
Research Article
The Number of Spanning Trees of the Cartesian Product of
Regular Graphs

Mei-Hui Wu1 and Long-Yeu Chung2

1 The Center of General Education, Information Technology Section, Chia Nan University of Pharmacy and Science,
Tainan 71710, Taiwan

2Department of Applied Informatics and Multimedia, Chia Nan University of Pharmacy and Science,
Tainan 71710, Taiwan

Correspondence should be addressed to Long-Yeu Chung; chungly1@mail.chna.edu.tw

Received 18 March 2014; Accepted 7 May 2014; Published 14 July 2014

Academic Editor: Her-Terng Yau

Copyright © 2014 M.-H. Wu and L.-Y. Chung. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The number of spanning trees in graphs or in networks is an important issue. The evaluation of this number not only is interesting
from amathematical (computational) perspective but also is an important measure of reliability of a network or designing electrical
circuits. In this paper, a simple formula for the number of spanning trees of the Cartesian product of two regular graphs is
investigated. Using this formula, the number of spanning trees of the four well-known regular networks can be simply taken into
evaluation.

1. Introduction

In this paper, we deal with simple undirected graphs having
no self-loop or multiple edges and consider the Cartesian
product of two regular graphs only. It is well known that, for
designing large-scale interconnection networks, the Carte-
sian product is an importantmethod to obtain large networks
from smaller ones, with a number of parameters that can
be easily calculated from the corresponding parameters for
those small initial graphs. The Cartesian product preserves
many nice properties such as regularity, transitivity, super
edge-connectivity, and super point-connectivity of the initial
regular graphs [1–6]. In fact, many well-known networks can
be constructed by the Cartesian products of simple regular
graphs, for example, Boolean 𝑛-cube networks, hypercube
networks, and lattice networks.

Alternatively, the study of the number of spanning trees in
a graph has a long history and has been very active because
the problem has different practical applications in different
fields. For example, the number characterizes the reliability
of a network and, in physics, designing electrical circuits,

analyzing energy of masers, and investigating the possible
particle transitions [7–10]. The larger degree of points a
network has, the more I/O ports and edges are needed and
the more cost is required.

The number of spanning trees of some special network
has been taken into evaluation [11–20]. Recently, some
authors derived results about the counting where the number
of spanning trees can be found from [21–29]. However, the
study for spanning trees of the Cartesian product of regular
graphs remains an open and important invariant.

The number of spanning trees of Boolean 𝑛-cube net-
works, lattice networks, and generalized Boolean 𝑛-cube
networks has been taken into account [13, 17, 18]; these
networks belong to the class of networks𝑄

𝑛
with two regular

graphs𝑄
1
and 𝐺 which is defined recursively by𝑄

𝑛
= 𝑄
𝑛−1

×

𝐺 for 𝑛 ≥ 2. In this paper, we will present the formula of
the number of spanning trees of the Cartesian product of
regular graphs. Using this present formula, the main results
in [13, 17, 18] can be obtained much more simply and will be
extended.
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2. The Number of Spanning Trees

Definition 1. Let𝐺 be a graphwith 𝑛 points labeled 1, 2, . . . , 𝑛.
The adjacency matrix of 𝐺,𝐴(𝐺), is an 𝑛 × 𝑛matrix with the
𝑖th row and 𝑗th column entry given by

[𝐴 (𝐺)]
𝑖𝑗
= {

1 if points 𝑖 and 𝑗 are adjacent
0 ortherwise.

(1)

The Kirchhoff matrix of 𝐺,𝐻(𝐺), is equal to 𝐷(𝐺) − 𝐴(𝐺),
where𝐷(𝐺) is an 𝑛×𝑛 diagonalmatrix whose diagonal entries
are the degree of point 𝑛 and 𝐴(𝐺) is the adjacency matrix.
Thus the 𝑖th row and 𝑗th column entry is given by

[𝐻 (𝐺)]
𝑖𝑗

=

{
{

{
{

{

deg (𝑖) if 𝑖 = 𝑗

−1 if 𝑖 ̸= 𝑗 and points 𝑖 and 𝑗 are adjacent
0 ortherwise.

(2)

Lemma 2 (see [30]). If𝐺 is a graph on 𝑛 points with Kirchhoff
matrix 𝐻(𝐺) and 𝐻

𝑖𝑗
(𝐺) is the submatrix of 𝐻(𝐺) obtained

by removing the 𝑖th row and 𝑗th column then the number of
spanning trees of 𝐺, 𝑡(𝐺), is any cofactor of 𝐻(𝐺). That is,
𝑡(𝐺) = (−1)

𝑖+𝑗 det(𝐻
𝑖𝑗
(𝐺)).

Lemma 3. If 𝐴 is an 𝑛 × 𝑛 triangulable matrix, which has 𝑛
eigenvalues, then the sum of product of any 𝑛−1 eigenvalues of
𝐴 is the sum of all principal minors of 𝐴.

Proof. Let 𝑝(𝜆) be the character polynomial of 𝐴 and
𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
are 𝑛 eigenvalues of 𝐴. Then

𝑝 (𝜆) = (𝜆 − 𝜆
1
) (𝜆 − 𝜆

2
) ⋅ ⋅ ⋅ (𝜆 − 𝜆

𝑛
) . (3)

From (3), we obtain the following.
(a) The coefficient of 𝜆 = (−1)

𝑛−1

⋅

(the sum of product of any 𝑛 − 1 eigenvaules of 𝐴).
On the other hand,

𝑝 (𝜆) = det (𝜆𝐼 − 𝐴)

=





















𝜆
(1)

− 𝑎
11

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1𝑛

−𝑎
21

𝜆
(2)

− 𝑎
22

⋅ ⋅ ⋅ −𝑎
2𝑛

...
... d

...
−𝑎
21

−𝑎
21

⋅ ⋅ ⋅ 𝜆
(𝑛)

− 𝑎
𝑛𝑛





















,

(4)

where 𝐴 = [𝑎
𝑖𝑗
] and 𝜆(𝑖) = 𝜆 for 𝑖 = 1, 2, . . . , 𝑛.

So we only need to prove that the coefficient of 𝜆 in
det(𝜆𝐼 − 𝐴) is the sum of all principal minors of 𝐴. Let 𝐴

𝑖𝑖

denote the principal minor of 𝐴 obtained by removing the
𝑖th row and 𝑖th column from 𝐴.

By (4), we obtain the following:

the coefficient of 𝜆(1) = (−1)
𝑛−1

𝐴
11

(taking 𝜆
(2)

= 𝜆
(3)

= ⋅ ⋅ ⋅ = 𝜆
(𝑛)

= 0)

the coefficient of 𝜆(2) = (−1)
𝑛−1

𝐴
22

(taking 𝜆
(1)

= 𝜆
(3)

= 𝜆
(4)

⋅ ⋅ ⋅ = 𝜆
(𝑛)

= 0)

...

the coefficient of 𝜆(𝑛) = (−1)
𝑛−1

𝐴
𝑛𝑛

(taking 𝜆
(1)

= 𝜆
(2)

= ⋅ ⋅ ⋅ = 𝜆
(𝑛−1)

= 0) .

(5)

(b) So the coefficient of 𝜆 = ∑
𝑛

𝑖=1
the coefficient of 𝜆(𝑖) =

(−1)
𝑛−1

(𝐴
11
+ 𝐴
22
+ ⋅ ⋅ ⋅ + 𝐴

𝑛𝑛
).

Hence the theorem is proved due to (a) and (b).

Since a real symmetricmatrix is with the property that the
sum of its rows (and its columns) is zero, the rank of𝐻(𝐺) ≤

𝑛−1. So 0 is the smallest eigenvalue.We write the eigenvalues
of𝐻(𝐺) as an ordered list:

0 = 𝜆
0
(𝐺) ≤ 𝜆

1
(𝐺) ≤ 𝜆

2
(𝐺) ⋅ ⋅ ⋅ ≤ 𝜆

𝑛−1
(𝐺) . (6)

The main result in Kelmans and Chelnokov [31] can also be
obtained by the following method.

Lemma 4 (see [31]). If the eigenvalues of the Kirchhoff matrix
𝐻(𝐺) of the 𝑛 points graph 𝐺 are 0 = 𝜆

0
(𝐺) ≤ 𝜆

1
(𝐺) ≤

𝜆
2
(𝐺) ⋅ ⋅ ⋅ ≤ 𝜆

𝑛−1
(𝐺) then 𝑡(𝐺), the number of spanning trees

of 𝐺, is given by

𝑡 (𝐺) =

1

𝑛

𝑛−1

∏

𝑖=1

𝜆
𝑖
(𝐺) . (7)

Proof. By Lemmas 2 and 3,

𝑛−1

∏

𝑖=1

𝜆
𝑖
(𝐺)

= the sum of product of any 𝑛 − 1 eigenvaules of 𝐻(𝐺)

= the sum of all principal minors of 𝐻(𝐺) = 𝑛 ⋅ 𝑡 (𝐺) .

(8)

Hence 𝑡(𝐺) = (1/𝑛)∏
𝑛−1

𝑖=1
𝜆
𝑖
(𝐺).

Lemma 5. Let the eigenvalues of the adjacency matrix𝐴(𝐺) of
the regular graph 𝐺 be written by 𝑢

1
≤ 𝑢
2
⋅ ⋅ ⋅ ≤ 𝑢

𝑛−1
≤ 𝑢
𝑛
= 𝑛,

where 𝑟 is the degree of the regular graph G; then, the number
of spanning trees of 𝐺 is given by

𝑡 (𝐺) =

1

𝑛

𝑛−1

∏

𝑖=1

(𝑟 − 𝑢
𝑖
) . (9)
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Proof. We know𝐻(𝐺) = 𝑟𝐼
𝑛
− 𝐴(𝐺), where 𝐼

𝑛
is the identity

𝑛 × 𝑛 matrix. Since 𝑢
𝑖
is the eigenvalue of 𝐴(𝐺) for 𝑖 =

1, 2, . . . , 𝑛−1, there exists eigenvector 𝑥
𝑖
for 𝑖 = 1, 2, . . . , 𝑛−1,

such that 𝐴(𝐺)𝑥
𝑖
= 𝑢
𝑖
𝑥
𝑖
. So (𝑟𝐼

𝑛
− 𝐻(𝐺))𝑥

𝑖
= 𝑢
𝑖
𝑥
𝑖
, 𝑟𝐼
𝑛
𝑥
𝑖
−

𝐻(𝐺)𝑥
𝑖
= 𝑢
𝑖
𝑥
𝑖
, 𝑟𝑥
𝑖
−𝐻(𝐺)𝑥

𝑖
= 𝑢
𝑖
𝑥
𝑖
, and 𝐻(𝐺)𝑥

𝑖
= 𝑟𝑥
𝑖
−𝑢
𝑖
𝑥
𝑖
.

We obtain𝐻(𝐺)𝑥
𝑖
= (𝑟−𝑢

𝑖
)𝑥
𝑖
.Thus 𝑟−𝑢

𝑖
is the eigenvalue

of𝐻(𝐺) for 𝑖 = 1, 2, . . . , 𝑛 − 1.
Hence the lemma is proved by Lemma 4.

3. Cartesian Product and Kronecker Product

Definition 6. Let 𝐺 = (𝑁, 𝐸) denote a connected graph with
𝑁 set of all points and 𝐸 set of all edges in 𝐺 and let {𝑢, V}
denote edge joining points 𝑢 and V. Let 𝐺

𝑖
= (𝑁

𝑖
, 𝐸
𝑖
) for

𝑖 = 1, 2; the Cartesian product of 𝐺
1
and 𝐺

2
is defined by

𝐺
1
× 𝐺
2
= (𝑁, 𝐸), where 𝑁 = 𝑁

1
× 𝑁
2
, 𝐸 = 𝐸

1
× 𝐸
2
, and

{(𝑢
1
, V
1
), (𝑢
2
, V
2
)} ∈ 𝐸 if and only if 𝑢

1
= 𝑢
2
and {V

1
, V
2
} ∈ 𝐸
2

or V
1
= V
2
and {𝑢

1
, 𝑢
2
} ∈ 𝐸
1
.

Definition 7 (see [32]). Let 𝐵 = [𝑏
𝑖𝑗
] be an 𝑛 × 𝑛 matrix and

𝐶 an 𝑚 × 𝑚 matrix; then, the Kronecker product 𝐵×
𝐾
𝐶 is

defined as the𝑚𝑛 × 𝑚𝑛matrix with block description

[

[

[

[

[

𝑏
11
𝐶 𝑏
12
𝐶 ⋅ ⋅ ⋅ 𝑏

1𝑛
𝐶

𝑏
21
𝐶 𝑏
22
𝐶 ⋅ ⋅ ⋅ 𝑏

2𝑛
𝐶

...
... d

...
𝑏
𝑛1
𝐶 𝑏
𝑛2
𝐶 ⋅ ⋅ ⋅ 𝑏

𝑛𝑛
𝐶

]

]

]

]

]

. (10)

The Kronecker sum is defined by 𝐵+
𝐾
𝐶 = 𝐵×

𝐾
𝐼
𝑚
+ 𝐼
𝑛
×
𝐾
𝐶,

where 𝐼
𝑘
is the 𝑘×𝑘 identity matrix for 𝑘 = 𝑚, 𝑛. Let𝑀 be an

𝑚𝑛 × 𝑚𝑛 matrix.𝑀 can be partitioned into 𝑛2 blocks which
are denoted by 𝐵

𝛼𝛽
for 𝛼 = 1, 2, . . . , 𝑛 and 𝛽 = 1, 2, . . . , 𝑛.That

is,

𝑀 =

[

[

[

[

[

𝐵
11

𝐵
12

⋅ ⋅ ⋅ 𝐵
1𝑛

𝐵
21

𝐵
22

⋅ ⋅ ⋅ 𝐵
𝑛1

...
... d

...
𝐵
𝑛1

𝐵
𝑛2

⋅ ⋅ ⋅ 𝐵
𝑛𝑛

]

]

]

]

]

, (11)

where 𝐵
𝛼𝛽

is the 𝑚 × 𝑚 matrix for 𝛼 = 1, 2, . . . , 𝑛 and 𝛽 =

1, 2, . . . , 𝑛. 𝑀 is called an 𝑛 × 𝑛 (𝑚 × 𝑚) block matrix.

Lemma 8. If𝐴 is an 𝑛×𝑛matrix and 𝐵,𝐶 are𝑚×𝑚matrices
then

(1) 𝐴×
𝐾
(𝐵 + 𝐶) = 𝐴×

𝐾
𝐵 + 𝐴×

𝐾
𝐶,

(2) (𝐵 + 𝐶)×
𝐾
𝐴 = 𝐵×

𝐾
𝐴 + 𝐶×

𝐾
𝐴.

Proof. The lemma is easily obtained.

Lemma 9. If the products 𝐴𝐵 and 𝐶𝐷 are defined then
(𝐴𝐵)×

𝐾
(𝐶𝐷) = (𝐴 ×

𝐾
𝐶)(𝐵×

𝐾
𝐷).

Proof. Let 𝐴 = [𝑎
𝑖𝑗
] be an𝑚× 𝑛matrix and 𝐵 = [𝑏

𝑖𝑗
] an 𝑛 × 𝑝

matrix

(𝐴×
𝐾
𝐶) (𝐵×

𝐾
𝐷) =

[

[

[

𝑎
11
𝐶 ⋅ ⋅ ⋅ 𝑎

1𝑛
𝐶

... d
...

𝑎
𝑚1
𝐶 ⋅ ⋅ ⋅ 𝑎

𝑚𝑛
𝐶

]

]

]

[

[

[

𝑏
11
𝐷 ⋅ ⋅ ⋅ 𝑏

1𝑝
𝐷

... d
...

𝑏
𝑛1
𝐷 ⋅ ⋅ ⋅ 𝑏

𝑛𝑝
𝐷

]

]

]

=

[

[

[

[

[

[

[

[

𝑛

∑

𝑘=1

𝑎
1𝑘
𝑏
𝑘1
𝐶𝐷 ⋅ ⋅ ⋅

𝑛

∑

𝑘=1

𝑎
1𝑘
𝑏
𝑘𝑝
𝐶𝐷

... d
...

𝑛

∑

𝑘=1

𝑎
𝑚𝑘
𝑏
𝑘1
𝐶𝐷 ⋅ ⋅ ⋅

𝑛

∑

𝑘=1

𝑎
𝑚𝑘
𝑏
𝑘𝑝
𝐶𝐷

]

]

]

]

]

]

]

]

= (𝐴𝐵) ×
𝐾
(𝐶𝐷) .

(12)

Lemma 10. If 𝑃 and 𝑄 are invertible then (𝑃×
𝐾
𝑄)
−1

=

𝑃
−1

×
𝐾
𝑄
−1.

Proof. Consider

(𝑃×
𝐾
𝑄) (𝑃

−1

×
𝐾
𝑄
−1

) = (𝑃𝑃
−1

) ×
𝐾
(𝑄𝑄
−1

)

= 𝐼
𝑚
×
𝐾
𝐼
𝑛
= 𝐼
𝑚𝑛
,

(13)

where 𝑃 is𝑚 × 𝑚 and 𝑄 is 𝑛 × 𝑛.

4. The Number of Spanning Trees of
the Cartesian Product of Regular Graphs

Lemma 11. If the points of 𝐺
1

and 𝐺
2

are labeled by
𝑢
1
, 𝑢
2
, . . . 𝑢
𝑛
and V
1
, V
2
, . . . , V

𝑚
, respectively, and points of 𝐺

1
×

𝐺
2
are ordered lexicographically, that is, the label of (𝑢

𝑖
, V
𝑗
) is

smaller than that of (𝑢
𝑘
, V
𝑙
) if and only if 𝑖 < 𝑘 and 𝑗 < 𝑙, then

𝐴(𝐺
1
× 𝐺
2
) = 𝐴(𝐺

1
) +
𝐾
𝐴(𝐺
2
).

Proof. Since 𝐴(𝐺
1
× 𝐺
2
) is an𝑚𝑛 ×𝑚𝑛matrix, 𝐴(𝐺

1
× 𝐺
2
) is

an 𝑛 × 𝑛 (𝑚 × 𝑚) block matrix. By the definition of 𝐺
1
× 𝐺
2
,

we describe

𝐴 (𝐺
1
× 𝐺
2
) =

[

[

[

[

[

[

[

[

[

[

[

𝐴 (𝐺
2
) [𝐴 (𝐺

1
)]
12
𝐼
𝑚

[𝐴 (𝐺
1
)]
13
𝐼
𝑚

⋅ ⋅ ⋅ [𝐴 (𝐺
1
)]
1,𝑛−1

𝐼
𝑚

[𝐴 (𝐺
1
)]
1,𝑛
𝐼
𝑚

[𝐴 (𝐺
1
)]
21
𝐼
𝑚

𝐴 (𝐺
2
) [𝐴 (𝐺

1
)]
23
𝐼
𝑚

⋅ ⋅ ⋅ [𝐴 (𝐺
1
)]
2,𝑛−1

𝐼
𝑚

[𝐴 (𝐺
1
)]
2,𝑛
𝐼
𝑚

...
...

...
...

...
[𝐴 (𝐺

1
)]
𝑛−1,1

𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛−1,2

𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛−1,3

𝐼
𝑚

⋅ ⋅ ⋅ 𝐴 (𝐺
2
) [𝐴 (𝐺

1
)]
𝑛−1,𝑛

𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛,1
𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛,2
𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛,3
𝐼
𝑚

⋅ ⋅ ⋅ [𝐴 (𝐺
1
)]
𝑛,𝑛−1

𝐼
𝑚

𝐴 (𝐺
2
)

]

]

]

]

]

]

]

]

]

]

]

, (14)
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where [𝐴(𝐺
1
)]
𝑖𝑗
is the (𝑖, 𝑗) entry of the adjacentmatrix𝐴(𝐺

1
)

of𝐺
1
and𝐴(𝐺

2
) is the𝑚×𝑚 adjacent matrix of𝐺

2
. We know

𝐼
𝑛
×
𝐾
𝐴(𝐺
2
) is an 𝑚𝑛 × 𝑚𝑛 matrix; it can be described as an

𝑛 × 𝑛 (𝑚 × 𝑚) block matrix

𝐼
𝑛
×
𝐾
𝐴 (𝐺
2
) =

[

[

[

[

[

[

[

𝐴 (𝐺
2
) 0
𝑚×𝑚

0
𝑚×𝑚

⋅ ⋅ ⋅ 0
𝑚×𝑚

0
𝑚×𝑚

0
𝑚×𝑚

𝐴 (𝐺
2
) 0
𝑚×𝑚

⋅ ⋅ ⋅ 0
𝑚×𝑚

0
𝑚×𝑚

...
...

... ⋅ ⋅ ⋅

...
...

0
𝑚×𝑚

0
𝑚×𝑚

0
𝑚×𝑚

⋅ ⋅ ⋅ 𝐴 (𝐺
2
) 0
𝑚×𝑚

0
𝑚×𝑚

0
𝑚×𝑚

0
𝑚×𝑚

⋅ ⋅ ⋅ 0
𝑚×𝑚

𝐴 (𝐺
2
)

]

]

]

]

]

]

]

, (15)

where 0
𝑚×𝑚

is the𝑚×𝑚 zero matrix. Since 𝐴(𝐺
1
)×
𝐾
𝐼
𝑚
is an

𝑚𝑛×𝑚𝑛matrix, it can be described as an 𝑛×𝑛 (𝑚×𝑚) block
matrix

𝐴 (𝐺
1
) ×
𝐾
𝐼
𝑚
=

[

[

[

[

[

[

[

0
𝑚×𝑚

[𝐴 (𝐺
1
)]
12
𝐼
𝑚

[𝐴 (𝐺
1
)]
13
𝐼
𝑚

⋅ ⋅ ⋅ [𝐴 (𝐺
1
)]
1,𝑛−1

𝐼
𝑚

[𝐴 (𝐺
1
)]
1,𝑛
𝐼
𝑚

[𝐴 (𝐺
1
)]
21
𝐼
𝑚

0
𝑚×𝑚

[𝐴 (𝐺
1
)]
23
𝐼
𝑚

⋅ ⋅ ⋅ [𝐴 (𝐺
1
)]
2,𝑛−1

𝐼
𝑚

[𝐴 (𝐺
1
)]
2,𝑛
𝐼
𝑚

...
...

...
...

...
[𝐴 (𝐺

1
)]
𝑛−1,1

𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛−1,2

𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛−1,3

𝐼
𝑚

⋅ ⋅ ⋅ 0
𝑚×𝑚

[𝐴 (𝐺
1
)]
𝑛−1,𝑛

𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛,1
𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛,2
𝐼
𝑚

[𝐴 (𝐺
1
)]
𝑛,3
𝐼
𝑚

⋅ ⋅ ⋅ [𝐴 (𝐺
1
)]
𝑛,𝑛−1

𝐼
𝑚

0
𝑚×𝑚

]

]

]

]

]

]

]

. (16)

Clearly 𝐴(𝐺
1
× 𝐺
2
) = 𝐴(𝐺

1
)×
𝐾
𝐼
𝑚
+ 𝐼
𝑛
×
𝐾
𝐴(𝐺
2
) = 𝐴(𝐺

1
) +
𝐾

𝐴(𝐺
2
).

Lemma 12. Let𝐺
𝑖
be the regular graph of degree 𝑟

𝑖
for 𝑖 = 1, 2;

then, the degree of𝐺
1
×𝐺
2
is 𝑟
1
+𝑟
2
. If the number of the points

of 𝐺
1
(resp., 𝐺

2
) is 𝑛 (resp., 𝑚) and the points of 𝐺

1
× 𝐺
2
are

ordered lexicographically then𝐻(𝐺
1
×𝐺
2
) = 𝐻(𝐺

1
)+
𝐾
𝐻(𝐺
2
).

Proof. By Lemmas 8 and 11,

𝐻(𝐺
1
× 𝐺
2
) = (𝑟

1
+ 𝑟
2
) 𝐼
𝑚𝑛

− 𝐴 (𝐺
1
× 𝐺
2
)

= (𝑟
1
+ 𝑟
2
) 𝐼
𝑚𝑛

− (𝐴 (𝐺
1
) +
𝐾
𝐴 (𝐺
2
))

= (𝑟
1
+ 𝑟
2
) 𝐼
𝑚𝑛

− (𝐴 (𝐺
1
) ×
𝐾
𝐼
𝑚
+ 𝐼
𝑛
×
𝐾
𝐴 (𝐺
2
))

= (𝑟
1
𝐼
𝑚𝑛

− 𝐼
𝑛
×
𝐾
𝐴 (𝐺
2
))

+ (𝑟
2
𝐼
𝑚𝑛

− 𝐴 (𝐺
1
) ×
𝐾
𝐼
𝑚
)

= (𝐼
𝑛
×
𝐾
𝑟
1
𝐼
𝑚
− 𝐼
𝑛
×
𝐾
𝐴 (𝐺
2
))

+ (𝑟
2
𝐼
𝑛
×
𝐾
𝐼
𝑚
− 𝐴 (𝐺

1
) ×
𝐾
𝐼
𝑚
)

= 𝐼
𝑛
×
𝐾
(𝑟
1
𝐼
𝑚
− 𝐴 (𝐺

2
)) + (𝑟

2
𝐼
𝑛
− 𝐴 (𝐺

1
)) ×
𝐾
𝐼
𝑚

= 𝐼
𝑛
×
𝐾
𝐻(𝐺
2
) + 𝐻 (𝐺

1
) ×
𝐾
𝐼
𝑚

= 𝐻 (𝐺
1
) +
𝐾
𝐻(𝐺
2
) ,

(17)

where 𝐼
𝑚𝑚

is the𝑚𝑛 × 𝑚𝑛 identity matrix.

Lemma 13. If 𝐴 and 𝐵 are triangulable matrices then the
eigenvalues of𝐴 +

𝑘
𝐵 are given by 𝛼+𝛽, respectively, as 𝛼 and

𝛽 vary through the eigenvalues of 𝐴 and 𝐵.

Proof. Since 𝐴 and 𝐵 are triangulable, there exist invertible
matrices𝑄 and 𝑃 such that𝐴

1
= 𝑄𝐴𝑄

−1 and 𝐵
1
= 𝑃𝐵𝑃

−1 are
upper triangular. If 𝐴 and 𝐵 are 𝑛 × 𝑛 and 𝑚 × 𝑚 matrices,
respectively, by Lemmas 9 and 10,

𝐴
1
+
𝑘
𝐵
1
= 𝐴
1
×
𝐾
𝐼
𝑚
+ 𝐼
𝑛
×
𝐾
𝐵
1

= (𝑄𝐴𝑄
−1

) ×
𝐾
(𝑃𝐼
𝑚
𝑃
−1

)

+ (𝑄𝐼
𝑛
𝑄
−1

) ×
𝐾
(𝑃𝐵𝑃
−1

)

= (𝑄×
𝐾
𝑃) (𝐴𝑄

−1

×
𝐾
𝐼
𝑚
𝑃
−1

)

+ (𝑄×
𝐾
𝑃) (𝐼
𝑛
𝑄
−1

×
𝐾
𝐵𝑃
−1

)

= (𝑄×
𝐾
𝑃) (𝐴×

𝐾
𝐼
𝑚
) (𝑄
−1

×
𝐾
𝑃
−1

)

+ (𝑄×
𝐾
𝑃) (𝐼
𝑛
×
𝐾
𝐵) (𝑄

−1

×
𝐾
𝑃
−1

)

= (𝑄×
𝐾
𝑃) [(𝐴×

𝐾
𝐼
𝑚
) + (𝐼
𝑛
×
𝐾
𝐵)] (𝑄

−1

×
𝐾
𝑃
−1

)

= (𝑄×
𝐾
𝑃) [(𝐴×

𝐾
𝐼
𝑚
) + (𝐼
𝑛
×
𝐾
𝐵)] (𝑄×

𝐾
𝑃)
−1

= (𝑄×
𝐾
𝑃) (𝐴+

𝑘
𝐵) (𝑄×

𝐾
𝑃)
−1

.

(18)

So 𝐴+
𝑘
𝐵 is similar to 𝐴

1
+
𝑘
𝐵
1
and they have the same

eigenvalues. Obviously𝐴
1
+
𝑘
𝐵
1
= 𝐴
1
×
𝐾
𝐼
𝑚
+𝐼
𝑛
×
𝐾
𝐵
1
is upper

triangular with diagonal entries given by 𝛼 + 𝛽, respectively,
as 𝛼 and 𝛽 vary through the eigenvalues of 𝐴

1
and 𝐵

1
. Hence

the eigenvalues of 𝐴+
𝑘
𝐵 are 𝛼 + 𝛽, respectively, as 𝛼 and 𝛽

vary through the eigenvalues of 𝐴 and 𝐵.
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Theorem 14. Let𝐺
1
and𝐺

2
be the regular graphs with degrees

𝑚 and 𝑛, respectively. If the eigenvalues of the adjacency matrix
𝐴(𝐺
1
) are written as 𝛼

1
≤ 𝛼
2
⋅ ⋅ ⋅ ≤ 𝛼

𝑛−1
≤ 𝛼
𝑚

= 𝑚 and
the eigenvalues of the adjacency matrix 𝐴(𝐺

2
) are written as

𝛽
1
≤ 𝛽
2
⋅ ⋅ ⋅ ≤ 𝛽

𝑛−1
≤ 𝛽
𝑛
= 𝑛, then the number of spanning

trees of the Cartesian product 𝐺
1
× 𝐺
2
is

𝑡 (𝐺
1
× 𝐺
2
) =

1

𝑚𝑛

∏

𝑖,𝑗

[(𝑚 + 𝑛) − (𝛼
𝑖
+ 𝛽
𝑗
)] , (19)

where 𝑖 and 𝑗 satisfy (𝑖, 𝑗) ∈ {1, 2, . . . , 𝑚} × {1, 2, . . . , 𝑛} −

{(𝑚, 𝑛)}.

Proof. We know𝐺
1
×𝐺
2
has𝑚𝑛 points and the degree of𝐺

1
×

𝐺
2
is 𝑚 + 𝑛. By Lemma 11, 𝐴(𝐺

1
× 𝐺
2
) = 𝐴(𝐺

1
)+
𝐾
𝐴(𝐺
2
). By

Lemma 13, the eigenvalues of 𝐴(𝐺
1
× 𝐺
2
) are 𝛼

𝑖
+ 𝛽
𝑗
for 𝑖 =

1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛. The result follows by Lemma 5.

Theorem 15. If 𝐺
1
and 𝐺

2
are the regular graph of degrees

𝑚 and 𝑛, respectively, the eigenvalues of the Kirchhoff matrix
𝐻(𝐺
1
) are written as 0 = 𝜆

0
≤ 𝜆
1
⋅ ⋅ ⋅ ≤ 𝜆

𝑚−1
, and the

eigenvalues of the Kirchhoff matrix 𝐻(𝐺
2
) are written as 0 =

𝛾
0
≤ 𝛾
1
⋅ ⋅ ⋅ ≤ 𝛾

𝑛−1
, then the number of spanning trees of the

Cartesian product of 𝐺
1
and 𝐺

2
is

𝑡 (𝐺
1
× 𝐺
2
) =

1

𝑚𝑛

∏

𝑖,𝑗

(𝜆
𝑖
+ 𝛾
𝑗
) , (20)

where 𝑖 and 𝑗 satisfy (𝑖, 𝑗) ∈ {0, 1, . . . , 𝑚 − 1} × {0, 1, . . . , 𝑛 −

1} − {(0, 0)}.

Proof. By Lemma 12, 𝐻(𝐺
1
× 𝐺
2
) = 𝐻(𝐺

1
)+
𝐾
𝐻(𝐺
2
). By

Lemma 13, the eigenvalues of 𝐻(𝐺
1
× 𝐺
2
) are 𝜆

𝑖
+ 𝛾
𝑗
for

𝑖 = 0, 1, . . . , 𝑚 − 1 and 𝑗 = 0, 1, . . . , 𝑛 − 1. Hence by Lemma 4,
the result follows.

5. The Number of Spanning Trees of
the 𝑟𝑛-Lattice Network

Definition 16 (see [17, 18]). The 𝑟𝑛-lattice networks 𝑅(𝑟, 𝑛) are
defined as

𝑅 (𝑟, 𝑛) = {

𝐾
𝑟

for 𝑛 = 1

𝑅 (𝑟, 𝑛 − 1) × 𝐾
𝑟

for 𝑛 ≥ 2,

(21)

where𝐾
𝑟
is a complete graph of 𝑟 points.

When 𝑟 = 2, 𝑅(2, 𝑛) is well known, the Boolean 𝑛-cube
network.

We denote 𝑅(𝑟, 𝑛) = 𝐾
(1)

𝑟
× 𝐾
(2)

𝑟
× ⋅ ⋅ ⋅ × 𝐾

(𝑛)

𝑟
.

Lemma 17. The eigenvalues of 𝐻(𝐾
𝑟
) are 𝑟 with multiplicity

𝑟 − 1 and 0 with multiplicity 1.
Proof. Since 𝐻(𝐾

𝑟
) = 𝑟𝐼

𝑟
− 𝐽
𝑟
, where 𝐽

𝑟
is the matrix of all

ones, letting 𝑃
𝐾
𝑟

(𝜆) be the character polynomial of𝐻(𝐾
𝑟
), we

obtain by Gaussian elimination

𝑃
𝐾
𝑟

(𝜆) = 𝜆
























1 1 1 ⋅ ⋅ ⋅ 1

0 𝜆 − 𝑟 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 𝜆 − 𝑟 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

...
...

... d ⋅ ⋅ ⋅

0 0 0 0 𝜆 − 𝑟
























= 𝜆(𝜆 − 𝑟)
𝑟−1

.

(22)

Hence the result follows.

Lemma 18. If the distinct eigenvalues of the Kirchhoff matrix
𝐻(𝑅(𝑟, 𝑛)) are 0 = 𝜆

0
≤ 𝜆
1
⋅ ⋅ ⋅ ≤ 𝜆

𝑛−1
≤ 𝜆
𝑛
then

𝜆
0
= 𝑤𝑖𝑡ℎ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝐶 (𝑛, 𝑛) = 1

𝜆
1
= 𝑟 𝑤𝑖𝑡ℎ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 (𝑟 − 1) 𝐶 (𝑛, 𝑛 − 1)

𝜆
2
= 2𝑟 𝑤𝑖𝑡ℎ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 (𝑟 − 1)

2

𝐶 (𝑛, 𝑛)

...

𝜆
𝑛−1

= (𝑛 − 1) 𝑟 𝑤𝑖𝑡ℎ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 (𝑟 − 1)
𝑛−1

𝐶 (𝑛, 1)

𝜆
𝑛
= 𝑛𝑟 𝑤𝑖𝑡ℎ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 (𝑟 − 1)

𝑛

𝐶 (𝑛, 0) ,

(23)

where 𝐶(𝑛, 𝑟) = 𝑛!/𝑟!(𝑛 − 𝑟)!.

Proof. Since𝑅(𝑟, 𝑛) = 𝐾
(1)

𝑟
×𝐾
(2)

𝑟
×⋅ ⋅ ⋅×𝐾

(𝑛)

𝑟
and by Lemma 13,

we obtain each of eigenvalues of 𝐻(𝑅(𝑟, 𝑛)) = ∑
𝑛

𝑖=1
one of

eigenvalues of𝐻(𝐾
(𝑖)

𝑟
).

Hence if we take the eigenvalue 0 of 𝐻(𝐾
(𝑖)

𝑟
) for 𝑖 =

1, 2, . . . , 𝑛 then 𝜆
0
= 0 with multiplicity 𝐶(𝑛, 𝑛) = 1. If we

take the eigenvalue 𝑟 of𝐻(𝐾
(𝑙)

𝑟
) for some one 𝑙 ∈ {1, 2, . . . , 𝑛}

and the eigenvalue 0 of𝐻(𝐾
(𝑖)

𝑟
) for each 𝑖 ∈ {1, 2, . . . , 𝑛} − {𝑙}

then 𝜆
1
= 𝑟 with multiplicity (𝑟 − 1)𝐶(𝑛, 𝑛 − 1). If we take

the eigenvalue 𝑟 of 𝐻(𝐾
(𝑙)

𝑟
) and 𝐻(𝐾

(𝑚)

𝑟
), respectively, for

𝑙, 𝑚 ∈ {1, 2, . . . , 𝑛} and the eigenvalue 0 of 𝐻(𝐾
(𝑖)

𝑟
) for each

𝑖 ∈ {1, 2, . . . , 𝑛} − {𝑙, 𝑚}, then 𝜆
2

= 2𝑟 with multiplicity
(𝑟 − 1)

2

𝐶(𝑛, 𝑛). We keep performing the same process. Hence
the result follows.

The main theorem in [17, 18] can be obtained much more
simply byTheorem 19 as follows.
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Theorem 19 (see [17]). Thenumber of spanning trees of𝑅(𝑟, 𝑛)
is

𝑡 (𝑅 (𝑟, 𝑛)) = 𝑟
𝑟
𝑛

−𝑛−1

𝑛

∏

𝑖=2

𝑖
𝐶(𝑛,𝑖)(𝑟−1)

𝑖

. (24)

Proof. Since the degree of 𝑅(𝑟, 𝑛) is 𝑛(𝑟 − 1), the number
of points of 𝑅(𝑟, 𝑛) is 𝑟𝑛. By Lemma 18 and Theorem 15, we
obtain

𝑡 (𝑅 (𝑟, 𝑛))

=

1

𝑟
𝑛
⋅ 𝑟
𝐶(𝑛,𝑛−1)(𝑟−1)

⋅ (2𝑟)
𝐶(𝑛,𝑛−2)(𝑟−1)

2

⋅ (3𝑟)
𝐶(𝑛,𝑛−3)(𝑟−1)

3

⋅ ⋅ ⋅ (𝑛𝑟)
𝐶(𝑛,0)(𝑟−1)

𝑛

=

1

𝑟
𝑛

⋅ 𝑟
𝐶(𝑛,𝑛−1)(𝑟−1)+𝐶(𝑛,𝑛−2)(𝑟−1)

2

+𝐶(𝑛,𝑛−3)(𝑟−1)
3

+⋅⋅⋅+𝐶(𝑛,0)(𝑟−1)
𝑛

⋅

𝑛

∏

𝑖=1

𝑖
𝐶(𝑛,𝑛−𝑖)(𝑟−1)

𝑖

=

1

𝑟
𝑛
⋅ 𝑟
𝑟
𝑛

−1

⋅

𝑛

∏

𝑖=1

𝑖
𝐶(𝑛,𝑛−𝑖)(𝑟−1)

𝑖

= 𝑟
𝑟
𝑛

−𝑛−1

𝑛

∏

𝑖=2

𝑖
𝐶(𝑛,𝑖)(𝑟−1)

𝑖

.

(25)

Corollary 20 (see [18]). The number of spanning trees of the
Boolean 𝑛-cube network 𝐵

𝑛
is

𝑡 (𝐵
𝑛
) = 2
2
𝑛

−𝑛−1

𝑛

∏

𝑖=2

𝑖
𝐶(𝑛,𝑖)

. (26)

Proof. Since 𝐵
𝑛
= 𝑅(2, 𝑛), by Theorem 15, the result follows.

6. The Number of Spanning Trees of
the 2 × 3⋅ ⋅ ⋅ × 𝑛-Lattice Network

Definition 21. The 2 × 3 ⋅ ⋅ ⋅ × 𝑛 lattice network 𝑄
𝑛
can be

defined recursively by 𝑄
2
= 𝐾
2
and 𝑄

𝑛
= 𝐾
𝑛
× 𝑄
𝑛−1

.
Thus𝑄

𝑛
has 𝑛! points. We denote𝑄

𝑛
= 𝐾
2
×𝐾
3
×⋅ ⋅ ⋅×𝐾

𝑛
.

Theorem 22. The number of spanning trees of 𝑄
𝑛
is

𝑡 (𝑄
𝑛
) =

1

𝑛!

𝑛−1

∏

𝑖=1

∏

2≤𝑟
1
<𝑟
2
<⋅⋅⋅<𝑟

𝑖
≤𝑛

(

𝑖

∑

𝑗=1

𝑟
𝑗
)

∏
𝑖

𝑗=1
(𝑟
𝑗
−1)

. (27)

Proof. Since the eigenvalues of 𝐻(𝐾
𝑟
) are 𝑟 with

multiplicity 𝑟 − 1 and 0 with multiplicity 1, the distinct
∑
𝑛−1

𝑖=0
𝐶(𝑛 − 1, 𝑖) = 2

𝑛−1 eigenvalues of 𝑄
𝑛
are 0 and

𝜆
𝑖,𝑟
1
,𝑟
2
,...,𝑟
𝑖

= ∑
𝑖

𝑗=1
𝑟
𝑗
withmultiplicity (𝑟

1
−1)(𝑟
2
−1) ⋅ ⋅ ⋅ (𝑟

𝑖
−1),

where 𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑖
, satisfying 2 ≤ 𝑟

1
< 𝑟
2
< ⋅ ⋅ ⋅ < 𝑟

𝑖
≤ 𝑛,

𝑖 = 1, 2, . . . , 𝑛 − 1, are nonzero eigenvalues of 𝐻(𝐾
𝑟
1

),

𝐻(𝐾
𝑟
2

), . . . , 𝐻(𝐾
𝑟
𝑖

), respectively, and take zero eigenvalues
for the remaining 𝐻(𝐾

𝑟
), where 𝑟 ̸= 𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑖
, 𝑟 =

2, 3, . . . , 𝑛 − 1. By Lemma 13 and Theorem 15, the result
follows.

Example 23. The number of spanning trees of 𝑄
3
and 𝑄

4

is as shown in Figure 1, where 𝑡(𝑄
3
) = (1/3!)2

(2−1)

3
(3−1)

(2 + 3)
(2−1)(3−1)

= 75 and 𝑡(𝑄
4
) = (1/4!)2

(2−1)

3
(3−1)

4
(4−1)

(2+

3)
(2−1)(3−1)

(2 + 4)
(2−1)(4−1)

(3 + 4)
(3−1)(4−1)

(2 + 3 +

4)
(2−1)(3−1)(4−1)

= 1620609272381440.

7. The Number of Spanning Trees of
the Generalized Boolean 𝑛-Cube Network

Definition 24. The generalized Boolean 𝑛-cube network
𝐵𝑅(𝑟, 𝑛) can be defined by

𝐵𝑅 (𝑟, 𝑛) =

{

{

{

𝐶
𝑟

for 𝑛 = 1

𝐵𝑅 (𝑟, 𝑛 − 1) × 𝐾
2

for 𝑛 ≥ 2,

(28)

where𝐶
𝑟
is a cycle with 𝑟 points. One denotes 𝐵𝑅(𝑟, 𝑛) = 𝐶

𝑟
×

𝐾
2
× ⋅ ⋅ ⋅ × 𝐾

2
.

Setting 𝐸
𝑛
is the 𝑛 × 𝑛matrix by

𝐸
𝑛
=

[

[

[

[

[

[

[

0 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 0 ⋅ ⋅ ⋅ 0

...
...

...
... ⋅ ⋅ ⋅

...
0 0 0 0 ⋅ ⋅ ⋅ 1

1 0 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

,

𝐸
𝑖

𝑛
=

1 𝑖 + 1

[

[

[

[

[

[

[

0

0

...
0

0

⋅ ⋅ ⋅

⋅ ⋅ ⋅

...
⋅ ⋅ ⋅

⋅ ⋅ ⋅

0

0

...
1

0

0

0

...
0

1

1

0

...
0

0

0

1

...
0

0

0

0

...
0

0

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

0

0

...
0

0

]

]

]

]

]

]

]

𝑖

.

(29)

Lemma 25. The eigenvalues of the adjacent matrix 𝐴(𝐾
𝑟
) are

−1 with multiplicity 𝑟 − 1 and 𝑟 − 1 with multiplicity 1.

Lemma 26 (see [33]). If 𝐵 is a sequence matrix, 𝜆 is an
eigenvalue of 𝐵, and 𝑓 is a polynomial then 𝑓(𝜆) is the
eigenvalue of 𝑓(𝐵).

Lemma 27. The eigenvalues of the adjacent matrix 𝐴(𝐶
𝑛
) are

2 cos(2𝜋𝑘/𝑛) for 𝑘 = 0, 1, 2, . . . , 𝑛 − 1.
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Proof. Since

det (𝜆𝐼
𝑛
− 𝐸
𝑛
) =
























𝜆 −1 0 ⋅ ⋅ ⋅ 0

0 𝜆 −1 0 0

... 0 d d 0

0 ⋅ ⋅ ⋅ 0 𝜆 −1

−1 0 ⋅ ⋅ ⋅ 0 𝜆
























= 𝜆 ⋅ 𝜆
𝑛−1

+ (−1) (−1)
𝑛+1

(−1)
𝑛−1

= 𝜆
𝑛

− 1,

(30)

the eigenvalues of 𝐸
𝑛
are 𝑒
(2𝜋𝑘/𝑛)𝑖 for 𝑘 = 0, 1, 2, . . . , 𝑛 −

1. It follows that 𝐴(𝐶
𝑛
) = 𝐸

𝑛
+ 𝐸
𝑛−1

𝑛
. By Lemma 26, the

eigenvalues of 𝐴(𝐶
𝑛
) are 𝑒(2𝜋𝑘/𝑛)𝑖 + (𝑒

(2𝜋𝑘/𝑛)𝑖

)
𝑛−1

= 𝑒
(2𝜋𝑘/𝑛)𝑖

+

(𝑒
2𝜋𝑘𝑖−(2𝜋𝑘/𝑛)𝑖

) = 𝑒
(2𝜋𝑘/𝑛)𝑖

+ 𝑒
−(2𝜋𝑘/𝑛)𝑖

= 2 cos(2𝜋𝑘/𝑛) for 𝑘 =

0, 1, 2, . . . , 𝑛 − 1.

The main theorem in [13] can be obtained much more
simply as follows.

Theorem 28 (see [13]). The number of spanning trees of
𝐵𝑅(𝑟, 𝑛) is

𝑡 (𝐵𝑅 (𝑟, 𝑛)) = 𝑟2
𝑟(2
𝑛−1

−1)−𝑛+1

×

𝑛−1

∏

𝑖=1

(𝑖

𝑟−1

∏

𝑘=1

(𝑖 + 1 − cos 2𝜋𝑘
𝑟

))

𝐶(𝑛−1,𝑖)

.

(31)

Proof. It follows that the points of 𝐵𝑅(𝑟, 𝑛) are 𝑟 ⋅ 2𝑛−1 and
the degree of any edge of 𝐵𝑅(𝑟, 𝑛) is 𝑛 + 1. By Lemma 25,

the eigenvalues of the adjacent matrix 𝐴(𝐾
2
) are −1 and 1.

By Lemmas 13 and 27, the distinct eigenvalues of the adjacent
matrix 𝐴(𝐵𝑅(𝑟, 𝑛)) are

(𝑛 − 2𝑖 − 1) + 2 cos 2𝜋𝑘
𝑟

𝑘 = 0, 1, . . . , 𝑟 − 1

with multiplicity 𝐶 (𝑛 − 1, 𝑖) ,

(32)

where 𝑖 = 0, 1, . . . , 𝑛 − 1.
When 𝑘 = 0 and 𝑖 = 0, the eigenvalue is 𝑛+1. When 𝑘 = 0

and 𝑖 = 0, 1, . . . , 𝑛 − 1, the eigenvalues are (𝑛 − 2𝑖 − 1) + 2. By
Theorem 14,

𝑡 (𝐵𝑅 (𝑟, 𝑛))

=

1

𝑟 ⋅ 2
𝑛−1

𝑛−1

∏

𝑖=1

((𝑛 + 1) − ((𝑛 − 2𝑖 − 1) + 2))
𝐶(𝑛−1,𝑖)

⋅

𝑟−1

∏

𝑘=1

𝑛−1

∏

𝑖=0

((𝑛 + 1)−((𝑛−2𝑖−1) + 2 cos 2𝜋𝑘
𝑟

))

𝐶(𝑛−1,𝑖)

=

1

𝑟 ⋅ 2
𝑛−1

𝑛−1

∏

𝑖=1

(2𝑖)
𝐶(𝑛−1,𝑖)

⋅

𝑟−1

∏

𝑘=1

𝑛−1

∏

𝑖=0

(2(𝑖 + 1 − cos 2𝜋𝑘
𝑟

))

𝐶(𝑛−1,𝑖)

.

(33)



8 Mathematical Problems in Engineering

Since ∏𝑛−1
𝑖=0

2
𝐶(𝑛−1,𝑖)

= 2
∑
𝑛−1

𝑖=0

𝐶(𝑛−1,𝑖)

=22
𝑛−1

and ∏
𝑛−1

𝑖=1
2
𝐶(𝑛−1,𝑖)

=

2
2
𝑛−1

−1, hence

𝑡 (𝐵𝑅 (𝑟, 𝑛)) =

1

𝑟 ⋅ 2
𝑛−1

2
2
𝑛−1

−1

2
(𝑟−1)2

𝑛−1

𝑛−1

∏

𝑖=1

𝑖
𝐶(𝑛−1,𝑖)

⋅

𝑟−1

∏

𝑘=1

𝑛−1

∏

𝑖=0

(𝑖 + 1 − cos 2𝜋𝑘
𝑟

)

𝐶(𝑛−1,𝑖)

.

(34)

Since ∏
𝑟−1

𝑘=1
sin2(𝜋𝑘/𝑟) = 𝑟

2 and ∏
𝑟−1

𝑘=1
(1 − cos(2𝜋𝑘/𝑟)) =

∏
𝑟−1

𝑘=1
2sin2(𝜋𝑘/𝑟) = 𝑟

2

/2
𝑟−1 as 𝑖 = 1,

𝑡 (𝐵𝑅 (𝑟, 𝑛)) = 𝑟2
𝑟(2
𝑛−1

−1)−𝑛+1

𝑛−1

∏

𝑖=1

𝑖
𝐶(𝑛−1,𝑖)

⋅

𝑟−1

∏

𝑘=1

𝑛−1

∏

𝑖=1

(𝑖 + 1 − cos 2𝜋𝑘
𝑟

)

𝐶(𝑛−1,𝑖)

= 𝑟2
𝑟(2
𝑛−1

−1)−𝑛+1

×

𝑛−1

∏

𝑖=1

(𝑖

𝑟−1

∏

𝑘=1

(𝑖 + 1 − cos 2𝜋𝑘
𝑟

))

𝐶(𝑛−1,𝑖)

.

(35)

8. The Number of Spanning Trees of
the Hypercube Network

Definition 29. The hypercube network 𝐻(𝑟,𝑚) can be
defined by

𝐻(𝑟,𝑚) = {

𝐶
𝑟

for 𝑚 = 1

𝐻 (𝑟,𝑚 − 1) × 𝐶
𝑟

for𝑚 ≥ 2,

(36)

where 𝐶
𝑟
is a cycle with 𝑟 points.

Theorem 30. The number of spanning trees of𝐻(𝑟,𝑚) is

𝑡 (𝐻 (𝑟,𝑚)) =

2
𝑟
𝑚

−1

𝑟
𝑚

∏

𝑙
1
,𝑙
2
,...,𝑙
𝑚

(𝑚 −

𝑚

∑

𝑖=1

cos
2𝜋𝑙
𝑖

𝑟

) , (37)

where 𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑚
satisfy (𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑚
) ∈ {0, 1, . . . , 𝑟 − 1} ×

{0, 1, . . . , 𝑟 − 1} × ⋅ ⋅ ⋅ × {0, 1, . . . , 𝑟 − 1} − {(0, 0, . . . , 0)}.

Proof. It follows that the points of 𝐻(𝑟,𝑚) are 𝑟𝑚 and the
degree of any edge of 𝐻(𝑟,𝑚) is 2𝑚. By Lemma 26 and
Theorem 14,

𝑡 (𝐻 (𝑟,𝑚)) =

1

𝑟
𝑚

∏

𝑙
1
,𝑙
2
,...,𝑙
𝑚

(2𝑚 − 2

𝑚

∑

𝑖=1

cos
2𝜋𝑙
𝑖

𝑟

)

=

2
𝑟
𝑚

−1

𝑟
𝑚

∏

𝑙
1
,𝑙
2
,...,𝑙
𝑚

(𝑚 −

𝑚

∑

𝑖=1

cos
2𝜋𝑙
𝑖

𝑟

) ,

(38)

where 𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑚
satisfy (𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑚
) ∈ {0, 1, . . . , 𝑟 − 1} ×

{0, 1, . . . , 𝑟 − 1} × ⋅ ⋅ ⋅ × {0, 1, . . . , 𝑟 − 1} − {(0, 0, . . . , 0)}.

9. Conclusion

Due to the high dependence of the network design and
reliability problem, electrical circuits designing issue are
on the graph theory. For example, the larger degree of
points a network has, the more I/O ports and edges are
needed and the more cost is required. The evaluation of
this number not only is interesting from a mathematical
(computational) perspective but also is an important issue
on practical applications. However, the study for spanning
trees of the Cartesian product of regular graphs remains an
open and important invariant. In this paper, the eigenvalues
of the Kirchhoff matrix of Cartesian product of two regular
graphs, 𝐺

1
and 𝐺

2
, are given by 𝜆+ 𝛾 as 𝜆 and 𝛾 vary through

the eigenvalues of the Kirchhoff matrices𝐻(𝐺
1
) and𝐻(𝐺

2
),

respectively. By this result, the formula for the number of
spanning trees of the four regular networks can be simply
obtained. Using this formula, the main results in [13, 17, 18]
can be obtained much more simply and will be extended.
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