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1. Introduction. If G is a complete, metrizable, topological abelian

group such that the groups

Gm = {x E G\ my = x   for some y EG}

are dense in G, then Theorem 2.1 of this paper shows that G has a

dense divisible subgroup K. An example appears in §3 of a group G

that is not divisible even though G has a dense divisible subgroup.

Also some of the possibilities are examined when G is itself divisible.

It should be remembered that the set of all divisible elements in an

abelian group forms a subgroup.

2. The existence of dense divisible subgroups. Let G be a complete,

metrizable, topological abelian group. Define Gm={xEG\my=x for

some yEG}. Suppose that Gm is dense in G for all m>0.

Let {Un}n=x be an open basis of the identity of G such that

Un+x+ U„+xEUn. Choose an open neighborhood V„ of the identity

of G such that

Vn  +    ■   ■   ■   +   Vn  C   Un.

(n! times)

Next a sequence {x,-}jli will be defined inductively. Given x£G,

wesupposex,, 1 gtgra are given with xi=x and ((j+l)xi+x — x/)£ Vj+i

whenever Xj, xJ+1 are defined. Define x„+i so that ((n + l)xn+x — xn)

£ Vn+x- We can choose such an xn+x since Gn+1 is dense in G. For each

ra consider the sequence {y«,m} m-n+i where

yn,m;m>n   =   (m)(m  —   1)   •••(*» +   l)xm.

The claim is that {yn.m}Z-n+x lS a Cauchy sequence. For consider

yn,m+i — ya,m=(m+l)(m) ■ ■ ■ («+l)xm+i— (m)(m— 1) • • • (w+l)xm

= (m)(m—l) ■ ■ ■ (n+l)[(m+l)xm+x — xm]E(m)(m-l) • • - (ra+1)

Vm+xE Um+X-

Thus {yn,m}Z=n+x forms a Cauchy sequence since Um+x+ Um+xEUm.

Let yn be the element which  {y„,m}m converges to. The claim is

that (n + l)yn+x = yn. Given Uj, we may choose m so that yn+i.m and
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yH.m satisfy y„+i,m—yn+xEUj+n+i and y„,m-y„GPj+i- Thus by the

definition of y„,ro and y„+i,m, (m)(m — l) ■ ■ ■ (n + 2)xm-yn+xEUj+n+2

and (m)(m — 1) ■ ■ ■ (n + l)xm — ynEUi+x. Hence

(n + l)yn+l — yn = (n + l)y„+1 — (m)(m — 1) ■ ■ ■ (n + i)xm

+ (m)(m — 1) • • • (n + l)xm — yn E Uj+1 + P/+i C Uj.

Since this is true for all/ we have (ra+l)y„+i=yn.

As a consequence «!yn = yi for all n and yi is divisible for all n.

Furthermore,

yx  ~ X =   (yx  -  yx.m)   +   (yx.m  -  yx.m-l)  +   (yx.m-X  -  yi,m-2)  +   '   '   '

+ (yi,3 - yi,2) + (y,,s - x) E Ux + Um + Pm_i + ■ ■ •

+ U3+ U2EUx+ Ux

since for any j^n, y„,j+x— yn,jE Py+i, yi,2 = 2x2, yi.2 — x = 2x2— XxE U2

and we may choose m so that yx—yx,mE Ux-

What this shows since Pi can be chosen as small a neighborhood

as desired and since x was arbitrary, is that the divisible elements are

dense in G.

Theorem 2.1. A complete, metrizable topological abelian group G has

a dense divisible subgroup if and only if the Gm are dense in G for all

m>0.

Proof. If the Gm are dense, then it was just shown that G has a

dense divisible subgroup. On the other hand if G has a dense divisible

subgroup H, Gm{~~\H = H is dense in G.

The next theorem gives one example of groups which have a dense

divisible subgroup.

Theorem 2.2. Let G be a topological abelian group. If G has a dense,

cyclic subgroup H and G has no proper open subgroups, then the sub-

groups Gn are dense for all n>0.

Proof. Suppose one of the G" for «>0 is not dense in G. Then if

Hx = Gnr\H, let H2 be the closure of Hx in H. Since H is algebraically

isomorphic to the integers and H2 is not the zero subgroup, H2 is

open in H. Hence since H is dense in G, the closure L of H2 in G is an

open subgroup of G. But since we supposed that G" is not dense in G,

P would be a proper open subgroup of G which is a contradiction.

A special class of groups like those of Theorem 2.1 are those which

are divisible as well as being complete and metrizable. If H is a divisi-

ble group such that the map 0i/„:x—>(1/m)x is well defined and a con-

tinuous homomorphism for all xEH, then the map d>x/n extends to a

continuous homomorphism of the completion G oi H.  Naturally
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such a G must be torsion free. Any topological vector space is one ex-

ample of such a group.

Suppose on the other hand G is complete, metrizable, separ-

able, and divisible. Then <pn-G-^G is continuous and onto. Thus by

the open mapping theorem [l, p. 99], <pn is open.

If G is also torsion free, then the mapping 4>un'-x—*(l/n)x is well

defined and is a homomorphism. Since <pn is open, <pxin=<pn~l is con-

tinuous. The solenoidal group Sa, a = (1, 2, 3, • • • ) [2, p. 406 and p.

388] is one example of such a torsion free group G. The a-dic solenoid

2„ is compact, connected, divisible, and torsion free. But even though

the mappings <px/n are continuous for all w>0, Sn is not a topological

vector space.

The circle group is an example of a connected, complete, metrizable

divisible group such that the mappings <pxi„ are not well defined for

any ra>0.

3. The size of the maximal divisible subgroup of G. If Gi and G2 are

topological groups and <p:Gx—<-G2 is a homomorphism, then <p is called

almost open [l, p. 14 and p. 89] if for every x£G, y=tp(x), and

neighborhood Uoix, the closure of <p(U), C\(<p(U)), is a neighborhood

of <p(y). If <p:Gx—>G2 is almost open and Hx is a dense subgroup of Gi,

then it can be checked that <p restricted to Hx is almost open.

Suppose that we are given an almost open homomorphism

<p':Hx—>H2. If Hi is dense in Gx, H2 is dense in G2, and <p:Gx—>G2 is an

extension of <p' to Gx, then it can be checked that <p is almost open.

Even if the Gm are dense in G, the maps <pn:G—>G do not have to be

almost open. To see this, first define on the additive integers a topol-

ogy called the group series topology. Let a set 5= {(pi, Mi)}£,x of

pairs of positive integers be given such that Af, = 2', the greatest

common divisor of {pi}Z,n is 1 for all ra, and such that 3 Z<-i Mi<pj

for all j. Define

Un —  \x | x = Z frtipi for | nti | g 2~~nMi,    for m, and N integers> .
V t=n "

These Un satisfy the axioms [l, p. 46] for a basis of the neighbor-

hoods of the identity for a topological abelian group, i.e., £/„= — U„,

and Un+x+Un+iEUn. For if x, y£Z7„+i, then x= Z^i mtpi an(l

y— Z^-i m'iPi l0r some integers w,-, m[, N such that |rw<| g(l/2n+1)

Mit \m'i\ g(l/2"+1)Af,-. Thus x+y can be written as x+y= ZX=i

(mi+m[)pi with \mi+m't\ g(l/2'*)Afi. This proves that x+yEUn

and as a result Un+x+ Un+xE Un-

li xEUn, then x= 2~2?=i ̂ ipi for some integers N, mi such that

|w,-| g(l/2"),¥,-.   Thus    -x=Zf-i   (-mi)pi   and    |-w,|=|j»<|
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g (l/2a)M,-. Whence -xE Un and therefore - Un = Un.

Furthermore if x£ Ux, then there is a unique set of integers {w,} j

with x = J^f mipi and |mt\ g Mi. For if not for some mit m't, N, and j,

x=2^Li mipi=^2f,x m'tpi with \mi\ gAP, \m'i\ gAp and j the
largest index such that mj^m]. Then | (mj — m'f)pj\ = | J^li

(mt — m'/)pi\ g Xill 2Mi. But since the p,- were chosen so that

pj>3^yiZllMi,then-wehave\(mj — mj)pj\ >3X?*=I Mi which is a con-

tradiction. Henceforth if we write x— 2^; m,pi, it will be assumed

that \mi\ gilp. Since the greatest common divisor of the elements

of any P„ is 1, then the smallest subgroup of the integers containing

any Un is the integers. Thus if the topological group H is the integers

under the topology having a basis of the identity the Un, H has no

proper open subgroups and Hm is dense in H for all m>0.

If <b2:H—*H is defined by <p2:x—->2x, then the claim is that CI

(<t>i(U3)) Is not a neighborhood of 0. If 0\(<p2(U3)) is a neighborhood

of 0, then we can find some Uj with j'^3 such that UjEC\(<j>2(U3)).

In particular pjEC\(cp2(U3)) and there is a cE<Pt(U3) such that

pj — cEUj+x- If c= Xl^-i nipi, an n< are divisible by 2 since cEd>2(U3).

Also
pj- cE Uj + d>2(U3) C U2 + U2 E Ux

implies that we can write pj — c= /*,„, qip, with the g< unique. Since

2 divides »y, g,- = l—», is not zero. This contradicts the fact that

pj — cEUj+x- Hence C1($2(P3)) is not a neighborhood of 0 and <p2 is

not almost open.

Let G he the completion of H, the integers, under this topology and

let K be the maximal divisible group of G. K is dense in G by Theorem

2.1. Suppose K = G.

Let d>l :x—>2x he the extension of 4>2 to G. Since G is divisible, d>2 is

onto. But since G is complete and <f>{ is continuous and onto, then

4>I is an open mapping [l, p. 99]. But then since <f>2 is almost open,

the restriction qb2 of <p2 to H is almost open. This is a contradiction.

Hence Kj^G.

Thus we have an example of a complete, metrizable group G such

that even though the G" are dense, G is not divisible. The author does

not know whether K is always uncountable when G is uncountable.
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