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Abstract. AES is the best known and most widely used block cipher.
Its three versions (AES-128, AES-192, and AES-256) differ in their key
sizes (128 bits, 192 bits and 256 bits) and in their number of rounds (10,
12, and 14, respectively). While for AES-128, there are no known attacks
faster than exhaustive search, AES-192 and AES-256 were recently shown
to be breakable by attacks which require 2176 and 299.5 time, respectively.
While these complexities are much faster than exhaustive search, they
are completely non-practical, and do not seem to pose any real threat to
the security of AES-based systems.

In this paper we aim to increase our understanding of AES security,
and we concentrate on attacks with practical complexity, i.e., attacks that
can be experimentally verified. We show attacks on reduced-round vari-
ants of AES-256 with up to 10 rounds with complexity which is feasible.
One of our attacks uses only two related keys and 239 time to recover the
complete 256-bit key of a 9-round version of AES-256 (the best previous
attack on this variant required 4 related keys and 2120 time). Another
attack can break a 10-round version of AES-256 in 245 time, but it uses
a stronger type of related subkey attack (the best previous attack on this
variant required 64 related keys and 2172 time). While the full AES-256
cannot be directly broken by these attacks, the fact that 10 rounds can
be broken with such a low complexity raises serious concerns about the
remaining safety margin offered by AES-256.

1 Introduction

AES (Advanced Encryption Standard) is an iterated block cipher which was
selected by NIST in October 2000 after a three year competition. It was made
a national and international standard, and replaced DES as the most widely
deployed block cipher in both software and hardware applications.

The three standardized versions of AES are called AES-128, AES-192, and
AES-256. They differ from each other in the key length (128, 192, and 256 bits)
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and the number of rounds (10, 12, and 14, respectively). Their data encryption
rounds are all the same, but the details of the key schedule are slightly different
since different amounts of key material are available and required in the three
variants. Their security was thoroughly analyzed by the NSA, which declared in
2003 that none of them has any known vulnerability and that the longer-key vari-
ants AES-192 and AES-256 can be used to protect top secret US governmental
data [11].

The situation started to change in the spring of 2009, when Biryukov, Khovra-
tovich and Nikolić [4] found a key recovery attack on AES-256 with related keys
and time complexity of 2131. The attack was completely non-practical, but it was
the first time that anyone had published an attack on the full AES cipher which
was faster than exhaustive search. Shortly afterwards, Biryukov and Khovra-
tovich [3] reduced the time complexity of the attack on AES-256 to 299.5, and
described the first attack on AES-192 which was faster than exhaustive search
(requiring 2176 instead of 2192 time). As a result, AES is no longer considered to
be theoretically secure, but the crucial question all of us are facing is how far it
is from becoming practically insecure.

The practicality of various types of cryptanalytic attacks depends on many
factors: Attacks based on a few ciphertexts are better than attacks that require
many ciphertexts, known plaintext attacks are better than chosen plaintext at-
tacks, nonadaptive attacks are better than adaptive attacks, single key attacks
are better than related key attacks, etc. Since it is difficult to quantify the rela-
tive importance of all these factors in different scenarios, we usually concentrate
on the total running time of the attack, which is a single well defined number.
While one can argue about the exact transition point between cryptanalytic at-
tacks of practical and theoretical time complexity, it is reasonable to place it
at around 264 basic instructions. Since optimized AES implementations require
about 16 clock cycles per byte and each plaintext has 16 bytes, this is approx-
imately equal to 256 AES encryptions. This choice of threshold is supported
by the fact that 255 evaluations of DES were carried out on special purpose
hardware several years ago, while a collision finding attack on SHA-1 which was
expected to take 261 in a large distributed effort, was abandoned due to lack of
progress.

To try and estimate the security margin left in a given cryptosystem, we can
take two different approaches. One of them is to compare the time complexity of
the best known attack on the full cryptographic scheme with this threshold. This
was the approach that motivated [3] and [4], and in this sense AES still seems to
be very secure. However, attacks can only get better over time, and in particular
they tend to exhibit “round creep” that slowly increases the number of rounds
which can be attacked with practical complexity. A second approach (and the
one taken in this paper) is thus to compare this number to the total number of
rounds in the iterated cryptosystem. An example which demonstrates the dif-
ference between these two approaches is the comparison between Serpent and
Rijndael made during the AES competition. The best attacks on their full ver-
sions had exactly the same time complexity (namely, that of exhaustive search).
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Table 1. Summary of attacks on AES-256

Rounds Scenario Time Data Memory Result Section

8 Key Diff. – CP 231 231 2 Distinguisher Sect. 6.1

8 Subkey Diff. – CC 226.5 226.5 226.5 35 subkey bits Sect. 6.2

9 Key Diff. – CP 239 238 232 Full key Sect. 4.1.3

9 Subkey Diff. – CC 232 232 232 56 key bits Sect. 4.2

10 Subkey Diff. – CP 249 248 233 Distinguisher Sect. 5.1

10 Subkey Diff. – CC 245 244 233 35 subkey bits Sect. 5.2

11 Subkey Diff. – CP 270 270 233 50 key bits Sect. 6.3

CP — Chosen plaintext, CC — Chosen ciphertext

However, Rijndael was designed to be as fast as possible (with a relatively small
security margin), whereas Serpent was designed to have a large security mar-
gin (at the expense of speed on some platforms), which made it more resistant
against future cryptanalytic developments. As an extreme example, we would
feel very uncomfortable using a theoretically secure n round block cipher if we
knew that its n − 1 round version can be attacked with practical complexity,
since such a scheme is “one idea away from disaster”.

What we show in this paper is that this type of security margin in AES is
significantly smaller than generally believed. In particular, we describe several
key derivation attacks of practical complexity on AES-256 when its number
of rounds is reduced to approximately that of AES-128. The best previously
published attacks on such variants were far from practical, requiring 4 related
keys and 2120 time to break a 9-round version of AES-256 [9], and 64 related
keys and 2172 time to break a 10-round version of AES-256 ([9], see also [2]).1

In this paper we describe an attack on 9-round AES-256 which can find its
complete 256-bit key in 239 time by using only the simplest type of related
keys (in which the chosen plaintexts are encrypted under two keys whose XOR
difference can be chosen in many different ways). Our best attack on 10-round
AES-256 requires only two keys and 245 time, but it uses a stronger type of
related subkey attack. These attacks can be extended into a quasi-practical 270

attack on 11-round AES-256, and into a trivial 226 attack on 8-round AES-
256. We summarize the complexities of our attacks in Table 1.. The attacks
are particularly well suited to AES-256 in counter mode of operation (AES-
CTR), since the adversary can get all the chosen plaintexts he needs by starting
from just two chosen initial values and running the counter mode in a natural
way.

This paper is organized as follows. In Section 2 we describe the AES cipher
and its different versions, and in Section 3 we discuss various types of related key

1 For comparison, the best practical single-key attack on AES-256 is a SQUARE attack
on 6 rounds which requires 6·232 chosen plaintexts and has time complexity of 244 [7].
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attacks. Our attacks on 9-round variants of AES-256 are described in Section 4,
and our attacks on 10-round variants of AES-256 are described in Section 5. In
Section 6 we briefly outline several other attacks on variants of AES-256 with a
smaller or larger number of rounds, and in Section 7 we describe how to choose
more naturally looking plaintexts in our attack. We conclude with a discussion
of our results in Section 8.

2 Description of AES-256

AES-256 is an iterated block cipher which encrypts 128-bit plaintexts with
256-bit keys. It has 14 rounds, where each round applies four basic operations
in the following order:

– SubBytes (SB) is a nonlinear byte-wise substitution that applies the same
8 × 8 S-box to every byte.

– ShiftRows (SR) is a cyclic shift of the i’th row by i bytes to the left.
– MixColumns (MC) is a matrix multiplication over a finite field applied to

each column.
– AddRoundKey (ARK) is an exclusive-or with the round subkey.

Before the first round an additional whitening ARK operation is performed,
and in the last round the MC operation is omitted. AES-128 and AES-192 use
exactly the same round function, but the number of rounds is reduced to 10 and
12, respectively.

Next we describe the key schedule of AES-256. The supplied 256-bit key is
divided into 8 words of 32 bits each (W [0], W [1], · · · , W [7]). To generate the 15
subkeys of 128 bits (which consist of 60 words of 32 bits), the following algorithm
is used:

– For i = 8 till i = 59 do the following:
• If i ≡ 0 mod 8, then W [i] = W [i−8]⊕SB(RotByte(W [i−1]))⊕Rcon[i/8],
• If i ≡ 4 mod 8, then W [i] = W [i − 8] ⊕ SB(W [i − 1])),
• Else W [i] = W [i − 8] ⊕ W [i − 1],

whereRotByte represents one byte rotation (i.e., (a0, a1, a2, a3) → (a1, a2, a3, a0)),
and Rcon denotes an array of fixed constants.

The key schedules of AES-128 and AES-192 are slightly different, since they
have to apply more mixing operations to the shorter key in order to produce the
slightly smaller number of subkeys for the various rounds. This small difference
in the key schedules plays a major role in making AES-256 more vulnerable to
our attacks, in spite of its longer key and supposedly higher security. For more
details about all aspects of the design of AES, we refer the reader to [6].

2.1 Our Notations

The rounds of AES-256 are numbered 0, 1, . . . , 13. The subkey used at the end
of round i is denoted by Ki, and the whitening subkey is denoted by K−1.
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Fig. 1. The AES round function and byte marking conventions

The XOR difference between the subkeys Ki produced by two related keys is
denoted by Δ(Ki). The 128-bit state at the input to round i is denoted by Ii. The
XOR difference between the states Ii produced during two related encryptions
is denoted by Δ(Ii).

Any 128-bit intermediate state or subkey is described by a 4× 4 byte matrix,
whose bytes are numbered as described in Figure 1. The rows and the columns
of this matrix are numbered 0,1,2,3. Byte j of subkey Ki or of state Ii is denoted
by Ki

j or Ii
j , respectively. Similarly, a difference in this byte is denoted by Δ(Ki

j)
or Δ(Ii

j), respectively. When we want to refer to more than one byte, we list the
relevant bytes in the subscript, as in Δ(Ii

j,k,l,m).

3 Related-Key Attacks

The related-key attack model [1,10] is a class of cryptanalytic attacks in which
the adversary knows or chooses a relation between several keys and is given
access to encryption/decryption functions with all these keys. The goal of the
adversary is to find the actual keys. the relation between the keys is commonly
selected as XOR or rotation, but other bijective relations are also considered. In
the simplest form of this attack, this relation is just an XOR with a constant:
K2 = K1 ⊕ C, where the constant C is chosen by the adversary. This type
of relation allows the adversary to trace the propagation of XOR differences
induced by the key difference C through the key schedule of the cipher. However,
more complex forms of this attack allow other (possibly non-linear) relations
between the keys. For example, in some of the attacks described in this paper
the adversary chooses a desired XOR relation in the second subkey, and then
defines the implied relation between the actual keys as: K2 = F−1(F (K1)⊕C) =
RC(K1) where F represents a single round of the AES-256 key schedule, and
the constant C is chosen by the adversary. We call such attacks related subkey
attacks, and we emphasize that once the second key is computed via the relation,
all its subkeys are computed in the standard way, i.e., consistent with the full
evolution of the key schedule.

The choice of the relation between secret keys gives additional power to the
adversary compared to other cryptanalytic attacks in which the adversary can
manipulate only the plaintexts and/or the ciphertexts. The simpler the relation
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is, the easier it is for an adversary to manipulate the key in the desired fashion.
For example, the key exchange protocol 2PKDP [13], allows an adversary to
XOR the unknown key with a constant. Other related key attacks, such as
those presented in [8,12], discuss practical attacks on well known schemes under
different key relations.

Even though related-key attacks may not be a realistic threat in many cryp-
tographic applications, resistance to such attacks is an important design goal for
new block ciphers, and in fact it was one of the stated design goals of the Rijndael
algorithm, which was selected as the Advanced Encryption Standard. Designers
usually try to build primitives which can be automatically used without further
analysis in the widest possible set of applications, protocols, or modes of oper-
ation. For example, block ciphers susceptible to related-key differential attacks
may lead to insecure compression functions, if they are instantiated by a Davies-
Meyer construction [4]. Moreover, history shows that users of cryptography tend
to use (or misuse) such cryptographic primitives in very creative manners, forc-
ing the cryptographers to design schemes which resemble ideal primitives under
the broadest possible set of scenarios.

4 Attacks on 9 Round Variants of AES-256

4.1 A Related-Key (XOR Difference) Attack

In this section we present an attack on 9-round AES-256, which is based on
the simplest form of a related key attack, in which plaintexts can be encrypted
under two unknown keys, whose XOR difference can be chosen by the adversary.
The number of chosen plaintexts used in the attack is 238, and the most time
consuming part of the attack is to ask the legitimate user to prepare all their 239

corresponding ciphertexts under the two keys. Once this is done, the derivation
of the complete 256-bit key requires less than 239 time.

4.1.1 The Related-Key Differentials Used in Our Attacks
The basic differential characteristic we use is an 8-round differential, whose first
seven rounds are part of the longer differential path introduced in [4], but its
eighth round is different (see Figure 2). Since we use a related key attack, each
one of the characteristics is a combination of a key characteristic and a state
characteristic, which are intertwined in a way that maximizes their total prob-
ability. We first describe the key difference part of the characteristics (which is
independent of the data), and how it generates the various subkey differences
we would like to have.

Let a and b be any two 32-bit words. When we choose the key difference of
the differential as Δ(K) = (b, b, b, b, a, 0, a, 0), we can easily show that the ten
128-bit subkeys used in the 9-round version of AES-256 (including the initial
whitening subkey) have the following difference structure with probability 1:
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(b, b, b, b||a, 0, a, 0)
(b, 0, b, 0||a, a, 0, 0)
(b, b, 0, 0||a, 0, 0, 0)
(b, 0, 0, 0||a, a, a, a)
(c, c, c, c||d, e, d, e),

where

c = b ⊕ SB(RotByte(a)), d = a ⊕ SB(c), e = d ⊕ a,

and each row describes the differences of two additional subkeys, starting with
the original key difference in the first row. This is an amazingly long trail for a
key schedule which tries to be nonlinear, and it clearly indicates that this part
of the design of AES-256 is seriously flawed.

To create the desired cancellations between this key characteristic and the
state characteristic, we have to impose additional constraints on the choice of
the two words a and b. Let α be any non-zero byte value (there are 255 ways
to choose it, and each choice will lead to a different related key attack of the
same complexity). By the construction of the SubBytes operation, there exists
a unique byte value β such that the differential α → β through the SubBytes
operation holds with probability 2−6 (see [6]). Let b be the 32-bit column vector
b = MC((β, 0, 0, 0)T ), and let a be the 32-bit column vector a = (α, 0, 0, 0)T .
Note that with this choice, the top three bytes of c are equal to the corresponding
known values in b, and thus the only effect of the nonlinearity of the SubBytes
operation on the subkey differences is to make the lowest byte of c and the
four bytes of d unknown to the adversary. We denote these bytes by c3 and
(d0, d1, d2, d3).

The input difference in the state part of the characteristic is (b, b, b, b) (i.e.,
the same input difference b in each column). The subkey difference Δ(K−1)
used in the whitening phase cancels the identical plaintext difference, and thus
the difference Δ(I0) is zero. The zero difference remains unchanged until the
ARK operation at the end of round 0. The subkey difference Δ(K0) inserts
difference α into two bytes of the state. With probability 2−12, this difference
evolves through the SB operation to difference β, that is transformed through
the MC operation to b, which is then cancelled with the subkey difference Δ(K1),
resulting in Δ(I2) = 0. The zero difference is preserved, until the subkey dif-
ference Δ(K2) inserts difference α into two bytes of the state. This difference
is again cancelled with probability 2−12 with the subkey difference Δ(K3), re-
sulting in Δ(I4) = 0. The subkey difference Δ(K4) inserts difference α into one
byte of the state, that is cancelled with the key difference Δ(K5) with prob-
ability 2−6. The zero difference is preserved again, until the subkey difference
Δ(K6) inserts difference α in four bytes of the state. With probability 2−24,
this difference evolves to difference (b, b, b, b) after the MC operation of round 7.
Since the subkey difference Δ(K7) is (c, c, c, c), we have Δ(I8) = (f, f, f, f),
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where f = b ⊕ c = (0, 0, 0, b3 ⊕ c3)T . This is the output difference of the dif-
ferential. Overall, the differential (b, b, b, b) → (f, f, f, f) for rounds 0–7 holds
with probability 2−54 for the subkey differences presented above. The differen-
tial characteristic is depicted in Figure 2.

In our attack we do not use this basic differential characteristic as is, but
rather several “truncated” variants in which some of the differential conditions
are relaxed:

1. Main Differential. In this differential we relax the differential conditions
on three of the four active S-boxes in round 7, and leave only the condition
in the SB operation in byte 0. That is, we require that the output difference
of the SB operation in byte 0 is β, and do not restrict the output differences
of the SB operation in bytes 4,8,12. As a result, the difference in the first
column after the MC operation is b, and thus Δ(I8

0,1,2) = 0. The differences
in the other columns, as well as Δ(I8

3 ), are unknown. The probability of this
truncated differential is 2−36.

2. Shifted Main Differential. This truncated differential is almost identical
to the previous one. The only difference is that we keep the differential
condition in byte 12 of round 7, instead of byte 0.

3. Complementary Differential for the 9-Round Attack. In this differ-
ential we consider only rounds 0–6, and relax the differential condition in
round 5. Since the input difference to round 5 is non-zero only in byte I5

0 ,
and there is no differential condition, the difference Δ(I6) is in the entire
first column (bytes I6

0,1,2,3). This difference evolves to differences in all the 16
bytes in Δ(I7), but since the MC operation is linear, there is a total of only
256 possible differences in the four bytes of each column. The probability of
this truncated differential is 2−24.

4. Differential for the 8-Round Attack. For the sake of completeness, we
also describe a simplified differential which is used later in Section 6.1 to
attack an 8-round version of AES-256 with a lower complexity. In this dif-
ferential we consider rounds 0–7, and relax all the differential conditions in
round 7. Since the difference Δ(I7) is non-zero only in bytes 0,4,8,12, and
since in the 8-round variant of AES-256 there is no MC operation at round 7,
the ciphertext difference in bytes 1,2,5,6,9,10,13,14 is known to the adversary
(it is equal to the difference chosen in the respective bytes of b). This supplies
the adversary with a 64-bit filtering, which will be sufficient to discard all
the wrong pairs. The probability of this truncated differential is 2−30.

4.1.2 Preliminaries for the 9-Round Attack
We now describe several simple properties of the round function of AES, which
are exploited by our attack.

1. Observation A. Consider a pair that satisfies the main differential de-
scribed in Section 4.1.1. As noted above, the difference in columns 1,2,3
after the MC operation of round 7 is unknown. However, due to the proper-
ties of the SB and MC operations, there are only 127 possible values for the
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difference in each of these columns. Moreover, these 127 differences assume
127 different values in each of the four bytes. As a result, if the adversary
knows the difference in one byte, she can obtain immediately the difference
in the other three bytes of the same column, along with a one-bit filtering
(since only 127 out of the 256 byte values are possible differences). Similarly,
if a pair satisfies the complementary differential described in Section 4.1.1,
then if the adversary knows the difference Δ(I7) in one byte, she can ob-
tain immediately the difference in the other three bytes of the same column
(though, without the additional filtering since in this case there are 256
possible differences).

2. Observation B. Given an input and an output difference to the SB opera-
tion, there are three possibilities:
(a) With probability 1/256, there exist four pairs of actual values that satisfy

both the input and the output difference.
(b) With probability 126/256, there exist two such pairs.
(c) With probability 129/256, there exist no such pairs, and thus the impos-

sible input/output difference pair can be discarded immediately.
When there exist possible pairs, they can be found immediately by a table
look-up. In order to do this, the adversary prepares in advance the difference
distribution table which stores for each possible input/output difference, the
actual values of the pairs satisfying these differences. The time required to
prepare the table is 216 evaluations of SB, and the required memory is 217

bytes. Each look-up operation in this table allows the adversary to either
discard the input/output difference pair (with probability ≈ 1/2), or to find
immediately the actual input and output values of the two bytes (with two
or four possibilities).

3. Observation C. Consider the subkey differences between the related-keys
used in the attack. It turns out that the unknown difference bytes c3, d0, d1,
d2, d3 can take on only 127 out of the 256 possible values, and (except for d3),
these 127 values are known to the adversary in advance. Indeed, since by the
key schedule, c = b⊕SB(RotByte(a)), the adversary knows that x = c3⊕b3

is one of the 127 differences such that the differential α → x through SB is
possible. Since b3 is known to the adversary, the 127 possible values of c3 are
also known. Similarly, since d = a ⊕ SB(c) and (c0, c1, c2) = (b0, b1, b2) are
known to the adversary, she can find the 127 possible values for each of the
bytes d0, d1, d2.

4.1.3 A Detailed Description of the 9-Round Attack
We now present the actual algorithm used by the adversary to derive the key
information from the given ciphertexts, along with some textual explanations:

1. Data Generation
(a) Choose 237 arbitrary plaintexts P , and add to them the 237 chosen

plaintexts P ′ = P ⊕ (b, b, b, b). Ask the user to encrypt each one of
these 238 plaintexts under the two unknown keys K and K ′ = K ⊕
(b, b, b, b, a, 0, a, 0). Each one of the 237 choices of P provides two different
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pairs of encryption operations (((P, K), (P ′, K ′)) and ((P, K ′), (P ′, K)))
which have the desired input difference Δ(P ) = (b, b, b, b), along with the
desired key difference Δ(K) = (b, b, b, b, a, 0, a, 0), and thus we get a total
of 238 such pairs from 238 plaintexts using 239 total time. In the sequel
we treat each pair of corresponding ciphertexts (C, C′) as if it is a “right
pair” with respect to the main differential presented in Section 4.1.1 (i.e.,
assume that it satisfies all the conditions in the differential).

(b) Insert the 238 ciphertext pairs into a hash table indexed by the difference
in the three bytes 0,10,13. We note that if a pair is a right pair, then
since Δ(I8

0,1,2) = 0, the ciphertext difference in bytes (0, 13, 10) is equal
to (d0, d1, d2). Hence, the pairs are divided into 224 sets according to the
possible values of (d0, d1, d2), and the attack is sequentially applied to
each set (which contains 238−24 = 214 pairs on average).

(c) Note that by Observation C, only 1273 ≈ 221 of the values (d0, d1, d2)
are possible, and hence the rest of the attack can be applied only to the
224−3 = 221 possible sets.

2. First Filtering Step. For each set of pairs corresponding to a possible
value of (d0, d1, d2), perform the following operations:

(a) Guess the byte K8
12 and partially decrypt the ciphertext pairs through

the last round to get Δ(I8
12). (Note that Δ(K8

12) = d0⊕α is now known to
the adversary). Check whether the obtained difference Δ(I8

12) is possible
(see Observation A). Half of the pairs are expected to pass this filtering.

(b) Use the difference Δ(I8
12) to find the differences Δ(I8

13,14) (see Observa-
tion A). Using the ciphertext difference in bytes 9,6, find the input and
output differences to the SB operation in bytes 13,14. (Note that the
corresponding key differences, Δ(K8

6 ) = d2 and Δ(K8
9 ) = d1, are now

known to the adversary). Check whether this input/output difference
pair is possible, and if it is possible, retrieve the corresponding actual
values of the pairs (see Observation B). This is a two-bit filtering, and
hence 214 · 2−1 · 2−2 = 211 pairs are expected to remain, and each pair
suggests two pairs of actual values on average for each byte. Each such
pair of actual values can be combined with the corresponding ciphertext
pair to get a suggestion for the subkey bytes K8

6 or K8
9 .

(c) Go over all the 216 possible values of K8
6,9 and check how many times

each value is suggested. Discard all the values which are suggested fewer
than four times. Note that the correct value is suggested by all the right
pairs, and hence it gets at least four suggestions with probability about
0.57. On the other hand, the probability that a wrong subkey is suggested
at least four times is approximately

(
213

4

) ·2−64 = (2/3) ·2−16. Hence, less
than one subkey suggestion remains on average (If no subkey suggestions
remain, which happens frequently, the set is discarded).

(d) Discard all the pairs that lead to a “wrong” value of K8
6,9 (as we said

before, all the right pairs suggest the correct value). Only a few wrong
pairs (at most four) are expected to remain, and only these pairs are
considered in the rest of the attack.
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3. Second Filtering Step. This step is actually a repetition of Step 2 with
a different column. For each remaining value of (d0, d1, d2, K

8
12) and the

corresponding remaining pairs, perform the following:

(a) Guess the subkey byte K8
8 and partially decrypt the ciphertext pairs

through the last round to obtain Δ(I8
8 ). Use this difference to retrieve

Δ(I8
9,10) (or discard the pair if the difference is impossible). Using the

ciphertext difference in bytes 5,2, find the input and output differences
to the SB operation in bytes 9,10. Check whether this input/output
difference pair is possible, and if it is, retrieve the corresponding actual
values of the pairs and use them to get suggestions for the subkey K8

5,2.
Go over all the 216 possible values of K8

5,2 and check how many times
each value is suggested. Discard all the subkey values that are suggested
fewer than four times.

(b) At this stage, the probability that a wrong subkey is suggested at least
four times is extremely low (about 2−64), and hence it is expected that
all the wrong values of (d0, d1, d2, K

8
12, K

8
8 ) will be discarded. Thus, the

adversary obtains the right pairs, and the correct values of d0, d1, d2, and
six of the sixteen bytes of K8 (namely, =K8

2,5,6,8,9,12).

4. Retrieving the Rest of K8

(a) For each remaining pair, guess the values c3 and d3. Using the known in-
put and output differences of the SB operations applied to bytes 3,7,11,15
of round 8, obtain suggestions for the subkey bytes K8

3,7,11,15. Discard
all the values that are suggested fewer than four times. Since only four
pairs are expected to remain at this stage, only the correct subkey value
is likely to remain, along with the correct values of c3 and d3.

(b) Repeat Steps 1,2,3 of the attack with the shifted main differential (pre-
sented in Section 4.1.1) instead of the main differential used until this
step, and guessing the subkeys K8

0,4 instead of K8
8,12. This retrieves the

subkey bytes K8
0,1,4,10,13,14, which completes the derivation of K8. Note

that the time complexity of this step is significantly lower than the time
complexity of Steps 1,2,3, since the correct values of d0, d1, and d2 are
already known to the adversary.

5. Retrieving K7. At this stage the adversary already knows the full value
of the last subkey K8, and hence can peel off the last round. Note that the
“ciphertexts” referred to in this part are actually the outputs of round 7.

(a) For the right pairs with respect to the main differential, guess the value of
K7

0,4,8,12 and partially decrypt the ciphertexts through round 7 to obtain
Δ(I7

0,4,8,12). Check whether Δ(I7
0,4,8,12) = (α, α, α, α). If not, discard the

guessed key bytes. Since all the right pairs suggest the correct subkey
value, only the correct value is likely to remain. Note that since this
step can be performed in each byte independently, its time complexity
is negligible.

(b) Use the key schedule to obtain two possible values for each of the bytes
K7

13,14,15. (In the key schedule algorithm, the column value K7
12,13,14,15
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is the input to SB operations for which both the input and output dif-
ferences are known. Hence, two suggestions for the actual value can be
obtained by Observation B).

(c) This step uses the complementary differential presented in Section 4.1.1.
Consider any subset of 226 pairs of plaintexts amongst the 238 pairs
used in the attack (using more pairs at this stage will be a waste of
time). For each pair, assume that it is a right pair with respect to the
complementary differential.

i. Partially decrypt the ciphertext pairs through round 7 to obtain
the differences Δ(I7

0,1,4,6,8,11). Note that the partial decryption is
possible since the subkey bytes K7

0,4,8,13,14,15 are already known to
the adversary.

ii. Consider each of Columns 0,1,2 of Δ(I7) separately, and check
whether the difference in the two “known” bytes (e.g., bytes 0,1
in Column 0) agrees with one of the column differences which are
possible for right pairs w.r.t. the complementary differential (as ex-
plained in Section 4.1.1, there is a total of 256 such differences in
each column). In each of the columns, this yields an 8-bit filtering,
and hence about four pairs are expected to pass to the next step.

iii. For each of the remaining pairs, use the known differences Δ(I7
0,4,8,12)

to retrieve the full difference Δ(I7) (see Observation A). Then, use
the input and output differences to all the SB operations in round 7
to obtain two suggestions for the actual values in each byte, and use
these suggestions to get two suggestions for each byte of the subkey
K7. Discard all the subkey values that are suggested fewer than three
times. Since all the right pairs suggest the correct subkey value, it is
easy to show that only the correct subkey values are likely to remain.

(d) At this stage the adversary knows the full values of K7 and K8, and
hence she can find the original 256-bit key K by running the (invertible)
key schedule of AES-256 backwards from the known values of these two
consecutive subkeys.

The Complexity of the Attack. The data complexity is 238 chosen plaintexts
(composed of 237 arbitrary plaintexts P along with their 237 companions P ′). It
is easy to see that the most time-consuming step of the attack is Step 2(c), that
takes 221·28·216 = 245 simple table lookup operations. To make a fair comparison,
we have to remember that each 9-round AES-256 encryption requires 9 × 16 =
144 ≈ 27 SB operations, and thus the 245 simple operations required to carry out
the complete attack are likely to be faster than the 239 encryption operations
required to prepare all the ciphertexts. The RAM memory requirements of the
attack are negligible.2 The probability of success is about 57% (required for the
success of Step 2(c) ), but can be made arbitrarily high by using additional pairs.
2 The data can be stored on a hard disk, as we need to write it once, and read it once,

while operating each time on a small amount of plaintext/ciphertext pairs which
easily fit 1 MByte of memory.
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4.2 A Related-Subkey Attack

If we relax the conditions on the key relation, a more efficient attack can be
obtained. Recall that the XOR condition we imposed on the key in the previous
attack directly implied the same XOR condition on the subkeys K−1 and K0

which were used in the whitening phase and in the first round. In the new attack,
we impose a XOR condition on the two subkeys K0 and K1 used in the first and
second round. Let us define Δ(K0) = (b, b, b, b) and Δ(K1) = (a, 0, a, 0), where a
and b are the same as in the previous attack. The key difference Δ(K) can then
be defined by running the key schedule backwards as (f, a, a, a, b, b, b, b), where
f is a full-column unknown difference.

A differential characteristic for 9 rounds, based on this key difference, is de-
picted in Figure 3 in the center. It contains 13 active S-boxes in the state. The
input of the first four S-boxes and the output of the last four S-boxes are not
specified, and the other S-boxes yield the desired values with probability 2−6.
Therefore, the plaintext difference Δ(P ) is specified in 9 bytes, and the cipher-
text difference Δ(C) is specified in 12 bytes.

The best attack runs in the chosen-ciphertext scenario as follows:

1. Prepare two structures of 231 ciphertexts each, whose active bytes are located
in row 0, and where byte 0 takes on only 128 possible values. The constants

differ according to Δ(C) .
2. Ask for the decryption of the structures under K and K ′, respectively.

3. Select all the plaintext pairs that satisfy Δ(P ) .
4. Every candidate pair proposes two candidates for each of six key bytes

(K−1
4 ), (K−1

8 ), (K−1
12 ), (K0

12), (K
0
14), (K

0
15), from plaintext difference bytes

4, 8, 12, 3, 1, 2, respectively.

Let us compute the number of right pairs. Of the 262 possible pairs, about 230

pairs survive the 32-bit filter in the last round, producing a zero difference in I7.
The five S-boxes, whose inputs are specified, reduce the number of right pairs
to one. The single right pair can be detected because the fixed 72-bit plaintext
difference filters out all the 262 wrong ciphertext pairs. The plaintext difference
in bytes 1, 2, 3, 4, 8, 12 proposes two candidates for each one of the corresponding
key bytes. As a result, we can recover 56 bits of the key using only 232 time and
232 chosen ciphertexts.

5 Attacks on 10 Round Variants of AES-256

In this section we describe two attacks on the 10-round variant of AES-256. Both
of them are based on a key relation which is defined by imposing a fixed difference
on two consecutive subkeys. We also have to start from an odd round so that the
10-round attack is run on rounds 1–10 of AES-256. We define Δ(K2) = (b, b, b, b)
and Δ(K3) = (a, 0, a, 0), where a and b are the same values defined in the
previous attacks. As a result, column 0 of Δ(K1) and byte 0 of Δ(K0) are not
known to the adversary (see Figure 3, right).
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5.1 Chosen-Plaintext Attack

A differential characteristic for 10 rounds, based on this key difference, contains
17 active S-boxes in the state. Compared to the 9-round differential character-
istic, the last 7 rounds remain the same, and the input of three of the four
active S-boxes in the second round is restricted. Therefore, 8 S-boxes behave as
expected with probability 2−6. The plaintext difference Δ(P ) is specified in 12

bytes .
The algorithm used by the adversary is as follows:

1. Prepare 216 structures of 232 plaintexts each, whose active bytes are located
on the main diagonal. The constants differ according to Δ(P ) and so that
the total number of distinct plaintexts is 248.

2. Encrypt all the structures under both K and K ′.

3. Select all the ciphertexts pairs that satisfy Δ(C) , and whose plaintexts
belong to the same structure.

Let us compute the number of right pairs. Of the 280 possible pairs about
280−24 = 256 have zero difference in bytes 1,2,3 of I2. The four S-boxes in round
2 can be used as a 26-bit filter, so 230 pairs come out of the first two rounds.
The next five S-boxes, whose inputs are specified, reduce the expected number
of right pairs to one. The single right pair can be detected because the fixed
96-bit plaintext difference filters out all the 280 candidate ciphertext pairs. As a
result, we also get a distinguisher whose total complexity is 248 data, 249 time,
and 233 memory.

5.2 Chosen-Ciphertext Attack

In this attack we relax the input to one of the S-boxes in round 2. As a result,
the plaintext difference is specified in 8 bytes only, so a chosen-ciphertext attack
is more practical in terms of the data requirements. Our best attack runs as
follows:

1. Prepare 212 structures of 232 ciphertexts each, whose active bytes are located
in row 0, and decrypt all the texts with K. The constants differ according

to Δ(P ) and so that the total number of distinct plaintexts would be
244.

2. Apply to each one of these ciphertexts the difference Δ(C) and decrypt
all of them with the related key K ′.

3. Select all the plaintext pairs that satisfy Δ(P ).
4. Every candidate pair proposes two candidates for each of five key bytes

(K9
12), (K

10
0 ), (K10

4 ), (K10
8 ), (K10

12 ).
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Let us compute the number of right pairs. Of 276 possible pairs about 244 pairs
have zero difference in I9. The seven S-boxes with input restrictions in rounds 2–
10 provide a 42-bit filter, which reduces the number of right pairs to 244−42 = 4.
The plaintext difference is specified in 64 bits, so 276−64 = 212 pairs come out of
the last filter.

The wrong pairs are filtered at the bottom of the differential. We guess Δ(K9
12)

and thus derive the full Δ(K10). Then each candidate pair proposes sixteen 32-
bit key candidates, or 216 candidates in total. The probability that four wrong
pairs propose the same values is 2−32, and is still very low when we combine all
the guesses. As a result, we get two candidates for each of the five key bytes,
which provide 35 bits of information about the key. The total complexity of this
attack is 244 data, 245 time, and 233 memory.

6 Attacks on Other Variants of AES-256

6.1 A Related-Key Distinguisher for 8 Rounds

The basic distinguishing attack in this case uses the simplified 8-round differ-
ential presented in Section 4.1.1. The attack itself is very simple: the adversary
asks for the encryption of 230 pairs of plaintexts with the input and key dif-
ferences of the differential. For each pair, he checks whether the difference in
bytes 1,5,9,13 of the ciphertext is equal to the known value of b1, and whether
the difference in bytes 2,6,10,14 of the ciphertext is equal to the known value
of b2. Since this is a 64-bit filter, for a random permutation all the pairs are
likely to be discarded, while for an 8-round AES-256, one pair will remain with
probability 1 − 1/e ≈ 0.63.

This efficient distinguishing attack was verified experimentally. We sampled
100 pairs of related keys (for a specific value of α and its corresponding β).
For each such pair, we took 232 random pairs with input difference (b, b, b, b),
and encrypted them under the related keys. As the probability of the 7-round
differential characteristic is 2−30, the expected number of right pairs in each
experiment is 4, where the actual number is distributed like a Poisson random
variable with a mean value of 4. We compare our results and the expected values
in Table 2.

We also did a second experiment, where the plaintexts where chosen in a counter
mode manner. In each experiment, we picked at random two related keys and two

Table 2. The Number of Right Pairs in 100 Experiments

Right Pairs 0 1 2 3 4 5 6 7 8 9 10 11 12

Theory (Poi(4)) 1.8 7.3 14.7 19.5 19.5 15.6 10.4 6.0 3.0 1.3 0.5 0.2 0.06

Experiment 1 (random plaintexts) 0 10 18 10 28 18 6 8 1 0 0 0 1

Experiment 2 (counter mode) 1 3 17 19 23 18 4 4 8 2 1 0 0
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IVs satisfying the input difference, and tried 232 consecutive counters. In the 100
experiments, we encountered a distribution which follows the same Poisson distri-
bution, thus proving that these attacks can be applied even when counter mode is
used. The exact distribution is given in Table 2 as Experiment 2.

6.2 A Related-Subkey Attack on 8 Rounds

In this attack we consider AES-256 reduced to 8 rounds and starting from an
odd round. We take the differential for the related-subkey attack on 9 rounds,
cut the first round, and relax the input difference of the first two active S-boxes
(Figure 3, left). As a result, the plaintext difference Δ(P ) is specified in 8 bytes,
and the ciphertext difference Δ(C) is specified in 12 bytes. There are three active
S-boxes such that both their input and output differences are fixed.

The best attack runs in the chosen-ciphertext scenario as follows:
1. Prepare two structures of about 225.5 ciphertexts, where bytes in row 0 are

active, but do not run through all their possible values. The constants differ

according to Δ(C) .
2. Encrypt structures with K and K ′, respectively.

3. Detect all the plaintext pairs that satisfy Δ(P ) .
4. Every candidate pair proposes two candidates for each one of six key bytes

(K−1
4 ), (K−1

8 ), (K−1
12 ), (K0

12), (K
0
14), (K

0
15).

Let us compute the number of right pairs. Of 251 possible pairs, about 219 pairs
survive the 32-bit filter in the last round, producing a zero difference in I7. The
three S-boxes, whose inputs are specified, reduce the number of right pairs to
two. All the 261 wrong pairs are discarded by the 64-bit plaintext difference filter.

The two right pairs provide information on the five bytes of the last subkeys
(see the attack on 9 rounds), which are recovered after we guess Δ(K8

0 ). As
a result, we recover 35 bits of the subkey with 226.5 time, data, and memory
complexity.

6.3 Related-Subkey Attacks on 11 Rounds

The related-subkey differentials can be extended in several ways to 11 rounds.
However, the best attacks we get are beyond the practical 256 bound, so we only
briefly sketch the underlying ideas.

6.3.1 Differential
An 11-round differential (rounds 1–11) is obtained by adding one round at the
end of the 10-round related-subkey differential (Figure 3, right). The final round
is then similar to the last round of the 9-round related-key differential from Sec-
tion 4.1.1. We are flexible in the number of active S-boxes in round 10 whose
output differences are restricted. As we fix more S-boxes, we get a better ci-
phertext filter, but a lower overall probability of the differential. We can also
change the parity of rounds and start from round 0 instead of round 1; this
makes the scenario more practical but adds one more unknown byte difference
to the plaintext.
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6.3.2 Attacks
The following attacks can be applied to 11-round AES-256:

1. Start from an odd round and restrict the output difference of three active
S-boxes in round 10. The data and time complexity would be about 270, and
the last steps are done with non-trivial key ranking. About 50 bits of the
subkey are recovered.

2. Restrict one more active S-box. Then the data and time complexities increase
to 276, but it is easier to discard the wrong pairs.

3. Start from an even round (as in the original AES) and restrict three S-boxes
in round 9 (former 10). The data complexity would be about 270, and the
time complexity about 275.

4. Start from an even round and restrict two S-boxes. The data complexity
drops to 263, but the time complexity increases to 290 due to complicated
filtering and key ranking.

7 The Choice of the Data and the Key Differences

The data and key differences in all the differentials we use depend on two byte
values α and β, such that α → β through the S-box holds with probability 2−6.
For each value of α there exists a unique such value β, and vice versa. There are
no other restrictions on α and β in our attacks, and in fact it is even possible to
use other values of α and β for which the differential α → β through the S-box
holds with probability 2−7. However, such choices lead to slightly less efficient
attacks.

By using this considerable freedom in the choice of α and β, the adversary
can try to achieve several goals:

1. Reducing the Hamming Weight of the Data and Key Differences.
Since in actual attacks the key difference is likely to be caused by applying
physical faults to the encryption device, it is desirable to make the required
changes as small as possible. The minimal possible Hamming Weight of the
key difference is 24 bits, and it is obtained by taking α = 05x, β = 08x or
α = 0Ax, β = 04x.

2. Restricting the Plaintext Bytes to ASCII Characters. Recall that
in ASCII characters, the MSB in each byte is zero. Hence, if the plaintext
difference used in the attack has value zero in the MSB of each byte, this
increases the probability that if the initial plaintext consists of ASCII char-
acters, the “modified” plaintext will also consist of ASCII characters. Such
difference can be obtained by fixing the two MSBs of β to be zeros (e.g.,
β = 08x).

3. Adapting the Plaintext Difference to Numeric Characters. By choos-
ing β = 01x, the plaintext difference in all its bytes is only in the two LSBs.
As a result, we can choose numeric plaintexts whose modified versions also
contain only numeric characters.
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As a final comment, consider the case of an AES cryptosystem which is used in
counter mode. Its plaintexts are defined by a fixed prefix, followed by a 64-bit
counter. When we XOR our fixed difference to a sequence of 2t such consecu-
tive ciphertexts, we get another sequence of 2t plaintexts which has the same
structure (but with a different fixed prefix and a different counting order). Conse-
quently, instead of repeatedly forcing the cryptosystem to encrypt our 2t chosen
plaintexts, we can just force it to start from two chosen starting points, and let
the natural counting process in this mode of operation generate all the other
ciphertexts we need in our attack.

8 Conclusions

This paper continues the deterioration in the security of AES which took place
in 2009. The main problem seems to be the key schedule of AES-256, which is
“not of industrial strength”: It does not mix the initial key sufficiently, it is too
linear, and as a result it has unusually long key differentials of probability 1.
In addition, the similarity between the key schedule and the data encryption in
AES makes it possible to repeatedly cancel data differences with corresponding
key differences over many rounds. Ironically, the new attacks work best against
AES-256 (which was supposed to be the strongest member of the AES family),
and do not currently seem to work against AES-128.

The attacks described in this paper clearly have a practical time complexity.
The number of chosen plaintexts they need is comparable to this time complexity,
and can be considered practical when the adversary has the encryption device in
his possession. The most problematic aspect of the attack is its reliance on related
keys, which is not universally accepted as a practical attack model. However, we
believe that it is important to consider such attacks for several reasons: First of
all, resistance against the largest possible variety of attacks should be an essential
part of the certification process for new ciphers, even if these attacks do not seem
to pose any immediate risk. In addition, AES was specifically designed to resist
such attacks (see [5]), and its failure to do so raises serious doubts about its
overall security. Finally, implementors should be aware of the possibility that
such attacks exist, since they may become practical in some particular modes
of operation (e.g., when the block cipher is employed in a MAC which uses the
chosen input blocks as keys), or when some key bits can be flipped with a laser
beam in a fault attack. The most disturbing aspect of the new attacks is that
AES-256 can no longer be considered as a safe black box construction, which
can be dropped into any security application with little thought about how it is
used.
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A Comments on Figures 2 and 3
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Fig. 2. Related-key differen-
tial for 8-round AES-256

Figures 2 and 3 depict differential characteristics
that are used in the related-key attacks. Figure 3
deals with related-subkey attacks, when the dif-
ferentials coincide in the last six rounds. For sim-
plicity, we depict the common part of the related-
subkey differentials only once for the 8-round
differential characteristic. The other related-subkey
differentials differ in the top rounds only, so we omit
the 6.5-round part with seven active S-boxes.

In Figure 3 we also show how the data we start
with is structured, and how the number of right
pairs decreases during the encryption process. In the
beginning of the attack, n STR above k T stands
for n structures with k texts each. Similarly, k P
stands for k right pairs, and n-bit F stands for an
n-bit filter.

Colors. We extensively use colors while depict-
ing differentials. In order to visually demonstrate
the textual explanations, we provide the used color
scheme.

Arbitrary difference
Fixed S-box input difference
Fixed S-box output difference
Key schedule: the S-box application to

MixColumns expansion of

Key schedule: the S-box application to
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