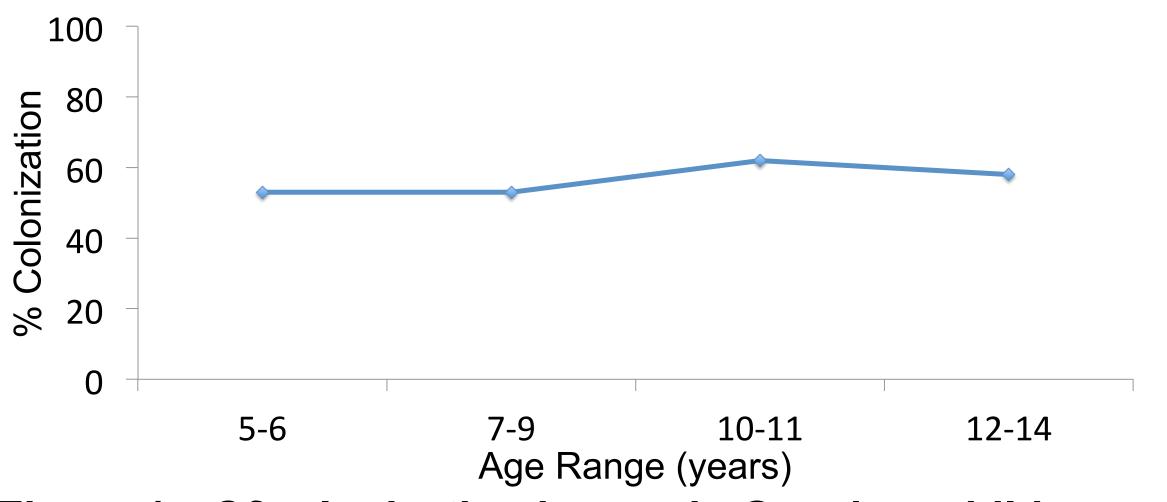


Prevalence of Oxalobacter formigenes intestinal colonization in human populations

Amanda PeBenito¹, Lama Nazzal¹, Jeff Leach², Doris Patricia Maldonado³, Nora Henderson¹, Melanie Jay¹, Maria G. Dominguez-Bello¹, Martin J. Blaser¹

¹NYU School of Medicine, New York, NY, ²Human Food Project, ³Universidad Andina, Sucre, Bolivia


STUDY OVERVIEW	RESULTS				RESULTS		
The importance of Oxalobacter formigenes (Of), an oxalate-degrading gut microbe, in preventing calcium	Table 1: Prevalence of Of by geographic location in pediatric populations				100 A 80-		
oxalate kidney stones has gained attention in recent		Hadza	Quechua	US infants	in eo-		
years. However, the process by which individuals are colonized remains poorly understood. As the incidence	Age range (years)	0-18	5-14	1-1.5	Ö 40- %		
of stone formation is increasing in the U.S. and worldwide, the factors influencing colonization are of	Number of samples	92	85	40			
great clinical interest. To provide additional insight into this process, we tested three unique populations to	Percent colonization	64	55	0	Healthy Children CC Children n= 57 n= 28		
examine the relationship between geographical region, age, and in one subgroup, the effect of chronic parasitic infection and treatment, on <i>Of</i> status. The populations	Earliest age of colonization (years)	0.9	5	N/A	80- 80-		

examined included: (i) adult and child members of the Tanzanian Hadza tribe, one of the last hunter-gatherer populations in the world; (ii) Quechua children, indigenous Amerindians of Bolivia, examined before and after treatment if diagnosed with Chagas carriage (CC); and (iii) a cohort of urban U.S. mothers and their infants, tested at 12 and 18 months of age.

Hypotheses: 1) The prevalence and rate of O. formigenes colonization differs significantly between populations in the US and indigenous populations of Bolivia and Tanzania. 2) The earliest age of colonization differs between US and indigenous populations. 3)Treatment with Benznidazole, an antiparasitic, will not alter Of status in children with Chagas carriage.

Table 2: Prevalence of *Of* by geographic location in adult populations

	Hadza	US mothers	
Age range (years)	19-81	28-42	
Number of samples	159	30	
Percent colonization (%)	49	33	

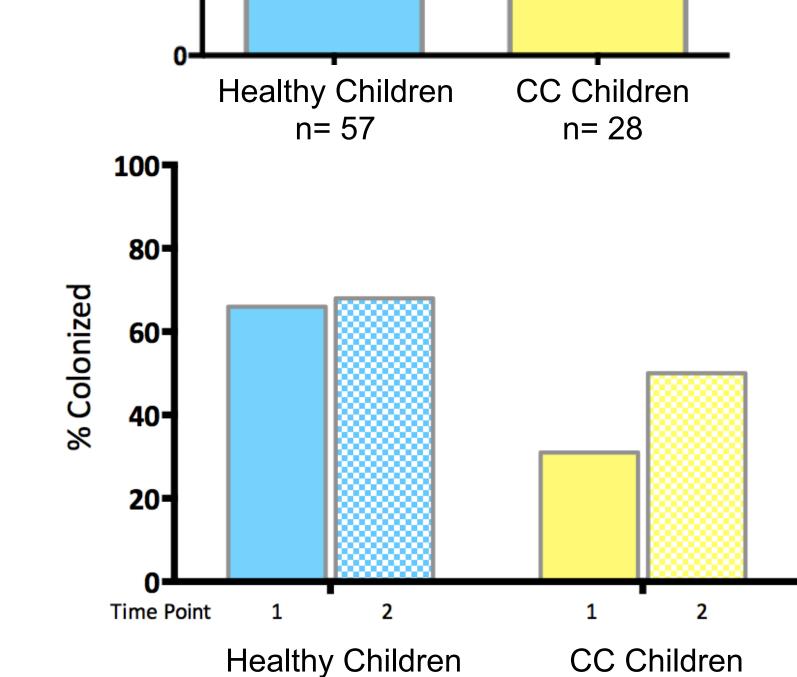
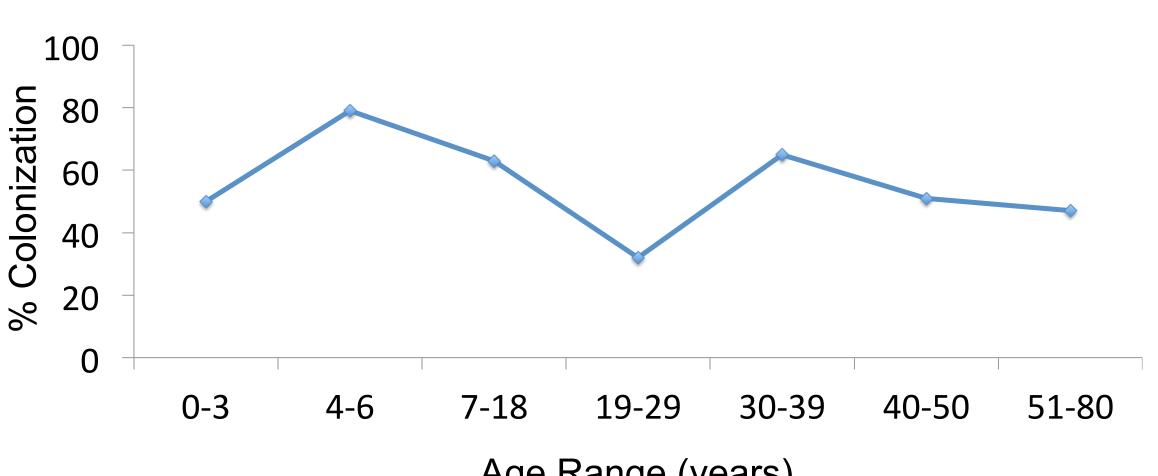


Figure 3: Of colonization in healthy Quechua children and those diagnosed with Chagas carriage. A) Healthy children had higher colonization rates than CC children (67% vs. 39%, p=0.02). B) Samples were collected from children at time points 2 months apart, before and after treatment for CC children (ns).


CONCLUSIONS

METHODS

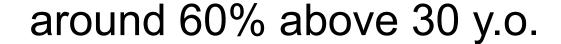
Population	Study Design	n	Location	
Hadza	Cross-sectional examination of subjects ages 0-81y	251	7 villages in Tanzania	
Quechua	Children ages 5-14y, examined 2 months apart, before and after treatment with Benznidazol if diagnosed with CC	85	rural Bolivia	
US	Mothers ages 28-42y examined post delivery	30	New York City	
	Infants examined at 12 months and 18 months	40		

O. formigenes colonization was determined using an Ofspecific PCR assay (for *oxc*) on DNA extracted from stool

Figure 1: Of colonization by age in Quechua children. Of colonization was stable around 60% in 5-14y Quechua children.

Age Range (years)

Figure 2: Of colonization by age in Hadza population.


Prevalence of Of colonization was 50% in children 0-3y, and increased to 79% in children 4-6y. Of was present in only 32% of the 19-29y group. Colonization stabilized

- Of is more prevalent in Hadza adults than US adults. Quechua children and teens have similar rates of colonization to Hadza children and teens.
- Of could not be detected in any US infants at 18months but 3 of 7 Hadza infants were colonized by 18 months.
- Comparing the US findings with those in remote populations support the hypothesis that modern practices are decreasing human colonization by ancient microbiota populations.
- Future directions include using qPCR to quantitate the levels of Of in each population, determining the levels of oxalate in Hazda diets and determining if levels correlate with Of status, and using multivariate analysis to identify other factors that potentially affect Of status.

Acknowledgements

NIDDK T35 Medical Student Training Program T-RO1 DK090989 from NIDDK Diane Belfer Program in Human Microbial Ecology

