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ON APPROXIMATIONS FOR GI/G/c RETRIAL QUEUES†

YANG WOO SHIN∗ AND DUG HEE MOON

Abstract. The effects of the moments of the interarrival time and service
time on the system performance measures such as blocking probability,
mean and standard deviation of the number of customers in service facility
and orbit are numerically investigated. The results reveal the performance

measures are more sensitive with respect to the interarrival time than the
service time. Approximation for GI/G/c retrial queues using PH/PH/c
retrial queue is presented.
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1. Introduction

Consider the retrial queueing system that consists of a service facility with
finite capacity and an orbit of an infinite size. An arriving customer enters
the service facility if the service facility is not full upon arrival. Otherwise,
the customer joins orbit and repeats its request after random amount of time.
The time interval between two consecutive attempts of each customer in orbit
is called a retrial time.

Even the ordinary GI/G/c queue is known to be very difficult to analyze and
one has to resort to approximations. There are several approaches to obtain ap-
proximate numerical results in ordinary GI/G/c queue such as (1) approximate
the service time distribution by phase type (PH) distribution in M/G/c queue
(2) approximate the continuous time model by a discrete time model and (3)
use two-moment approximations based on the exact solutions of GI/D/c queue
and GI/M/c queue, e.g. see [6, 11, 14] and for more detailed descriptions and
related references for approximations of ordinary GI/G/c queue see [18]. As the
case of ordinary queue, it seems to be very difficult to obtain analytical results
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or approximations which guarantee the predetermined accuracy for the general
retrial queue with general interarrival time and general service time. Since nei-
ther analytical nor algorithmic solution for retrial queue with general interarrival
process is available, the approximation methods (2) and (3) mentioned above for
ordinary queue can not be applicable to the retrial queue.

A distribution function F (x) on (0, ∞) is said to be of phase type with rep-
resentation (ααα, T ) and denote it by PH(ααα, T ) if F (x) = 1 − ααα exp(Tx)eee, where
eee is the column m-vector whose components are all 1, ααα = (α1, α2, · · · , αm)
is a probability distribution and T = (tij) is the m × m matrix with tii < 0,
1 ≤ i ≤ m and tij ≥ 0, i ̸= j, and Teee ≤ 000. For more details about phase type
(PH) distribution, see Neuts [15, Chapter 2]. It is well known that the set of
PH-distributions is dense (in the sense of weak convergence) in the set of all
probability distributions on (0, ∞) (e.g. see Asmussen [2, page 84]). There are
many moment matching methods for fitting the general distribution by the PH
distributions cf. Bobbio et al. [3], Johnson and Taaffe [12] and Whitt [19] and
references therein. Richness of PH family, compounded with the nonuniqueness
of PH-distribution representations, makes the PH-distribution-selection problem
elusive. This suggests that a reasonable approach to the selection problem is to
restrict selection to a PH-family subset that is not too restrictive nor unneces-
sarily general. The realization of the full utility of the PH family depends on the
availability of methods for efficiently selecting PH distributions that are suitable
for the intended computational analysis and adequately reflect the randomness
being modelled [12]. However, it is not easy for the authors to find a concrete
method for choosing PH distribution for approximating the distributions of in-
terarrival time and/or service time in a given specific model.

For the retrial queues with multiple servers with Markovian arrival process
(MAP), phase-type (PH) distribution of service and exponential retrial time,
algorithmic solutions using matrix analytic method are presented by several
authors e.g. [4, 7, 1]. For the references about matrix analytic method in retrial
queue, see [9] and more details of retrial queues, refer the monographs Artalejo
and Gómes-Correl [1], Falin and Templeton [1] and references therein. One can
use PH/PH/c retrial queue for GI/G/c retrial queue by approximating the
distribution of interarrival time and service time with PH distributions.

Random elements that affect the system performances in GI/G/c retrial
queue are interarrival time, service time and retrial time. Shin and Moon [16, 17]
investigate the sensitivity of M/M/c retrial queue with respect to retrial time
and M/G/c retrial queue with respect to service time, respectively. The experi-
ments in [16, 17] are focused only on one element retrial time or service time for
fixed other two random elements and do not investigate the random effects of
other elements. It is necessary to investigate the effects of moments of interar-
rival time and service time when one approximate the retrial queue with general
distributions of interarrival time and service time by the phase type distributions
matching the moments of original distributions. In this paper, the effects of the
moments of the interarrival time and service time to the performance measures
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such as the blocking probability, standard deviation of the busy servers, mean
and standard deviation of the number of customers in orbit in GI/G/c retrial
queues are investigated numerically and present an approximation for GI/G/c
retrial queues using PH/PH/c retrial queue.

In Section 2, we briefly introduce moment matching method for nonnegative
random variables and present the sensitivity of ordinary M/G/1 and GI/M/1
queues. Sensitivity of some performance measures with respect to the moments
of interarrival time and service time in GI/G/c retrial queue is investigated in
Section 3 and 4. Approximation examples forGI/G/c retrial queue are presented
in Section 5. Concluding remarks are presented in Section 6.

2. Preliminaries

2.1. Moment matching methods. There are some moment matching meth-
ods for fitting the general distribution of a positive random variable X with the
first three moments mi = E[Xi], i = 1, 2, 3 by PH distributions. Denote by
C2

X = m2

m2
1
− 1 the squared coefficient of variation of X. In this section we briefly

introduce moment matching methods to be used for interrival time and service
time.

Hyperexponential distribution : The hyperexponential distribution of order 2,
denoted by H2(p; γ1, γ2) or simply H2, has the probability density function of the
form f(t) = pγ1e

−γ1t + (1− p)γ2e
−γ2t, t ≥ 0 and the phase type representation

PH(α, T ) with ααα = (p, 1− p) and

T =

(
−γ1 0
0 −γ2

)
.

The parameters p, γ1 and γ2 can be determined by the first two moments m1

and C2
X as follows

p =
1

2

(
1 +

√
C2

X − 1

C2
X + 1

)
, γ1 =

2p

m1
, γ2 =

2(1− p)

m1
. (1)

TheH2 distribution can also be used for fitting the three moments of nonnegative
random variables satisfying C2

X > 1 and

H =
m1m3

1.5m2
2

> 1. (2)

In this case, the distribution H2(p; γ1, γ2) with the preassigned moments mi,
i = 1, 2, 3 is uniquely determined by the parameters, see [18, 19]

γ1,2 =
1

2

(
a1 ±

√
a21 − 4a2

)
, p =

γ1(1− γ2m1)

γ1 − γ2
, (3)

where

a1 =
1

m1
(1 +

1

2
m2a2), a2 =

6m2
1 − 3m2

3
2m

2
2 −m1m3

.
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The requirement (2) holds for the gamma distribution, lognormal distribution
and Weibul distribution with C2

X > 1.
Erlang distribution of order k denoted by Ek(µ) has the probability density

function

f(t) =
µk

(k − 1)!
tk−1e−µt, t > 0

and phase type representation PH(ααα, T ) with ααα = (1, 0, · · · , 0) and

T =


−µ µ

. . .
. . .

−µ µ
−µ

 .

The mean and the squared variation of Ek(µ) are m1 = k
µ and C2

X = 1
k .

Coxian distribution with Erlang node denote by CEk,j(p;µ1, µ2) is the com-
position of the mixture of Ek(µ1) and Ej(µ2) whose Laplace transform f∗(s) is
given by

f∗(s) = p

(
µ1

µ1 + s

)k (
µ2

µ2 + s

)j

+ (1− p)

(
µ2

µ2 + s

)j

, s ≥ 0

and the phase type representation PH(ααα, T ) with ααα = peeek+j,1+(1−p)eeek+j,k+1,
where eeen,i is the n dimensional vector whose ith component is one and others
are all 0 and

T =

(
T (k, µ1) T 0(k, µ1)

O T (j, µ2)

)
where T (n, µ) is the matrix corresponding to the En(µ) distribution and T 0(k, µ1)
is the k × j matrix whose (k, 1) component is µ1 and others are all zero. If the
nth moment of CEk,j(p;µ1, µ2) is mn, then the nth moment of CEk,j(p;

µ1

m , µ2

m )
is mnmn. Bobbio et al. [3] present explicit method to fit the first three moments
of a positive random variable by CE1,j(p;µ1, µ2) and CEk,1(p;µ1, µ2) and the
formulae for determining the parameters are so complicated and are omitted
here.

Mixture of Erlang distributions of common order : Johnson and Taaffe [12]
provide a method that a mixture Ek,k(p;µ1, µ2) of two Erlang distributions
Ek(µ1) and Ek(µ2) with probability density function

f(t) = pµ1
(µ1t)

k−1

(k − 1)!
e−µ1t + (1− p)µ2

(µ2t)
k−1

(k − 1)!
e−µ2t

can fit the first three moments m1, m2 and m3 of a positive random variable X.
The parameters are given by

µ−1
1,2 =

1

2a

(
−b±

√
b2 − 4ac

)
, p =

µ1 − µ1µ2m1/k

µ2 − µ1
,
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Table 1. Three-moment matching for LN(µ, σ2) with m1 = 1.0

C2
X PH p γ1 γ2 m4(PH) m4(LN)

0.5 CE1,3(p; γ1, γ2) 0.116747 0.950128 3.420263 11.2631 11.3906
1.0 CE1,2(p; γ1, γ2) 0.089641 0.509162 2.427350 54.3036 64.0
2.0 H2(p; γ1, γ2) 0.971405 1.138071 0.195262 486.0 729.0

CE1,2(p; γ1, γ2) 0.054538 0.250255 2.557321 412.68
5.0 H2(p; γ1, γ2) 0.990751 1.158270 0.063952 13284.0 46656.0

CE1,2(p; γ1, γ2) 0.011275 0.069447 2.387636 12344.4

Table 2. Three-moment matching for Weib(a, b) with m1 = 1.0

C2
X PH p γ1 γ2 m4(PH) m4(Weib)

0.5 CE2,1(p; γ1, γ2) 0.751282 2.880980 2.090070 6.8722 6.7948
2.0 H2(p; γ1, γ2) 0.658728 2.036487 0.504439 127.41 136.43

CE1,2(p; γ1, γ2) 0.311072 0.523413 4.929922 124.63
5.0 H2(p; γ1, γ2) 0.908248 1.816497 0.183503 1944.0 2520.0

CE1,2(p; γ1, γ2) 0.090648 0.188615 3.850595 1901.1

where

a = k(k + 2)m1y, b = −
(
kx+

k(k + 2)

k + 1
y2 + (k + 2)m2

1y

)
, c = m1x,

y = m2 −
(
k + 1

k

)
m2

1, x = m1m3 −
(
k + 2

k + 1

)
m2

2.

For other two-moment matching methods, see Tijms [18, Appendix B].
The lognormal distribution LN(µ, σ2) and Weibul distribution Weib(a, b) with

probability density functions

fLN(x) =
1√
2πσx

exp

(
− (lnx− µ)2

2σ2

)
, x > 0,

fWeib(x) =
a

b

(x
b

)a−1

exp
[
−
(x
b

)a]
, x > 0

are frequently used in application area. Some examples for fitting the first three
moments of LN(µ, σ2) and Weib(a, b) with m1 = 1.0 are listed in Tables 1-2,
wherem4(PH), m4(LN) andm4(Weib)are the fourth moments of PH, lognormal
and Weibul distributions, respectively.

2.2. Moment formulae for M/G/1 and GI/M/1 queues. It can be obtained
from Pollaczek-Khintchine transform equation in ordinary M/G/1 queue that
the mean Lq and variance Vq of the number of customers in queue are given by

Lq =
ρ2(1 + C2

s )

2(1− ρ)
,
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Vq =
λ3ms,3

3(1− ρ)
+ Lq + L2

q,

where ρ =
ms,1

ma,1
is the traffic intensity and C2

s is the squared coefficient of

variation of service time and ma,k and ms,k are kth moments of interarrival
time and service time, respectively [10].

It is known that the mean LOrbit and the variance VOrbit of the number of
customers in orbit in M/G/1 retrial queue with exponential retrial time with
rate γ are given by

LOrbit = Lq +
λ

γ

ρ

1− ρ
,

VOrbit = Vq +
λ

γ

(
ρ

1− ρ
+ Lq

)
,

where λ is the arrival rate [8]. From this formula we can see that LOrbit (VOrbit)
depend only on the first two (three) moments of service time.

It is known that the mean Lq(GI/M/1) and variance Vq(GI/M/1) of the
number of customers in queue in ordinary GI/M/1 queue with service rate µ
are given by

Lq(GI/M/1) = ρ
r

1− r
,

Vq(GI/M/1) = ρ
2r

(1− r)2
− Lq(GI/M/1)− Lq(GI/M/1)2,

where r is the unique solution of the equation A∗(µ− µz) = z in 0 < z < 1 and
A∗(s) is the Laplace-Stieltjes transform of interarrival time distribution [10]. In

Tables 3-4, Lq(GI/M/1) and σq =
√
Vq(GI/M/1) for lognormal distribution

(LN) of interarrival time are listed and the results are compared with those for
H2 and CE1,2 whose first three moments ma,i, i = 1, 2, 3 are the same as those
of lognormal distribution. The Hb

2 in the tables means the hyperexponential
distribution whose parameters are determined by ma,1 = 1.0, C2

a = 2.0 and the
formula (1) and by Dev(%) denotes the deviation from lognormal results (LN),
for example, the deviation of H2 from LN is calculated by Dev(%) = |H2−LN |×
100/LN . No analytical results for GI/M/1 retrial queue are known. However,
we can expect from the results of ordinary GI/M/1 queue that the mean and
variance of the number of customers in orbit in GI/M/1 retrial queue may
depend on the fourth or higher moments of interarrival time. In the following
sections, the effects of interarrival times and service times in GI/G/c retrial
queue with exponential retrial time are investigated numerically.

3. Sensitivity with respect to interarrival time

We consider GI/G/c retrial queue with exponential retrial time with rate γ.
Letma,k andms,k (k = 1, 2, 3) be the kth moment of interarrival time and service
time, respectively and C2

a =
ma,2

m2
a,1

− 1, C2
s =

ms,2

m2
s,1

− 1 the squared coefficient of



On approximations for GI/G/c retrial queues 317

Table 3. Lq in GI/M/1 queue with ma,1 = 1.0 and C2
a = 2.0

ρ 0.3 0.6 0.9
G Lq Dev(%) Lq Dev(%) Lq Dev(%)

LN 0.1379 1.1455 11.540
H2 0.1480 7.32 1.1062 3.43 11.394 1.26

CE1,2 0.0946 31.4 0.9466 17.4 11.280 2.26

Hb
2 0.1806 31.0 1.3212 15.3 12.136 5.16

Table 4. σq in GI/M/1 queue with ma,1 = 1.0 and C2
a = 2.0

ρ 0.3 0.6 0.9
G σq Dev(%) σq Dev(%) σq Dev(%)

LN 0.9057 2.8420 17.763
H2 0.9316 2.86 2.7718 2.47 17.551 1.19

CE1,2 0.7944 12.3 2.4866 12.5 17.384 2.13

Hb
2 1.0149 12.1 3.1557 11.0 18.628 4.87

variation and ρ =
ms,1

cma,1
. Let X0 and X1 be the number of customers in service

facility and orbit, respectively in stationary state and PB = P (X0 = c) the
blocking probability, Li = E[Xi] and σ(Xi) be the mean and standard deviation
of Xi, i = 0, 1. It can be seen from Little’s law that L0 = ms1

ma1
. As we have seen

in Tables 3 − 4, L1 and σ1 can be affected by the fourth or higher moments of
interarrival time. For investigating the effects of interarrival time in retrial queue,
we consider the two retrial queues CE1,2/G/3 retrial queue and H2/G/3 retrial
queue with common ma,1 = 1.0, C2

a = 2.0 and ma,3 = 27.0 and different fourth
moments ma,4(CE1,2) = 412.68, ma,4(H2) = 486.0. The deviations Dev(%) =
|CE1,2 − H2| × 100/H2 for PB, L1 and σ1 between CE1,2/G/3 retrial queue
and H2/G/3 retrial queue are listed in Tables 5 − 7, where the service time
distributions are selected as Erlang distribution (E2) of order 2 for C2

s = 0.5,
exponential distribution (M) for C2

s = 1.0 and hyperexponential distribution
(H2) whose parameters are determined by (1) for C2

s = 2.0. We can see from the
tables that (1) Dev(%) increases as γ increases and the deviations for ordinary
queue (γ = ∞) are upper bound of retrial queue except the case for L1 and σ(X1)
with small value of retrial rate γ = 0.1 (2) Dev(%) increases as ρ decreases and
can be very large for light traffic case and (3) Dev(%) increases as C2

s decreases.
The deviations Dev(%) between CE1,2/M/c and H2/M/c queues without

retrials (ordinary queues) are listed in Table 8 for various c. From the table
Dev(%) increases rapidly as c increases for the light traffic system. It should be
noted that in the light traffic system the values of PB, L1 and σ(X1) are very
small and the absolute deviation is very small even though Dev(%) is very large.
For example, the values of L1 in CE1,2/M/7 and H2/M/7 queues with ρ = 0.3
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Table 5. PB in GI/G/3 retrial queues (ma,1 = 1.0, C2
a =

2.0, ma,3 = 27.0)

Serv. E2 M H2

ρ γ Arr. PB Dev(%) PB Dev(%) PB Dev(%)

0.3 0.1 CE1,2 0.0510 0.0552 0.0575
H2 0.0643 20.8 0.0642 14.1 0.0642 10.4

1.0 CE1,2 0.0529 0.0582 0.0619
H2 0.0683 22.5 0.0692 15.9 0.0704 12.2

10.0 CE1,2 0.0565 0.0626 0.0667
H2 0.0759 25.6 0.0769 18.6 0.0778 14.3

∞∗ CE1,2 0.0583 0.0644 0.0683
H2 0.0794 26.6 0.0799 19.4 0.0805 15.1

0.5 0.1 CE1,2 0.1987 0.2019 0.2032
H2 0.2048 2.97 0.2049 1.43 0.2057 1.20

1.0 CE1,2 0.2155 0.2220 0.2265
H2 0.2249 4.21 0.2280 2.63 0.2320 2.35

10.0 CE1,2 0.2348 0.2425 0.2462
H2 0.2507 6.33 0.2529 4.10 0.2551 3.51

∞∗ CE1,2 0.2419 0.2490 0.2517
H2 0.2593 6.73 0.2604 4.39 0.2617 3.79

0.8 0.1 CE1,2 0.5746 0.5766 0.5797
H2 0.5740 0.11 0.5757 0.16 0.5790 0.12

1.0 CE1,2 0.6282 0.6298 0.6325
H2 0.6244 0.61 0.6274 0.40 0.6316 0.14

10.0 CE1,2 0.6715 0.6690 0.6670
H2 0.6668 0.71 0.6664 0.39 0.6668 0.03

∞∗ CE1,2 0.6825 0.6784 0.6750
H2 0.6775 0.73 0.6757 0.39 0.6749 0.01

∗ ordinary GI/G/3 queue

are L1(CE1,2) = 0.0015 and L1(H2) = 0.0045, respectively and the absolute
deviation is |L1(CE1,2)− L1(H2)| = 0.0030 even though Dev(%) = 65.4.

4. Sensitivity with respect to service time

For investigation of the influence of the moments of service time, we choose
the service time distributions CE1,2 and H2 with common ms,1 = 1.0, C2

s = 2.0
and ms,3 = 27.0 in Table 1 and the numerical results for PB and L1 are listed in
Tables 9 − 10. The numerical results show that PB and L1 are affected weakly
by the fourth or the higher moments of the service time which is expected from
the results for the system with c = 1.
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Table 6. L1 in GI/G/3 retrial queues (ma,1 = 1.0, C2
a =

2.0, ma,3 = 27.0)

Serv. E2 M H2

ρ γ Arr. L1 Dev(%) L1 Dev(%) L1 Dev(%)

0.3 0.1 CE1,2 0.3927 0.4571 0.5049
H2 0.7888 50.2 0.7944 42.5 0.8061 37.4

1.0 CE1,2 0.0530 0.0682 0.0873
H2 0.1108 52.2 0.1202 43.2 0.1344 35.1

10.0 CE1,2 0.0171 0.0258 0.0385
H2 0.0405 57.7 0.0485 46.8 0.0597 35.5

∞∗ CE1,2 0.0126 0.0203 0.0320
H2 0.0317 60.2 0.0394 48.5 0.0500 35.9

0.5 0.1 CE1,2 2.375 2.531 2.682
H2 3.047 22.0 3.102 18.4 3.218 16.7

1.0 CE1,2 0.415 0.506 0.639
H2 0.551 24.6 0.623 18.7 0.742 13.9

10.0 CE1,2 0.191 0.268 0.384
H2 0.280 31.9 0.347 22.8 0.452 15.1

∞∗ CE1,2 0.162 0.236 0.350
H2 0.246 34.2 0.311 24.1 0.414 15.7

0.8 0.1 CE1,2 16.02 16.75 18.11
H2 16.84 4.87 17.51 4.34 18.87 4.02

1.0 CE1,2 4.361 5.095 6.428
H2 4.489 2.85 5.207 2.15 6.537 1.67

10.0 CE1,2 2.881 3.651 4.980
H2 3.048 5.46 3.776 3.31 5.083 2.03

∞∗ CE1,2 2.686 3.463 4.792
H2 2.868 6.35 3.597 3.73 4.901 2.21

∗ ordinary GI/G/3 queue

5. Approximation of GI/G/c retrial queue

In this section we describe the approximation procedure for LN/Weib/3 re-
trial queue with ms,1 = 1.0 by using PH/PH/3 retrial queue and make some
numerical comparisons.

Once the interarrival time and service time are approximated by PH distribu-
tions, the PH/PH/c retrial queue can be easily modeled by a level dependent
quasi-birth-and-death process (LDQBD) (e.g. see Artalejo and Gómes-Correl
[1]) and one can use the algorithm in [5] for computing the stationary distribu-
tion of LDQBD process. There may be several PH distributions that match the
first three moments of service time. It is recommended to use the PH distribu-
tion among them as small number of phases as possible for saving the computer
memory and computing time and the difference of fourth moment is as small as
possible for accuracy of approximation. For an approximation, we first choose
an appropriate PH distribution by fitting the first three moments of interarrival
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Table 7. σ(X1) in GI/G/3 retrial queues (ma,1 = 1.0, C2
a =

2.0, ma,3 = 27.0)

Serv. E2 M H2

ρ γ Arr. σ(X1) Dev(%) σ(X1) Dev(%) σ(X1) Dev(%)

0.3 0.1 CE1,2 0.7009 0.7997 0.9296
H2 1.0767 34.9 1.1281 29.1 1.2203 23.8

1.0 CE1,2 0.2592 0.3149 0.4049
H2 0.4110 36.9 0.4523 30.4 0.5245 22.8

10.0 CE1,2 0.1507 0.2006 0.2851
H2 0.2581 41.6 0.3018 33.5 0.3731 23.6

∞∗ CE1,2 0.1311 0.1809 0.2658
H2 0.2322 43.6 0.2771 34.7 0.3493 23.9

0.5 0.1 CE1,2 2.114 2.398 2.872
H2 2.570 17.7 2.787 13.9 3.201 10.3

1.0 CE1,2 0.887 1.105 1.504
H2 1.122 21.0 1.308 15.5 1.662 9.52

10.0 CE1,2 0.617 0.835 1.229
H2 0.832 25.8 1.022 18.3 1.373 10.4

∞∗ CE1,2 0.575 0.793 1.188
H2 0.788 27.1 0.980 19.0 1.331 10.7

0.8 0.1 CE1,2 9.784 11.01 13.38
H2 10.09 2.98 11.27 2.26 13.58 1.52

1.0 CE1,2 5.002 6.133 8.355
H2 5.220 4.17 6.296 2.59 8.459 1.23

10.0 CE1,2 4.114 5.292 7.552
H2 4.386 6.20 5.486 3.54 7.670 1.54

∞∗ CE1,2 3.990 5.179 7.447
H2 4.274 6.66 5.381 3.74 7.569 1.63

∗ ordinary GI/G/3 queue

Table 8. Dev(%) between ordinary H2/M/c and CE1,2/M/c
queues (ma,1 = 1.0, C2

a = 2.0, ma,3 = 27.0, ma,4(H2) = 486.0,
ma,4(CE1,2) = 412.7)

PB L1 σ(X1)
ρ c = 3 c = 5 c = 7 c = 3 c = 5 c = 7 c = 3 c = 5 c = 7

0.3 19.4 34.0 46.0 48.5 57.8 65.4 34.7 41.1 46.7
0.5 4.39 8.36 12.1 24.1 27.3 30.2 19.0 20.8 22.5
0.7 0.01 0.32 0.73 8.80 9.10 9.47 7.99 8.15 8.34
0.8 0.39 0.46 0.45 3.73 3.67 3.68 3.74 3.72 3.72
0.9 0.24 0.31 0.34 0.77 0.69 0.66 0.93 0.91 0.90
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Table 9. PB in GI/G/3 retrial queues (ms,1 = 1.0, C2
s =

2.0, ms,3 = 27.0)

Arr. E2 M H2

ρ γ Serv. PB Dev(%) PB Dev(%) PB Dev(%)

0.3 0.1 CE1,2 0.0402 0.0581 0.0712
H2 0.0422 4.58 0.0580 0.15 0.0715 0.38

1.0 CE1,2 0.0425 0.0627 0.0789
H2 0.0444 4.20 0.0627 0.12 0.0791 0.24

10.0 CE1,2 0.0448 0.0686 0.0881
H2 0.0469 4.59 0.0687 0.12 0.0882 0.05

∞∗ CE1,2 0.0457 0.0709 0.0917
H2 0.0479 4.58 0.0709 0.11 0.0913 0.36

0.5 0.1 CE1,2 0.1686 0.1918 0.2104
H2 0.1725 2.28 0.1916 0.11 0.2114 0.49

1.0 CE1,2 0.1799 0.2089 0.2360
H2 0.1836 2.03 0.2087 0.10 0.2370 0.42

10.0 CE1,2 0.1933 0.2313 0.2671
H2 0.1982 2.50 0.2315 0.07 0.2682 0.44

∞∗ CE1,2 0.1990 0.2405 0.2801
H2 0.2040 2.46 0.2400 0.19 0.2779 0.77

0.8 0.1 CE1,2 0.5549 0.5625 0.5696
H2 0.5563 0.26 0.5624 0.02 0.5701 0.09

1.0 CE1,2 0.5756 0.5907 0.6105
H2 0.5778 0.37 0.5908 0.02 0.6112 0.13

10.0 CE1,2 0.6084 0.6336 0.6628
H2 0.6127 0.70 0.6340 0.07 0.6647 0.28

∞∗ CE1,2 0.6242 0.6520 0.6844
H2 0.6283 0.64 0.6514 0.10 0.6811 0.49

∗ ordinary GI/G/3 queue

time and the service time and then compute the performance characteristics of
the approximating system. In order to fit the first three moments of lognormal
distribution with C2

a = 0.5 and C2
a = 2.0, we adopt CE1,3 and H2, respectively

described in Table 1 and the Weibul distributions with C2
s = 0.5 and C2

s = 2.0
are fitted by CE2,1 and H2 described in Table 2, respectively. Approximation
results (App) are compared with simulation (Sim) in Tables 11 − 12, where
Dev = App−Sim. Simulation models are developed with ARENA [13]. Simula-
tion run time is set to 80,000 unit times including 20,000 unit times of warm-up
period, where the expected value of service time is one unit time. Ten replica-
tions are conducted for each case and the average value and the half length of
95% confidence interval (c.i.) are obtained. Tables 11 − 12 show that approxi-
mations of GI/G/c retrial queue using PH/PH/c retrial queue are quite similar
to simulation within the confidence interval.



322 Yang Woo Shin and Dug Hee Moon

Table 10. L1 in GI/G/3 retrial queues (ms,1 = 1.0, C2
s =

2.0, ms,3 = 27.0)

Arr. E2 M H2

ρ γ Serv. L1 Dev(%) L1 Dev(%) L1 Dev(%)

0.3 0.1 CE1,2 0.2267 0.5911 0.9339
H2 0.2457 7.71 0.5910 0.01 0.9397 0.61

1.0 CE1,2 0.0378 0.0944 0.1588
H2 0.0404 6.39 0.0960 1.65 0.1564 1.52

10.0 CE1,2 0.0154 0.0393 0.0727
H2 0.0169 8.87 0.0418 5.83 0.0685 6.20

∞∗ CE1,2 0.0126 0.0324 0.0571
H2 0.0140 9.91 0.0349 7.27 0.0616 7.29

0.5 0.1 CE1,2 2.3512 3.862 5.246
H2 2.4654 4.63 3.859 0.07 5.297 0.96

1.0 CE1,2 0.4323 0.692 1.016
H2 0.4467 3.23 0.698 0.77 1.012 0.47

10.0 CE1,2 0.1988 0.333 0.541
H2 0.2097 5.16 0.345 3.41 0.524 3.26

∞∗ CE1,2 0.1674 0.286 0.458
H2 0.1782 6.06 0.299 4.30 0.477 4.04

0.8 0.1 CE1,2 29.47 34.31 38.67
H2 29.79 1.09 34.30 0.03 38.80 0.34

1.0 CE1,2 5.774 6.993 8.898
H2 5.813 0.67 7.004 0.15 8.897 0.01

10.0 CE1,2 3.130 4.016 5.631
H2 3.174 1.40 4.055 0.97 5.586 0.79

∞∗ CE1,2 2.780 3.633 5.150
H2 2.831 1.81 3.680 1.28 5.205 1.06

∗ ordinary GI/G/3 queue

6. Conclusions

It is well known to be very difficult to analyze GI/G/c retrial queue and there
are few results even for approximation of the system. A promising approach to
approximate GI/G/c retrial queue is to use PH/PH/c retrial queue by fitting
the first three moments of interarrival time and service time with PH distribu-
tions. In this paper, we have investigated numerically the effects of the moments
of the interarrival time and the service time to the performance measures related
with the number X0 of busy servers and the number X1 of customers in orbit in
GI/G/c retrial queue. Numerical results show that the performance measures
are more sensitive with respect to interarrival time than service time, in par-
ticular the case that traffic intensity ρ is small. More specifically speaking, the
sensitivity of performance measures with respect to interarrival time increases
as γ increases or ρ decreases. However, in case of small ρ, the values of PB, L1

and σ(X1) are very small and the absolute deviation is very small even though
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Table 11. Appr. of LN/Weib/3 retrial queue by CE13/H2/3
retrial queue (ms1 = 1.0, C2

a = 0.5, C2
s = 2.0)

ρ γ 0.1 1.0 10.0

PB 0.4 Sim (c.i.) 0.0978 (±0.0013) 0.1038 (±0.0015) 0.1113 (±0.0014)
App (Dev) 0.0967 (−0.0011) 0.1030 (−0.0008) 0.1104 (−0.0009)

0.8 Sim (c.i.) 0.5604 (±0.0043) 0.5848 (±0.0045) 0.6209 (±0.0044)
App (Dev) 0.5572 (−0.0032) 0.5814 (−0.0034) 0.6181 (−0.0028)

σ(X0) 0.4 Sim (c.i.) 0.9274 (±0.0019) 0.9392 (±0.0021) 0.9514 (±0.0018)
App (Dev) 0.9247 (−0.0027) 0.9367 (−0.0025) 0.9487 (−0.0027)

0.8 Sim (c.i.) 0.7720 (±0.0044) 0.8138 (±0.0041) 0.8720 (±0.0032)
App (Dev) 0.7730 (+0.0010) 0.8155 (+0.0017) 0.8734 (+0.0014)

L1 0.4 Sim (c.i.) 0.8624 (±0.0207) 0.1585 (±0.0042) 0.0759 (±0.0021)
App (Dev) 0.8479 (−0.0145) 0.1563 (−0.0022) 0.0748 (−0.0011)

0.8 Sim (c.i.) 29.920 (±0.686) 5.9595 (±0.1593) 3.3297 (±0.1058)
App (Dev) 29.358 (−0.562) 5.8402 (−0.1193) 3.2563 (−0.0734)

σ(X1) 0.4 Sim (c.i.) 1.2482 (±0.0230) 0.5634 (±0.0142) 0.4127 (±0.0134)
App (Dev) 1.2473 (−0.0009) 0.5658 (+0.0024) 0.4143 (+0.0016)

0.8 Sim (c.i.) 13.991 (±0.718) 6.6082 (±0.2438) 5.1572 (±0.2111)
App (Dev) 13.817 (−0.174) 6.4646 (−0.1436) 5.0701 (−0.0871)

Table 12. Appr. of LN/Weib/3 retrial queue by H2/CE21/3
retrial queue (ms1 = 1.0, C2

a = 2.0, C2
s = 0.5)

ρ γ 0.1 1.0 10.0

PB 0.4 Sim (c.i.) 0.1281 (±0.0018) 0.1378 (±0.0015) 0.1546 (±0.0016)
App (Dev) 0.1243 (−0.0038) 0.1336 (−0.0042) 0.1498 (−0.0048)

0.8 Sim (c.i.) 0.5658 (±0.0044) 0.6031 (±0.0035) 0.6589 (± 0.0038)
App (Dev) 0.5657 (−0.0001) 0.6017 (−0.0014) 0.6555 (−0.0034)

σ(X0) 0.4 Sim (c.i.) 1.0091 (±0.0015) 1.0310 (±0.0017) 1.0601 (±0.0013)
App (Dev) 0.9977 (−0.0114) 1.0187 (−0.0123) 1.0464 (−0.0137)

0.8 Sim (c.i.) 0.7930 (±0.0059) 0.8616 (±0.0031) 0.9540 (±0.0051)
App (Dev) 0.7895 (−0.0035) 0.8614 (−0.0002) 0.9520 (−0.0020)

L1 0.4 Sim (c.i.) 1.9265 (±0.0433) 0.2958 (±0.0057) 0.1208 (±0.0032)
App (Dev) 1.9653 (+0.0388) 0.2963 (+0.0005) 0.1211 (+0.0003)

0.8 Sim (c.i.) 35.040 (±0.731) 6.5583 (±0.1326) 3.4209 (±0.0713)
App (Dev) 35.314 (−0.274) 6.5321 (−0.0262) 3.2936 (−0.1273)

σ(X1) 0.4 Sim (c.i.) 1.8144 (±0.0231) 0.7289 (±0.0081) 0.4840 (±0.0104)
App (Dev) 1.8585 (+0.0441) 0.7369 (+0.0080) 0.4911 (+0.0071)

0.8 Sim (c.i.) 14.581 (±0.365) 6.2761 (±0.1827) 4.6943 (±0.1175)
App (Dev) 14.749 (−0.168) 6.2445 (−0.0316) 4.5273 (−0.1670)

Dev(%) is large. The approximation procedure for LN/Weib/3 retrial queue
by using PH/PH/3 retrial queue has been described as an example. Approx-
imation results are very similar to those of simulation within the confidence
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interval. So the simulation can be replaced by the method proposed in this
paper for practical purpose.

Now we describe the restrictions of the method proposed and further research
area for improving the accuracy of approximation. The method to approximate
the multi server retrial queue by fitting the general distribution with PH dis-
tributions is needed to compute the stationary distribution of level dependent
quasi-birth-and-death process which may require relatively long computation
times and large size of memory when both of the number of phases of PH dis-
tribution and the number of servers are large. So the method is limited to small
values of c and to the PH distribution of lower order.

When one approximates retrial queue with general distribution of interarrival
and service times using the phase type distribution, it should be careful to choose
PH distribution especially for interarrival time distribution. There may be the
case, for example the light traffic system with large number of servers that
it is not sufficient to fit only the first three moments of general distribution
with PH distribution. However, there are few results for general and effective
method of matching the first four or higher moments of nonnegative random
variable by PH distributions which is necessary to be developed for more accurate
approximation.
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