells and so cat(G) ≤ r − 1
by Proposition 1.5.) Therefore by Proposition 1.5 cat(f) ≤ cat(G) ≤ r − 1. So
secat(p) ≤ r. But αr−1 6= 0 so by Theorem 1.3 secat(p) ≥ r. We conclude that
secat(p) = r.

Another way to phrase the result of the theorem is:

Corollary 2.4. secat(p) is the smallest r such that (kerH∗(p))r = 0.

Proof. Assume (kerH∗(p))r = 0 but (kerH∗(p))r−1 6= 0. Then by Theorem 1.3
secat(p) ≥ r. But the r-th power of the Euler class is trivial so secat(p) ≤ r.

3. Even dimensional fibre

Again let F i−→ E
p−→ B be a fibration sequence such that E and B are

simply connected and of finite type. Assume F ' S2n. Again we work over the
rationals. This time we need to make use of Sullivan models. For information on
Sullivan models see [5], [12] or [10]. (ΛV, d) denotes the free commutative differential
graded algebra on a graded vector space V with differential d. For a graded set
(a(1), . . . , a(n)), (Λ(a(1), . . . , a(n)), d) denotes (ΛV, d) where V is the vector space
with basis (a(1), . . . , a(n)). For vector spaces V and W , (ΛV ⊗ΛW,d) is the same
as (Λ(V ⊕W ), d) with the added assumption that d(V ) ⊂ ΛV . For convenience we
will use the same notation for a map and a model of the map.

Lemma 3.1. There exists a model for E of the form

(ΛV ⊗ Λ(a, b), d)

such that da = 0 and db = a2 + α for some cycle α ∈ ΛV . Also the inclusion

p : (ΛV, d) −→ (ΛV ⊗ Λ(a, b), d)

models the map p. Given the form of the differential and the fact that the inclusion
models p the homology class of the cycle α is determined.
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Proof. (Λ(a, b), d) with db = a2 and da = 0 is a model of F . Therefore there exists
a model (ΛV ⊗ Λ(a, b), d) for E. First we show that we can assume da = 0. There
exist δ, γ ∈ ΛV such that

db = a2 + γa+ δ.(1)

So

0 = ddb = 2ada+ adγ + terms without a.(2)

Therefore da = − 1
2dγ. So by changing basis in a way compatible with p we can

assume da = 0. In the new basis there still exist δ, γ so that (1) holds. Now (2)
implies dγ = 0. So again we can change basis compatibly with p so that db = a2 +δ
for some δ ∈ ΛV .

Assume that there exists another model (ΛV ⊗ Λ(a′, b′), d′) for E compatible
with the inclusion and such that d′a′ = 0 and d′b′ = a′+α′ for some cycle α′ ∈ ΛV .
So then there is an equivalence

f : (ΛV ⊗ Λ(a, b), d) −→ (ΛV ⊗ Λ(a′, b′), d′)

that is compatible with the inclusion of ΛV . So by multiplying a′ by −1 if necessary
we get that f(a) = a′ + γ for some cycle γ ∈ ΛV . But since f(db) = f(a2) =
(a′)2 + 2aγ+ γ2 is a boundary it follows that γ must be a boundary and so we can
change f and assume that γ = 0. Again using the fact that f(db) is a boundary we
see that db ' db′ in ΛV ⊗ Λ(a). Therefore α ' α′.

Lemma 3.2. secat(p) ≤ 2.

Proof. Represent p as in Lemma 3.1. Then we have a commutative diagram

(ΛV, d) -p′

(ΛV ⊗ Λ(a), d)

=
? ?

include

(ΛV, d) -
p

(ΛV ⊗ Λ(a, b), d).

Since da = 0, secat(p′) = 1. Taking fibrewise joins we get a commutative diagram

(ΛV, d) -p′(2)

(ΛV ⊗ Λ(a′, . . . ), d)

=
? ?

h

(ΛV, d) -p(2)

(ΛV ⊗ Λ(a′), d).

The dimension of a′ is 4n+ 1 and all other generators of the model of Fib(p′(2))
are in higher dimensions. Remember that Fib p ' S2n. Therefore Fib p(2) ' S4n+1.
Also the induced map Fib(p′) −→ Fib(p) is an H2n isomorphism. It follows that
we can represent the fibrations and maps so that h(a′) = a′. Since secat(p′) =
1 < 2 there exists a map r′ such that r′p′(2) = id. Therefore, by changing basis if
necessary, we may assume that da′ = 0. So there is an r : (ΛV⊗Λ(a′), d) −→ (ΛV, d)
such that rp(2) = id. Thus secat(p) ≤ 2.
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Theorem 3.3. Let p : E −→ B be a fibration with fibre S2n. Let p : (ΛV, d) −→
(ΛV ⊗ Λ(a, b), d) be a model of p such that da = 0 and db = a2 + α, where α is a
cycle in ΛV . Then secat(p) = 1 if α represents −r2 for some r ∈ H∗B. Otherwise
secat(p) = 2.

Proof. The statement that p can be modeled in the way stated in the theorem
is just Lemma 3.1. Also recall that the homology class of α is determined. Let
r ∈ H∗B and assume that α represents −r2. Let β ∈ ΛV represent r. Then there
exists γ ∈ ΛV such that dγ = β2 + α. We define r : (ΛV ⊗ Λ(a, b), d) −→ (ΛV, d)
by

r|ΛV = id,
r(a) = β,

r(b) = γ.

Clearly rp = id. So secat(p) = 1.
Now assume secat(p) = 1 Then there is a map

r : (ΛV ⊗ Λ(a, b), d) −→ (ΛV, d)

such that rp = id.
Let r(a) = β and r(b) = γ. Notice dβ = 0. We also have the equation in ΛV ,

β2 +α = rdb = drb = dγ. Therefore β2 +α ' 0 and so −β2 ' α. In other words α
represents −r2 for [β] = r ∈ H∗B. The last statement of the theorem then follows
easily from Lemma 3.2.

Remark 1. As pointed out by the referee the fact that we can assume that da = 0 in
Lemma 3.1 is just the fact that the Euler class of a spherical fibration with an even
dimensional fibre is torsion (in fact 2-torsion). Furthermore part of the content of
Theorem 3.3 is to pin down the secondary (and only other) rational obstruction to
such a fibration having a section.

Example. Consider the map

p : (Λ(c), d) −→ (Λ(c, a, b), d)

where da = 0 and db = a2 +αc2. Then secat(p) = 1 if and only if α = −k2 for some
k ∈ Q. This example makes it clear that secat(p) can decrease in a field extension.
This is in contrast to the situation for LS category where Hess [6], Theorem 4
showed that cat is independent of field extension of Q.

4. An application to genus

In this section we apply the result of the last section together with a result of
Gatsinzi [4] to construct maps f with secat(f) = 2 and genus(f) = ∞. We first
define genus and give a characterization of it in terms of the cat of the classifying
map of the fibration. Let p : E −→ B be a fibration.

Definition 4.1. An open cover {Ui} of B such that, for every i, p|Ui is equivalent
to a product fibration is called p trivial.

genus(p) = min
{Ui} p trivial

|{Ui}|.

It is clear from the definition that secat(p) ≤ genus(p).
We can give another characterization of genus which generalizes [11], Theorem

19” to non-principal fibrations. The method of proof is the same.
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Theorem 4.2. Let F denote the fibre of p and φ : B −→ B autF its classifying
map. Then genus(p) = cat(φ) + 1.

Proof. It follows from [1] that φ|Ui : Ui −→ B autF is inessential if and only if p|Ui
is equivalent to a product fibration. The result then follows easily.

For the rest of this section we work over the rationals.

Theorem 4.3 ([4]). There are maps

f : K(Q, 4n) −→ B aut S2n

that are non-trivial on π∗.

Proof. This is a special case of a theorem in [4]. There it is shown that there is
such a map for any Gottlieb element of any coformal space.

Corollary 4.4. Any fibration p corresponding to a nontrivial f : K(Q, 4n) −→
B aut S2n has genus(p) =∞.

Proof. The mapping theorem [3] implies that cat(f) = ∞. (non-triviality implies
injectivity in this case.) Theorem 4.2 then implies genus(p) =∞.

Theorem 4.5. The fibrations p corresponding to non-trivial maps f of Theorem
4.3 are represented by KS extensions of the form

Λ(c) −→ Λ(a, b, c)

where da = dc = 0, db = a2 + αc and α ∈ Q×. So secat(p) = 2 and genus(p) =∞.

Proof. From Lemma 3.1 and for dimension reasons the fibration must be repre-
sentable in the form stated in the theorem for some α ∈ Q. α 6= 0 since otherwise
the fibration would be trivial. That secat(p) = 2 follows directly from Theorem
3.3. That genus(p) =∞ is just Corollary 4.4.

Remark 2. For every r > 1, consider the fibration p represented by the KS extension

Λ(c, e) −→ Λ(c, e, a, b)

where de = cr, dc = da = 0 and db = a2 + αc, α ∈ Q×. It is not hard to see that
secat(p) = 2, genus(p) = r.
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