Hindawi Publishing Corporation

International Journal of Distributed Sensor Networks
Volume 2013, Article ID 429065, 13 pages
http://dx.doi.org/10.1155/2013/429065

Research Article

Hindawi

Efficient Deterministic Anchor Deployment for

Sensor Network Positioning

Yongle Chen,"? Ci Chen,” Hongsong Zhu,' and Limin Sun'

!'State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China

2 University of the Chinese Academy of Sciences, Beijing 100190, China
? The School of Software and Microelectronics, Peking University, Beijing 102600, China

Correspondence should be addressed to Limin Sun; sunlimin@iie.ac.cn

Received 10 January 2013; Accepted 24 February 2013

Academic Editor: Jianwei Niu

Copyright © 2013 Yongle Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sensor network positioning systems have been extensively studied in recent years. Most of the systems share a common assumption
that some known-position anchor nodes have existed. However, a more fundamental question is always being overlooked, that is,
how to acquire the anchor’s position. In general, GPS-based measures and the artificial calibration are two dominant methods to
acquire anchor positions. Due to the high energy cost and failures in occlusion regions of the GPS modules, the artificial calibration
method is adopted extensively. Nevertheless, numerous disadvantages of the artificial calibration, such as the expensive labor cost
and error-prone features, also make it hard to be an efficient solution for the anchor positioning. For this reason, we design
an efficient mapping algorithm between anchors and their positions (MD-SKM) to avoid the complicated artificial calibration.
Additionally, we propose a best feature matching (BFM) method to further relax the restriction of MDS-KM where three or more
calibrated anchors are needed. We evaluate our MDS-KM algorithm under various topologies and connectivity settings. Experiment
results show that at a slightly higher connectivity level, our algorithm can achieve the exactly correct matching between anchors

and their positions without any calibrated anchors.

1. Introduction

Sensor networks have been extensively studied due to their
salient advantages of monitoring and controlling related
applications, such as the battlefield monitoring, medical
surveillance, and structure monitoring. Furthermore, in
these applications, a basic service requirement implied is
to determine the exact location of the happening event
through pre-deployed sensors, in order that the operators
are prone to execute appropriate control actions in response
to the event. In this sense, the positioning technology of
the sensor network is getting more and more attentions.
Currently, most developed positioning systems depend on
four metrics, including TOA, AOA, RSS, and the connectivity
of the signals. In addition, these systems also have a common
assumption; that is, some known-position nodes exist in the
sensor network, which are also named as anchors. Based
on the known-position anchors, they are able to localize

other unknown-position nodes. However, how to acquire the
anchor’s position is still an unsolved question.

At present, two methods are mainly used for acquiring
anchors’ positions. One is leveraging GPS modules, and
the other is called the artificial calibration [1]. In practice,
the placement ways to construct the sensor network decide
which method to be adopted to acquire anchors’ positions.
The placement ways can be summarized in two types: the
stochastic way and the deterministic way. In terms of the
stochastic way, the most typical example is the battlefield
monitoring. In the battlefield scenario, military sensors are
randomly scattered from the air, where the anchors’ positions
are stochastic. In this case, to acquire anchors’ positions, we
have to rely on the GPS modules attached with sensors. The
GPS modules are usually limited by a series of disadvantages,
such as high energy costs and failures in occlusion regions,
which make this method not applicable for the low-power
sensor networks. Different from the stochastic way, in some



scenarios, the anchors’ positions are deterministic according
to predesigned placement blueprint, such as that in medical
surveillance and structure monitoring. In these scenarios,
the correspondence is recorded between anchors’ physical
positions in the blueprint and anchors’ IDs, such that each
anchor unambiguously knows its own position. We named
this method the artificial calibration. Also, many works [2, 3]
have pointed out that optimizing the anchor placement is able
to accelerate the convergence of the positioning algorithm
and improve the positioning accuracy. Nevertheless, this kind
of methods always suffers from the complicated and error-
prone mapping between physical locations and the node IDs,
which is even more severe in a large sensor network.

In this paper, we design an efficient MDS-KM matching
algorithm to avoid the artificial calibration cost in deter-
ministic anchor placement. To the best of our knowledge,
we are the first to consider solving the artificial calibration
problem of anchors placement. Given sufficient calibrated
anchors (C-anchors for short), we first design a distributed
MDS-MAP(A) method to construct an absolute radiomap by
using estimated distance or hop distance between anchors.
In the absolute radiomap, each anchor has an absolute
coordinate of its position, corresponding to the physical
position in the blueprint. In order to map the radiomap
with the blueprint, we use the kNN method to select the
k-nearest physical positions in the blueprint away from the
anchor absolute positions in the radiomap and then build a
complete bipartite graph. Based on the bipartite graph, we
adopt the Kuhn-Munkres (KM) algorithm to get a maximum
weighted matching. Accordingly, we achieve the correspon-
dence between anchor nodes in the radiomap and physical
positions in the blueprint. Meanwhile, in order to relax our
MDS-KM method for the cases without calibrated anchors,
we design a best feature matching (BFM) method to actively
map parts of anchors in the radiomap to positions in the
blueprint. Our method will greatly improve the efficiency of
anchor placement through avoiding the artificial calibration.
The experiment in Section 6 shows that the mapping from
the radiomap to the blueprint is exactly correct when the
connectivity level of network is not excessively low.

The remainder of the paper is organized as follows. The
related work is shown in Section 2. We formulate the problem
in Section 3 while leaving the details of our algorithm design
for Section 4. The further improved strategy is presented
in Section 5. Then we show the experiment and simulation
results of our MDS-KM algorithm in Section 6. Finally, we
conclude the paper in Section 7.

2. Related Work

Many works have pointed out that anchor placement ways
will help to improve positioning performance. The pioneer
anchor placement ways are mainly based on the empirical
evidence in positioning system. For example, Shang et al. [2]
randomly place anchors in their experiment and find that a
selection of collinear anchors in one test is rather unlucky.
Recently, Akl et al. [3] study the anchor placement for passive
positioning, and they find that the optimal placement is that
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no three anchor nodes are collinear at the center of network.
The authors of [4] point out that the optimal placement of
anchors should be around the corners of the network and
also find that the more nonlinearity results in the better
positioning performance.

Dobherty et al. [5] place the anchors at the corners of the
network to acquire a better positioning results. However, the
algorithm has a constraint requirements that all the unknown
nodes should be placed within the convex hull of the anchors,
which reduces the algorithm generality. Ash and Moses [6]
analyse and prove that the anchors on the corners of network
will help to improve positioning result when the network is
a rectangle. Hara and Fukumura [7] also propose an anchor
placement algorithm applied to the rectangle network, and
that they point out the anchors must be placed in the
centers of subrectangle regions divided from the rectangle
network.

Some anchor placements focus on the effect of the
environment. For example, the authors of [8] conduct some
experiments where anchors are placed either on the ceiling
or the floor. The study find that anchors or on the floor are
better for monitoring moving people in the room. Although
many anchor placement works are developed, they only focus
on how to improve the positioning performance based on
anchor positions and ignore how to acquire the positions of
anchors. This paper analyses the artificial calibration problem
to acquire the anchor positions after deterministic placement.
In order to efficiently acquire the anchor positions, we intro-
duce MDS method to construct a radiomap corresponding
to the blueprint. Then anchors physical positions can be self-
calibrated by mapping the radiomap to the blueprint.

MDS method is a series of analysis techniques used for
displaying the data proximity as a geometrical picture [9]. At
present, there are many variants of MDS positioning algo-
rithm, including classical metric MDS-MAP(C), distributed
MDS-MAP(P), local MDS, and weighted d WMDS(G). Cen-
tralized MDS-MAP(C) [10] algorithm is the earliest usage of
MDS techniques in sensor network positioning. Since MDS-
MAP(C) uses the shortest hop distance as the estimate of the
true Euclidean distance, it is not good for irregular network.
A distributed MDS method, MDS-MAP(P) [11], is proposed
to be applied to different network topologies. MDS-MAP(P)
first constructs a 2-hop local map by executing MDS-
MAP(C) method for nearby nodes then merges each local
map into a global map based on the common nodes. Local
MDS [12] is another distributed variant of MDS-MAP(C)
improved for irregular topologies. The difference from MDS-
MAP(P) is that the nearby nodes of constructing local map
only include 1-hop neighbors and the weights are restricted to
0 or 1. Meanwhile, a least square optimization method is used
for refining the local maps. The dwMDS(G) [13] is a weighted
distributed MDS method, in which a weighted (Gauss kernel)
cost function is adopted for adaptively emphasizing the most
accurate range measurements. Besides, dwWMDS(G) designs
a neighbor selection method to avoid the biasing effects of
noisy range measurements neighbors.

In this paper, we design a distributed MDS-KM method
to increase the efficiency of anchor placement. At first, we
design an MDS-MAP(A) method focusing on the anchor
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FIGURE 1: The blueprint and the corresponding radiomap.
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FIGURE 2: The MDS-KM algorithm framework.

positioning to construct a radiomap with absolute coordi-
nates, which is not subject to the irregular anchors dis-
tribution. Afterwards, we use the KM algorithm to obtain
the maximal weighted matching of complete bipartite graph
constructed by the radiomap and the blueprint. Besides, our
MDS-KM method can also avoid the error-prone mapping
during the artificial calibration.

3. Problem Specification

The optimized placement of anchors has a very important
impact for the positioning performance. For improving
the positioning accuracy, a predefined blueprint is usually
constructed to guide the anchor placement before deploying
the positioning system. That is called deterministic anchor
placement. For example, the left graph in Figurel is a
blueprint, where the black cycles are the positions to place
anchors. During the placement, anchor node ID will be one-
to-one mapped to the anchor position marked on blueprint,
which is called artificial calibration. This process will con-
sume a higher labor cost and lead to error-prone mapping.
In order to solve this problem, we build a radiomap using
the connectivity in large sparse network or signal strength
between anchors in small dense network and then adaptively
map the radiomap to the blueprint with little or no artificial
calibration. As shown in the right graph of Figurel, the
vertices in the radiomap represent anchor nodes and the edge
weights represent the signal strength in the small network.
In sparse network, many anchor nodes may have only few
neighbor anchors or even none. Here, we make the shortest
hop distance from one anchor to another anchor as the weight
in the radiomap.

Accordingly, the problem to be solved becomes the exact
mapping from the radiomap to the blueprint. Intuitively, the
radiomap has similar characteristics with the blueprint. The
radiomap-to-blueprint mapping should be graph isomor-
phism (GI) problem [14]. But in the small network, it does not

FIGURE 3: A complete bipartite graph.

. Nl Relative RM by
Radiomap (RM) i MDS
N
_l/

D:l[> Absolute RM by
MDS-MAP

Advanced graph
(A JL

N  RM-to-BP
17| KM matching

Blueprint (BP)

FIGURE 4: The improved MDS-KM algorithm framework.

strictly belong to graph isomorphism problem. Supposing the
radiomap and the blueprint are isomorphic, each vertex and
edge in both graphs must have a corresponding bijection.
As the physical distance increases in the blueprint, the
RSS in the radiomap damps and even disappears, but the
physical distance can still be measured. Thus the blueprint is
a complete graph, while the radiomap is a subgraph of the
blueprint. Even though we limited the maximum measure
distance in the blueprint, the edges in the blueprint may
still not have a corresponding bijection to the edges in the
radiomap due to the effect of the surrounding noise. The
edges in the radiomap only have a corresponding bijection
with the subset of the blueprint. This is a typical subgraph
isomorphism problem [15].

However, subgraph isomorphism is an NP-complete
problem [16]. Furthermore, the distances between vertices
in the blueprint do not exactly reflect the RSS values in
the radiomap subjected to the surrounding noise. Therefore,
the existing heuristic subgraph isomorphism algorithm is
not suitable for the radiomap-to-blueprint mapping. In this
paper, we design an MDS-KM matching algorithm to solve
this mapping problem in the small network or the sparse
network. We introduce the multidimensional scaling (MDS)
method in the anchor placement, which is well suited to com-
pute a relative coordinates map in a low-dimensional space
by one matrix representing distance information between
nodes. Based on MDS method and sufficient known-position
calibrated anchors (3 or more), we design a distributed MDS-
MAP(A) method to construct the radiomap with absolute
coordinates. Then the Euclidean distances of vertices in the
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FIGURE 5: The advanced graph in the small network.
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FIGURE 6: Two experiments in uniform and n-sharp distribution.

radiomap and the blueprint are computed as the weights to
construct a weighted bipartite graph, where one part of the
bipartite graph includes all the vertices in the radiomap, and
the other part of the bipartite graph includes all the vertices
in the blueprint. Afterwards, we adopt the classical Kuhn-
Munkres (KM) method [17] to carry out a maximum weight
matching of the bipartite and then get a one-to-one mapping
between anchor node IDs in the radiomap and positions in
the blueprint.

4. Radiomap-to-Blueprint Mapping

4.1. Algorithm Overview. As mentioned above, the matching
between the radiomap and the blueprint is our primary
objective. The MDS-KM matching process is illustrated in
Figure 2. In general, the MDS method utilizes the physical
distance between anchors to construct a relative coordinate

radiomap. But the edge weights in the radiomap of the small
network represent the RSS values. We need to transform
RSS value to the estimated distance according to the signal
propagation model. Then we use the MDS method to get a
radiomap with relative coordinates. Having sufficient anchor
node positions (3 for 2D networks and 4 for 3D networks),
we can map the relative coordinates of anchors to absolute
coordinates through a linear transformation [10]. Then we use
KM algorithm to compute the optimal complete matching
between the blueprint and the radiomap with absolute coor-
dinates. Since the KM algorithm is applied to the weighted
bipartite graph matching, we need to construct a bipartite
graph utilizing the radiomap and the blueprint. Thus we
design an error-torrent kNN vertex selection method to
build a bipartite graph. Finally, we achieve the mapping
from the radiomap to the blueprint through computing the
maximum weighted matching of the bipartite. In Section 5,
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FIGURE 8: The average errors in both experiment scenarios.

we further design a best feature matching (BFM) method
to relax the restriction of MDS-KM where three or more
calibrated anchors are needed.

4.2. Absolute Radiomap Construction

4.2.1. Collecting Distance Information. In order to construct
a radiomap, we need to compute the estimated Euclidean
distance based on the RSS or hop distance between anchors.
The RSS or hop distance of each pair of anchors should be
obtained at first. Intuitively, flooding is a better selection.
In the small dense network, each anchor node broadcasts
the beacon packet periodically and keeps on receiving the
beacon packets from other anchors then computes the RSSs
of these beacon packets. After a while, each anchor will record
an RSS sequence from other anchor nodes within its 1-hop
communication range. Finally, each anchor sends its node

ID and RSS sequences to the backend positioning server for
constructing the radiomap. In order to avoid the sending
collision, we will make the broadcast cycle of each anchor
different in our experiment.

Additionally, in large sparse network, many anchors
may not be within the communication range of any other
anchors. These anchors are isolated. We will use the shortest
hop distances as the estimated distance. There are some
intermediate unknown-position nodes scattered within the
anchors. The shortest hop distance is defined as the minimum
hop count between anchors multiplied by the average signal
hop distance. In this process, each anchor will broadcast
its beacon packet periodically. Each intermediate unknown-
position node records the minimal hop value and adds itself
to the value and then forwards the hop count continually
with initial anchor ID until the beacon packet arrives to a
new anchor or achieves our hop limit. In order to reduce the



communication cost, we set a hop upper limit (e.g., 10) to
construct local map. Each anchor records all the minimum
hop counts from nearby anchors and sends them and their
node IDs to the positioning server.

4.2.2. Estimated Distance. In the large sparse network, we
can compute the Euclidean distance between the calibrated
anchors. According, to the minimum hop counts between
them, we further compute the average single hop distance.
Accordingly, we can compute the hop distance between each
pairwise anchors as the estimated distance. In the small dense
network, we need to use signal propagation model to compute
the estimated distance based on the RSS value. According to
whether the travel distance is short or large, the propagation
models can be classified into large scale and small scale
[18]. In general, the small-scale model needs to characterize
the rapid fluctuations of RSS over short travel distance. It
has a better accuracy than large-scale model, but it is very
difficult to determine the model parameters. In this paper,
we concentrate on the generality of the designed algorithm
and do not consider a specific scenario. Hence, we select a
good compromise between simplicity and accuracy, which is
called the wall attenuation factor propagation model (WAF)
[19]. This model provides flexibility when applied to indoor
scenario while considering outdoor large-scale fading. This
model is described as

p(d) [dbm] = p(d,) [dbm] — 10« log (;) -6

0
1)

nw < C
nw > C,

nw X WAF,
C x WAF,

where d is the transmitter-receiver distance, P(d,) is the
signal power at some reference distance d, « indicates the
rate at which the signal fades, C is the maximum number of
obstacles up to which the attenuation factor makes a differ-
ence, nw is the number of obstacles between the transmitter
and the receiver, and WAF is the obstacle attenuation factor.
In general, the values of « and WAF depend on the specific
propagation environment and should be derived empirically.
Given the RSS value, we can further compute the estimated
distance d, as follows:

d, =dyx 10(p(do)ldbm]-p(d)[dbm]-6)/(10a) )
e .

Additionally, there are some optimization methods to
tune parameters of propagation model so that the RSS
measurements can characterize the accurate distances [20-
22]. In our algorithm, the MDS method can tolerate error
gracefully due to the overdetermined nature of the solution
[9]. Hence we do not need exactly RSS values depending on
optimizing the propagation model.

4.2.3. Constructing Absolute Radiomap. In this part, we will
use the MDS method to construct the absolute radiomap. At
present, many types of MDS techniques have been developed
[9]. In our algorithm, we design a distributed MDS-MAP(A)
algorithm focusing on the anchor placement. The MDS-
MAP(A) algorithm consists of four main steps as follows.
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First, we use the above estimated distance to construct the
1-hop proximity matrix P for each anchor, where the 1-hop
neighbors of anchors in large network will be the anchors
in the range of hop upper limit. We denote the proximity
measure between anchor i and j as p;;. Then assuming
an m-dimensional space, given the anchor i coordinates
X; = (xjp»Xjp> - . X;,) and the anchor j coordinates X; =
(x X X jm), the practical Euclidean distance between
anchor i and j is denoted by d;; which will construct a
Euclidean distances matrix D as

d;; = Z(xik - xjk)z- 3)

k=1

In theory, the matrix P should be equal to the matrix D. But
the estimated distance with errors makes them unequal. In
this case, the MDS method can ensure P is approximate to D
as far as possible.

Second, we run the MDS algorithm for each distance
matrix P to get a local map with relative coordinates. In
classical metric MDS, the proximity matrix P can be trans-
formed to a double centered matrix B, which is symmetric
and positive semidefinite matrix as

1 1 n 1 n 1 n n
R GR A TR » )
j= i=

i=1j=1

When we shift P to the center, B can also be expressed as
follows:

m
T
B=XX" = inkxjk- (5)
k=1

We perform the singular value decomposition (SVD) on B to
get B = VAV, which has complexity of O(k®), where k is
the number of anchors in the local map. Thus, the complexity
of computing # local maps is O(k’n), where # is the number
of anchors in the radiomap. The coordinate matrix is X =
VA2 where A = diag(l,L,,...,1,) is the eigenvalue
diagonal matrix in descending order. V = [V, V,,...,V,] is
the eigenvector corresponding to the eigenvalue. We select
the first m eigenvectors to construct a coordinate matrix in
lower dimension. This is the best low-rank approximation
between matrix P and D in the least-squares sense.

Third, we merge all local maps to the whole relative
radiomap. Each local map is a group of 1-hop neighbors.
We randomly select a local map as the base map and then
sequentially merge the neighbor local map according to the
common nodes. Eventually, the base map grows to cover the
whole radiomap. As known from [11], the complexity of this
step is the same as step 2.

Finally, given sufficient calibrated anchors, we map the
relative coordinates to the absolute coordinates of anchors
through a liner transformation [10], which include scal-
ing, reflection, and rotation. The radiomap with absolute
positions can be achieved eventually. For r anchors, the
complexity of this step is O(r” + n).
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4.3. Radiomap-to-Blueprint Matching. Since the surrounding
noise and irregular topology affect the precision of estimated
distance and lead to the inaccuracy absolute coordinates of
anchors in the radiomap, the absolute coordinates in the
radiomap are not completely consistent with the coordinates
of anchor physical positions in the blueprint. Hence, the
above two groups of coordinates cannot be correspond-
ing completely. We only search for the most approximate
matching of two coordinates. Therefore, the objective of the
radiomap-to-blueprint matching turns into minimizing the
sum of corresponding Euclidean distances between the phys-
ical positions in the blueprint and the absolute coordinate
positions in the radiomap. We present a k-nearest neighbor
(kNN) method to find the best approximate positions in
two graphs. The k-nearest neighbor is a simple classification
method in the data mining field. This algorithm can select
the k-nearest ones through evaluating Euclidean distance
between positions. For each anchor in the radiomap, we
utilize the KNN method to find the k-nearest positions in the
blueprint away from it. Then we can build a weighted bipartite
graph, whose weights on edges are the Euclidean distances.
An example with k = 2 is shown in Figure 3. Additionally,
the value of parameter k is task specific. In our algorithm, we
select the minimal k to guarantee that all the positions in the
blueprint will be selected into V' when all anchors V in the
radiomap have been carried out in the KNN operation. Thus
the bipartite graph has a complete matching, where every
vertex of the graph is exactly incident to only one edge.
Accordingly, the radiomap-to-blueprint matching prob-
lem will be transformed into a minimum weighted matching
problem in a weighted bipartite graph, where the sum of
the weight of all the edges in the bipartite matching is
minimal. Such a matching is also known as the optimal
assignment problem. It can be solved by Kuhn-Munkres
(KM) algorithm in polynomial time. However, the KM
algorithm just applies to solving the maximum weighted
matching problem. We need to pick the minus of the weights
in the bipartite so that the minimum weighted matching
problem is further transformed into a maximum weighted
matching problem. The KM algorithm will use vertex labeling
method to transform the maximum weighted matching into
complete matching in unweighted bipartite graph and then
use the classical Hungarian algorithm to solve the maximum
matching problem of unweighted bipartite graph.
Algorithm 1 is a simplified KM algorithm procedure.
We first initialize a feasible vertex labeling. Normally, each
vertex in one side of the bipartite graph is labeled with
the maximum weight of its incident edges connected to the
vertices in the other side, and each vertex in the other side
is labeled zero (line 2-6). The bipartite graph will become
an unweighted bipartite graph. Then we seek a maximum
matching using Hungarian algorithm and decide whether the
maximum matching is a complete matching or not (line 7-
8). If the maximum matching is a complete matching, we
save the matching and return. Otherwise, we need to relabel
the vertices following the KM algorithm rules and literately
carry out the Hungarian algorithm (line 12-13). Finally, we
can achieve a complete matching and get the mapping
relationships between the radiomap and the blueprint.

5. Without Calibrated Anchors

In this section, we try to relax our MDS-KM algorithm to be
applied to the situation without any artificial calibrations. We
design a best feature matching (BFM) method to actively get
parts of mapping from anchors in the radiomap to positions
in the blueprint without any artificial calibration. In order to
distinguish the feature of vertices in the radiomap and the
blueprint, we bring in the vertex weighted sequence as the
feature metric, where the edge weight is RSS value or hop
count. Then some vertices with best unique feature in the
radiomap can be selected and their corresponding vertices
are found in the blueprint by our BFM method. However, the
edge weight in the blueprint is physical distance. The vertex
weighted sequences in the radiomap are not comparable
to those in the blueprint because of the different types of
the edge weight. Hence, we transform the blueprint to an
advanced graph (AG), whose vertex features are the RSS
sequences in the small network and hop count sequences in
the large network. The new matching process of MDS-KM
algorithm is also changed to Figure 4. The advanced graph
is used to seek the parts of anchors with a unique feature
instead of the calibrated anchors to construct the absolute
radiomap.

5.1 Blueprint to the Advanced Graph. In the small network,
the distances between vertices in the blueprint are not exactly
reflecting the RSSs in the radiomap due to the surrounding
obstacles and noise. We first use the signal propagation
model mentioned in the above subsection to transform the
distances between vertices in the blueprint into the RSS
values, which is constructed in an advanced graph denoted
by G, = (V,, E,). These RSS values represent the weights of
the edges in the advanced graph, and the number of vertices
and edges in the advanced graph is the same as that of the
blueprint. Since any two vertices in the blueprint have one
edge, the advanced graph is also a complete graph. Figure 5
is an example of the advanced graph from the blueprint in
Figure 1. In the large network, we compute the minimal hop
counts between pairwise anchors in the blueprint after setting
the communication range of node and then construct an
advanced graph whose edge weights represent minimal hop
counts. Similarly, the advanced graph in the large network is
also a complete graph.

5.2. Best Feature Matching. Before executing the MDS-
MAP(A) method, the radiomap G = (Vi,Eg) has the
vertex set V and edge set Vj. The edge weight represents the
RSS or hop count. We first make the vertices distinguishable
depending on their invariants, which are the fixed properties
of vertices during matching. A simple invariant is the vertex
degree. However, in a graph, the vertex degree is not unique.
There is likely to be many vertices having the same degree.
Therefore, we bring the weights into the vertex invariants,
for example, I(v, W) = (v,w;,w,,...,w,) by following
the arrangement w; > w, > > w,y, and d is the
degree of the vertex v;. Similarly, we can formulate the
corresponding vertex invariants of the advanced graph. For
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example, I'(v),w') = (v{,wi,w;,...,w('n_l)),wi >wh > >
w('n_l). n is the number of all vertices. Each vertex degree is
n — 1 since the advanced graph is a complete graph.

We will select the vertices invariants in the radiomap
which are the most easy to distinguish. We noted that
the degrees of many vertices in the radiomap are dif-
ferent so that the number of weights in some vertex
invariants is inconsistent. This brings inconvenience to
our feature comparison. Therefore, we need to normal-
ize the vertex invariants of the radiomap. We first com-
pute the maximal degree of all vertices Max(d) in the
radiomap then extend the vertex invariant I(v;, W) from

(Vi Wy, s Wy) 10 (Vi Wiy e, Wy Wigyys - - > Whpax(a))» Where
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d < Max(d), wigy1) = Wigszp-->= Whiax(d) = Wnin® Wnin

is the minimum RSS value measured from anchor device in
the small network or hop count of zero in the larger network.
We can compute the Euclidean distance dy, between vertices
invariants in two graphs as follows:

Max(d)

Z (w; - w])’. (6)

i=1

dRA =

We still adopt the k-nearest neighbor (k = 2) method to
find the two minimum dp 4, between vertices in the radiomap
and vertices in the advanced graph. For each vertex in the
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radiomap, the absolute value of the difference of the two
minimum Euclidean distances can be computed and sorted
in descending order. The bigger the absolute value of the
difference, the more unique the vertex features. So the vertices
in front of the order are the most possible unique and distin-
guishable ones. They can actively catch their corresponding
minimum Euclidean distance vertices in the advanced graph.
To some extent, this method is subject to the symmetry
of anchors in the blueprint. But we can artificially design
the blueprint keeping asymmetric. Meanwhile, the irregular
environment also affects the symmetry of the blueprint.
Therefore, in practice, the weights of anchors in the blueprint
are hardly perfectly symmetric.

6. Implantation and Experiment

6.1. Experiment Design. In our experiment, we will run
MDS-KM algorithm on a variety of anchor topologies in
the small and large networks. In the 30m x 25m room,
the anchors are installed on the ceiling or concrete columns.
(1) Figure 6(a) is the placement blueprint, where there are
24 positions to place anchor nodes. Concrete columns and
wooden walls in the room are the principal obstacles affecting
communication quality between anchors. (2) We simplify
the topology of Figure 6(a) into an n-sharp topologies of 20
positions as shown in Figure 6(b).

In the large network, we simulate the anchors in the
MATLAB placed with grid distribution and random distri-
bution, respectively, as shown in Figures 7(a) and 7(b). A
number of 100 nodes are placed uniformly and randomlyina
10 rx10 » multihop network, where 85 nodes are intermediate
unknown-position nodes denoted by the circle, and 15 nodes
are anchors denoted by the stars (*). For the purpose of
facilitating the comparison of positioning error, we select the
similar anchor positions in both topologies to construct the
radiomap.

It should be noted that the complicated office room is
more sensitive to the noise than outdoors. Meanwhile, the
most indoor positioning systems are usually deployed deter-
ministically according to the placement blueprint. Therefore,
we choose the indoor environment as the case of the small
network, which is more powerful to verify the MDS-KM
performance.

6.2. The Small Network. During the radiomap construction,
we set each anchor ID number multiplied by 100 milliseconds
as its broadcast cycle to avoid the sending collision. After
running 2 minutes, we compute the average RSS values
between anchors. We use our MDS-MAP(A) method in the
topologies (1) and (2) for constructing the absolute radiomap
based on 3 random calibrated anchors, denoted by the stars
(*) as shown in Figure 8. The circles represent the estimated
absolute positions, and the solid lines represent the errors
between the estimated positions and the true positions. The
longer the solid line, the larger the positioning error. The
transmitting power of TelosB in TinyOS system is classified
into 1 to 31levels. With the level rising, the transmitting power
becomes higher. We set the highest level of transmitting
power in this group of experiments. The results show that we
have the average estimation errors of 3.05 m and 3.25 m in two
topologies.

Figure 9 shows the average performance of MDS-
MAP(A) positioning affected by connectivity and numbers
of calibrated anchors. Figures 9(a) and 9(b) show the results
of MDS-MAP(A) positioning of two topologies, respectively.
We set the transmitting power levels as 11, 17, 21, 26, and
31, respectively, in our experiments. Three, five, and seven
calibrated anchors are used. Then we get the connectivity
levels of 2.6, 4.3, 6.8, 10.6, and 15.2 in the uniform topology,
and 2.1, 3.6, 5.8, 9.6, and 13.2 in the n-sharp topology.
With the lowering of the connectivity level, the positioning
performance declines significantly. When the connectivity
level is less than 3, the average error will be achieved to
around 5.5 m. Besides, the positioning error becomes lightly
lower with the increasing of C-anchors. Meanwhile, the
different numbers of calibrated anchors also have very close
positioning errors. Therefore, a certain range of a number of
variations of calibrated anchors has no significant influence
on positioning performance.

We obtain a radiomap with absolute coordinates after
MDS-MAP(A) operation. Before running the KM matching,
we need to set the parameter k for constructing a bipar-
tite graph. In our experiment, we show the minimal k to
producing a complete bipartite graph in Figure 10. With the
connectivity level rising, the value of k reduces gradually.
When the connectivity level is 15.2 in uniform topology
and 9.6 and 13.2 in n-sharp topology, the value of k is 1.
That means that the bipartite graph is already a one-to-one
mapping complete graph. Then we can obtain the optimal
matching between the blueprint and the radiomap without
the KM method. Meanwhile, we find that this mapping is
also exactly correct. Under other connectivity levels, we must
use the KM method to find the optimal matching. We find
that the rate of correct matching between anchors in the



10

International Journal of Distributed Sensor Networks

1.5 T T T T

Error (r)

0.5

0 1 1 1
5 10 15 20

Connectivity

—s— 3 C-anchors
—e— 5 C-anchors
—— 7 C-anchors

(a)

3 T T T T
2k
< i
-
<
=
M i
1+
0 1 1 1
5 10 15
Connectivity

—s— 3 C-anchors
—e— 5 C-anchors
—— 7 C-anchors

FIGURE 14: The error analysis in both simulation scenarios.

radiomap and positions in the blueprint can achieve 100%
when connectivity level is over 3. Only when the connectivity
level is less than 3, there are two anchor nodes with error
mapping in both topologies, where the node IDs are 3 and
10, respectively. This is because both nodes are close to each
other. The positioning error from the MDS-MAP(A) method
will make their positions confused so that the maximum
weighted matching of the KM method is not exactly the
mapping from the radiomap to the blueprint. Meanwhile, we
also observe that the more calibrated anchors cannot help the
accuracy of the KM matching unless the anchors with error
matching are calibrated anchors.

In order to validate the performance of our BFM algo-
rithm, we need to exactly transform the physical distance of
the blueprint into RSS value of the advanced graph. At first,

we make a measurement test for determining the parameters
WAF and « in (I). During our experiment, we test two
types of obstacle materials, 40 cm width wooden wall and
60 cm x 60 cm width concrete column. Two TelosB nodes
lie in two sides of obstacle and 2 m away from the obstacle.
One node broadcasts beacon packet every 10 seconds, while
another node receives the packet and computes the RSS value.
We spend 80 minutes to get the results shown in Figure 11.
We find that the wooden wall and concrete column can
approximately reduce RSS 5 db and 10 db, respectively. Based
on the measurement, we further compute the fading factor «
in our environment, which is approximate to 3. Then we use
the experimental values to construct the advanced graph.

Figure 12 is the number of correct matching anchors with
connectivity increasing during the BFM process. The number
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FIGURE 15: The results of BEM method in the large network.

5: I(y)=0
6: end for

9: M =save(M)
10: return M
11: else

13:  goto7
14: end if

1: G(X,Y,W)/"G is a bipartite Graph, W is the Weight."/
2:forall (x € Xand y €Y) do

3: /*Initialize all vertices labeling”/

4: I(x) = Max{w(x, ), y € Y}

7: M = Hungarian(G(X, Y, 1))
8:if (M is complete matching of G) then

12:  relabeling(l)/*as KM rules*/

ALGORITHM 1: The Kuhn-Munkres Algorithm.

in the uniform case is lightly more than that in the random
case, which is mainly due to more quantity of anchors in
uniform topology. Meanwhile, we find that there are three or
more anchors at least with correct matching even when the
connectivity is lower than 3 in two topologies. Therefore, we
can run our MDS-KM method in all the above experiments
without any calibrated anchors, which further reduces the
labor cost. But unfortunately our BEM method cannot help
to solve the error mapping of the MDS-KM method under
the lower connectivity.

6.3. The Large Network. We run MDS-MAP(A) method
for the grid and random topologies of the large network
to construct the absolute radiomap based on 3 random
calibrated anchors as shown in Figure 13. The circles represent
unknown-position intermediate nodes. The stars represent
the anchor nodes, and the solid lines represent the errors

between the estimated positions and the true positions. In
the 107 x 10 r area, we set the communication range as 1.57
and 2 r, respectively, in the grid and random topologies. The
average connectivity levels of both topologies are 6.7 and 6.3,
respectively. Although both connectivity levels are similar,
the positioning errors have a big difference. After running
the MDS-MAP(A) method for the radiomap, we have the
corresponding average estimation errors of 0.87r and 1.35r
in both topologies. This is because the connectivity level of
nodes in the random case is uneven so that its estimated
error of hop distance is significantly bigger than that in the
grid case. Therefore, the corresponding absolute radiomap
in the random case has also a bigger average estimation
error.

Additionally, we compare the performance of the MDS-
MAP(A) method in different connectivity levels and cali-
brated anchors. In both topologies, we select 3, 5, and 7 cali-
brated anchors randomly to construct the absolute radiomap
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during every trail. In the grid topology, the radio ranges are
from 1r to 2r, with an increment of 0.25 r, which result in
the connectivity of 3.9, 5.5, 6.7, 12.2, and 18.2, respectively, as
shown in Figure 14(a). We find that the higher connectivity
level will bring about a better positioning result, and the more
calibrated anchors also improve the positioning performance.
When connectivity level is lower than 6.7 especially, the
average estimated error will increase significantly. In the
random topology, the radio ranges are from 1 r to 3 r, with an
increment of 0.5 r, which lead to average connectivity of 4.5,
5.1, 6.3, 10.2, and 15.6, respectively, as shown in Figure 14(b).
This design is to compare the performance of the MDS-
MAP(A) algorithm under the similar connectivity levels of
both topologies. We can see that the positioning performance
in the random topology has a significant reduction than that
in the grid topology. The maximum average estimated error
is even twice that in the grid topology. That is mainly because
the estimated hop distance in the random topology is rather
inaccurate.

Figure 15(a) is the k-value selection of both topologies.
We can find that the k in the random topology has a higher
value than that in the grid topology. This is because the
higher errors of the estimated hop distance in the random
topology produce the bigger position errors of the absolute
radiomap. Thus the anchors in the radiomap cannot exactly
correspond with the positions in the blueprint. In order to
get a complete bipartite graph, k-value must be increased.
Afterwards, we find that the KM method can reach a 100%
rate of correct matching except that there are 3 and 2 error-
matching anchors, respectively, under the connectivity of 4.5
and 5.1in the random topology. It is further suggested that the
MDS-KM algorithm is well suited to the higher connectivity
network.

Figure 15(b) reflects the BEM method performance in
both topologies of the large network. In the random topology,
the BEM method can obtain a better feature matching result.
This is because many vertices in the grid topology have
the same hop count sequences subjected to the symmetry
of anchor distribution. Therefore, the vertices invariants in
the grid topology are hard to be distinguished, while in the
random topology there are more distinguishable vertices with
unique invariants. But in both topologies, we can also find
that there are more than three anchors with correct feature
matching. In other words, the MDS-KM method can run
successfully in two simulation scenarios of the large network
without any calibrated anchors.

7. Conclusion

In this paper, we consider the anchor self-positioning prob-
lem in detail. During the deterministic anchor placement, we
design an efficient mapping algorithm between anchors and
positions (MDS-KM) to avoid the expensive labor cost and
error-prone features of artificial calibration. Additionally, we
propose a best feature matching (BFM) method to obtain
some mappings between anchors and positions in advance
so that any calibrated anchors are not needed. Experimental
results show that the MDS-KM algorithm can achieve the

International Journal of Distributed Sensor Networks

100% correct matching between anchors and positions under
a higher connectivity level. Meanwhile, in our experiments
and simulations, the BFM method can obtain sufficient
known-position anchors to support the successful running of
the MDS-KM method.
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