MAXIMAL EXPONENTS OF PRIMITIVE GRAPHS WITH MINIMUM DEGREE 3

Byung Chul Song and Byeong Moon Kim*

Abstract

In this paper, we find the maximum exponent of primitive simple graphs G under the restriction $\operatorname{deg}(v) \geq 3$ for all vertex v of G. Our result is also an answer of a Klee and Quaife type problem on exponent to find minimum number of vertices of graphs which have fixed even exponent and the degree of whose vertices are always at least 3 .

1. Introduction

A digraph $D=(V, A)$ is primitive if there is a positive integer k such that for any pair of vertices u, v, there is a $u \rightarrow v$ walk, a walk from u to v, of length k. We say that the smallest such k is the exponent of D, which is denoted by $\exp (D)$.

The exponent of D is the same with the minimum k such that for an adjacency matrix A of $D, A^{k}>0$, which means that every entry of A^{k} is positive. Note that the diameter, $\operatorname{diam}(D)$, of a connected digraph is the minimum k such that $I+A+A^{2}+\cdots+A^{k}>0$.

Wielandt [14] found that the maximum exponent of a primitive digraph on n vertices is $n^{2}-2 n+2$. Dulmage and Mendelsohn [3] found the upper bound $n+s(n-2)$ of exponents of primitive digraphs on n vertices with girth s. Zhang [15] proved for all k with $2 \leq k \leq \frac{n^{2}-2 n+4}{2}$, there is a primitive digraph on n vertices whose exponent is k. Holladay and Varga [4] and Lewin [9] computed the maximum exponent of

[^0]primitive graphs. Moon and Pullman [10] proved that the maximum exponent of a primitive tournament on n vertices is $n+2$. Brualdi and Ross [1] computed the lower and upper bounds of primitive nearly reducible $n \times n$ matrices and classified the maximal cases. Ross [11] computed the upper bound of the exponent of nearly reducible primitive $n \times n$ matrix A such that the girth of the associated digraph of A is s. Shao [12] proved for all k with $6 \leq k \leq \frac{n^{2}-2 n+10}{9}$, there is a nearly reducible primitive $n \times n$ matrix whose exponent is k. Shen [13] computed the maximum exponent of 2 regular digraphs. The authors [5] of this paper found the maximum exponent of primitive Cartesian product graphs.

Klee and Quaife [7, 8], and Klee [6] obtained some interesting results on diameter. They computed the minimum order of a simple graph with specified diameter, connectivity and degree. They also classified all 3regular graphs which have the minimum order with given diameter and connectivity.

In this paper, we find the maximum exponent of a primitive simple graph $G=(V, E)$ with $|V|=n$ such that $\operatorname{deg}(v) \geq 3$ for all $v \in V$. As a consequence, we obtain a Klee and Quaife type result for exponent instead of diameter, which finds the minimum number of vertices of a graph of minimum degree 3 with fixed even exponent.

2. Main theorem

Theorem 1. Let $G=(V, E)$ be a primitive graph on n vertices and let $\operatorname{deg}(v) \geq 3$ for all $v \in V$. Then, for $t \geq 2$,

$$
\exp (G) \leq\left\{\begin{array}{l}
8 t-4 \text { for } n=6 t, 6 t+1 \\
8 t-2 \text { for } n=6 t+2,6 t+3 \\
8 t \text { for } n=6 t+4 \\
8 t+2 \text { for } n=6 t+5
\end{array}\right.
$$

Moreover this upper bound is extremal for $n \geq 8$, i.e., for each $n \geq 8$, there is a primitive graph on n vertices with minimum degree 3 and exponent the smallest value of above inequality.

Proof. This Theorem follows from Propositions 1-4 in section 4.

As a consequence of Theorem 1, we have the following Klee and Quaife type result.

Corollary 1. Let $G=(V, E)$ be a primitive graph, $\operatorname{deg}(v) \geq 3$ for all $v \in V$ and $\exp (G)=2 k$. Then, the number of vertices of G is less than or equal to

$$
\left\{\begin{array}{l}
\frac{3}{2} k+4, \text { if } k \equiv 0 \quad(\bmod 4) \\
\frac{3 k+7}{2}, \text { if } k \text { is odd; } \\
\frac{3}{2} k+3, \text { if } k \equiv 2(\bmod 4)
\end{array}\right.
$$

3. Some lemmas

Throughout this paper, we assume that $G=(V, E)$ is a primitive graph and $\operatorname{deg}(v) \geq 3$ for all $v \in V$. For a subgraph H of G, let V_{H} and E_{H} be the set of vertices and edges of H respectively. Let Γ be the set of all odd cycles in G. For $C \in \Gamma$, let l_{C} be the length of C. We define

$$
\begin{aligned}
S_{0} & =\left(\bigcup_{C \in \Gamma} V_{C}\right) \bigcup\left\{v \in V \mid \operatorname{dist}\left(C_{0}, v\right)+\operatorname{dist}\left(v, C_{1}\right)\right. \\
& \left.=\operatorname{dist}\left(C_{0}, C_{1}\right) \text { for some } \quad C_{0}, C_{1} \in \Gamma\right\} .
\end{aligned}
$$

For $T \subset V,<T>=\left(T, E_{T}\right)$ is a subgraph of G where $E_{T}=E \cap$ $\{\{v, w\} \mid v, w \in T\}$. Usually $<T>$ is called the subgraph of G generated by T. It is not difficult to see that $\left\langle S_{0}\right\rangle$ is connected. Let s_{0} be the number of the elements of S_{0}. For a subgraph H of G and $v, w \in V_{H}$, we say $v \xrightarrow{\alpha} w$ along H if there is a $v \rightarrow w$ walk in H with length α. Also $\operatorname{dist}_{H}(v, w)$ is the minimum k such that $v \xrightarrow{k} w$ along H and $\exp _{H}(v, w)$ is the minimum k such that for all $\alpha \geq k, v \xrightarrow{\alpha} w$ along H. We briefly write $v \xrightarrow{\alpha} w, \operatorname{dist}(v, w)$ and $\exp (v, w)$ instead of $v \xrightarrow{\alpha} w$ along $G, \operatorname{dist}_{G}(v, w)$ and $\exp _{G}(v, w)$, respectively. Note that if $v \xrightarrow{\alpha} w$, $v \xrightarrow{\beta} w$ and $\alpha \not \equiv \beta(\bmod 2)$, then $\exp _{G}(v, w) \leq \max \{\alpha, \beta\}-1$.

Lemma 1. If $C_{0}, C_{1} \in \Gamma, v \in S_{0}, \operatorname{dist}\left(C_{0}, C_{1}\right)=\operatorname{dist}\left(C_{0}, v\right)+\operatorname{dist}\left(C_{1}, v\right)$, dist $\left(C_{0}, v\right)=t$, and $v=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{t}=w$ for some $w \in V_{C_{0}}$, then $v_{0}, v_{1}, \cdots, v_{t}$ are distinct elements of S_{0}.

Proof. Let $k=\operatorname{dist}\left(C_{0}, C_{1}\right)=\operatorname{dist}\left(C_{0}, v\right)+\operatorname{dist}\left(C_{1}, v\right)$. For all $i=$ $0, \cdots, t$, we have $k=\operatorname{dist}\left(C_{0}, C_{1}\right) \leq \operatorname{dist}\left(C_{0}, v_{i}\right)+\operatorname{dist}\left(v_{i}, C_{1}\right) \leq \operatorname{dist}\left(w, v_{i}\right)+$ $\operatorname{dist}\left(v_{i}, C_{1}\right) \leq t-i+\operatorname{dist}\left(v_{i}, v\right)+\operatorname{dist}\left(v, C_{1}\right) \leq t-i+i+k-t=k$. Hence $v_{i} \in S_{0}$. Since $\operatorname{dist}\left(v_{0}, v_{i}\right)=t-i$, we have $v_{i} \neq v_{j}$ for $i \neq j$.

Lemma 2. Let $T \subset S_{0}$ and $w \in S_{0}$. If $\operatorname{dist}(w, T)=k$, then $\left|S_{0}-T\right| \geq$ k.

Proof. Since dist ${ }_{<S_{0}>}(w, T)=k$, there is a walk $w=w_{0} \rightarrow w_{1} \rightarrow$ $\cdots \rightarrow w_{k}$ such that $w_{i} \in S_{0}-T$ and $w_{i} \neq w_{j}$ for $i \neq j<k$ and $w_{k} \in T$. So $S_{0}-T \supset\left\{w_{0}, \cdots, w_{k-1}\right\}$. Therefore, we have $\left|S_{0}-T\right| \geq k$.

Lemma 3. For each pair $v, w \in S_{0}$,

$$
\exp _{\left.<S_{0}\right\rangle}(v, w) \leq s_{0}-1
$$

Proof. Case I) $v \in V_{C}$ for some $C \in \Gamma$.
There is $\tilde{w} \in V_{C}$ such that dist ${ }_{<S_{0}>}(\tilde{w}, w)=\operatorname{dist}_{\left\langle S_{0}\right\rangle}(C, w)=t$. Let α be an integer such that $v \xrightarrow{\alpha} \tilde{w}$ along C with $0 \leq \alpha \leq \frac{l_{C}-1}{2}$. Since $v \xrightarrow{\alpha} \tilde{w}, \xrightarrow{t} w, v \xrightarrow{l_{C-\alpha}} \tilde{w}, \xrightarrow{t} w$ and $\alpha+t \not \equiv l_{C}-\alpha+t(\bmod 2)$, we have $\exp _{\left\langle S_{0}\right\rangle}(v, w) \leq l_{C}-\alpha+t-1 \leq l_{C}+t-1$. By Lemma 2 with $T=V_{C},\left|S_{0}-V_{C}\right|=s_{0}-l_{C} \geq t$. So $\exp _{\left\langle S_{0}\right\rangle}(v, w) \leq s_{0}-1$.
Case II) $v \notin \bigcup_{C \in \Gamma} V_{C}$.
There are $C_{0}, C_{1} \in \Gamma$ such that $\operatorname{dist}\left(C_{0}, v\right)+\operatorname{dist}\left(v, C_{1}\right)=\operatorname{dist}\left(C_{0}, C_{1}\right)$. Let $v_{0}\left(\in V_{C_{0}}\right), v_{1}\left(\in V_{C_{1}}\right)$ be vertices with $\operatorname{dist}\left(C_{0}, C_{1}\right)=\operatorname{dist}\left(v_{0}, v_{1}\right)=h$. Let $v_{0}=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{h}=v_{1}, W_{1}=\left\{u_{i} \mid 1 \leq i \leq h-1\right\}$, and $W_{2}=V_{C_{0}} \cup V_{C_{1}} \cup W_{1}$. We may assume that $v \in W_{1}$. Let $\tilde{w} \in W_{2}$ such that $\operatorname{dist}_{\left\langle S_{0}\right\rangle}(w, \tilde{w})=\operatorname{dist}_{\left\langle S_{0}\right\rangle}\left(w, W_{2}\right)=t$. From Lemmas 1 and $2, s_{0} \geq\left|W_{2}\right|+t \geq\left|V_{C_{0}}\right|+\left|V_{C_{1}}\right|+h-1+t=l_{C_{0}}+l_{C_{1}}+h+t-1$. Let $\operatorname{dist}\left(v, C_{i}\right)=h_{i}$ for $i=0,1$. Note that $h_{0}+h_{1}=h$.

Subcase i) $\tilde{w} \in V_{C_{1}}$.
There is α such that $v_{1} \xrightarrow{\alpha} \tilde{w}$ along C_{1} with $0 \leq \alpha \leq \frac{l_{C_{1}-1}}{2}$. Since $v \xrightarrow{h_{1}}$ $v_{1} \xrightarrow{\alpha} \tilde{w} \xrightarrow{t} w, v \xrightarrow{h_{1}} v_{1} \xrightarrow{l_{C_{1}}-\alpha} \tilde{w} \xrightarrow{t} w$ and $h_{1}+\alpha+t \not \equiv h_{1}+l_{C_{1}}-\alpha+t$ $(\bmod 2), \exp _{<S_{0}>}(v, w) \leq h_{1}+l_{C_{1}}-\alpha+t-1 \leq(h-1)+l_{C_{1}}+t-1=$ $h+l_{C_{1}}+t-2 \leq s_{0}-l_{C_{0}}-1 \leq s_{0}-4$.

Subcase ii) $\tilde{w} \in W_{1}$.
Let $\left.k_{i}=\operatorname{dist}_{<S_{0}>}\right\rangle\left(\tilde{w}, C_{i}\right)$ for $i=0,1$. Since $k_{0}+h_{0}+k_{1}+h_{1}=2 h, k_{0}+h_{0} \leq$ h or $k_{1}+h_{1} \leq h$. If $k_{0}+h_{0} \leq h$, there are walks $v \xrightarrow{h_{0}} v_{0} \xrightarrow{k_{0}} \tilde{w} \xrightarrow{t} w$ and
$v \xrightarrow{h_{0}} v_{0} \xrightarrow{l_{C_{0}}} v_{0} \xrightarrow{k_{0}} \tilde{w} \xrightarrow{t} w$. Since $h_{0}+k_{0}+t \not \equiv h_{0}+l_{C_{0}}+k_{0}+t(\bmod 2)$, we have $\exp _{\left\langle S_{0}\right\rangle}(v, w) \leq h_{0}+l_{C_{0}}+k_{0}+t-1 \leq l_{C_{0}}+h+t-1 \leq s_{0}-l_{C_{1}} \leq$ $s_{0}-3$. If $k_{1}+h_{1} \leq h$, similarly we can show $\exp _{\left\langle S_{0}\right\rangle}(v, w) \leq s_{0}-3$.

Subcase iii) $\tilde{w} \in V_{C_{0}}$.
This is similar to subcase i).
Let $S_{i}=\left\{v \in V \mid \operatorname{dist}\left(v, S_{0}\right)=i\right\},\left|S_{i}\right|=s_{i}$ and $k=\max \left\{i \mid s_{i} \geq 1\right\}$. Then, if $u \in S_{i}, v \in S_{j}$ and $\{u, v\} \in E$ for some i, j, then $|i-j| \leq 1$.

Lemma 4. If $s_{i}=1$ and $u, v \in S_{j}$ for some $1 \leq i \leq j \leq k$, then $\{u, v\} \notin E$.

Proof. If $\{u, v\} \in E$, since $i<j$ and $s_{i}=1, u \xrightarrow{j-i} w$ and $v \xrightarrow{j-i} w$ for $w \in S_{i}$. Thus, $u \xrightarrow{j-i} w \xrightarrow{j-i} v \xrightarrow{1} u$ is a closed walk of odd length which must contains an odd cycle not included in $\left\langle S_{0}\right\rangle$, which is a contradiction.

Lemma 5. If $0 \leq i \leq k-2$, then $s_{i}+s_{i+2} \geq 3$.
Proof. If not, $s_{i}=s_{i+2}=1$. For any $v \in S_{i+1}$, since $s_{i}=1$, by Lemma 4 , there is no vertex in S_{i+1} adjacent to v. $\operatorname{So} \operatorname{deg}(v) \leq s_{i}+s_{i+2}=2$. This is a contradiction.

Corollary 2. If $1 \leq i \leq k-3$, then $s_{i}+s_{i+1}+s_{i+2}+s_{i+3} \geq 6$.
Lemma 6. If $k \geq 3$, then

$$
s_{k-2}+s_{k-1}+s_{k} \geq 6
$$

Proof. Suppose $s_{k-2}+s_{k-1}+s_{k} \leq 5$. If there are $u, v \in S_{k}$ such that $u \neq v$ and $\{u, v\} \in E$, there are $x_{1}, x_{2}, y_{1}, y_{2} \in V \backslash\{u, v\}$ such that $x_{1} \neq$ $x_{2}, y_{1} \neq y_{2}$ and $\left\{x_{i}, u\right\},\left\{y_{i}, v\right\} \in E$ for $i=1,2$. Since $u, v, x_{1}, x_{2}, y_{1}, y_{2} \in$ $S_{k} \cup S_{k-1}$ and $s_{k-1}+s_{k} \leq 4, x_{i}=y_{j}$ for some $i, j=1,2$. Thus, $x_{i} \rightarrow u \rightarrow v \rightarrow y_{j}=x_{i}$ is a cycle of length 3 , which is impossible. So if $u, v \in S_{k},\{u, v\} \notin E$. Since $\operatorname{deg}(v) \geq 3, s_{k-1} \geq 3$. So $s_{k-2}+s_{k-1}+s_{k}=$ $s_{k-1}+\left(s_{k-2}+s_{k}\right) \geq 3+3=6$. This is a contradiction. Therefore $s_{k-2}+s_{k-1}+s_{k} \geq 6$.

Lemma 7. If $i \geq 1$ and $s_{i}+s_{i+1}+\cdots+s_{k}=m \geq 8$, then $k \leq i+\frac{2}{3} m-\frac{4}{3}$. And if $n \geq s_{0}+8$, then $k \leq \frac{2}{3} n-\frac{2}{3} s_{0}-\frac{1}{3}$.

Proof. Let $k-i=4 t+r$ and $0 \leq r \leq 3$. Since $5 \leq i+\frac{2}{3} m-\frac{4}{3}$, we may assume that $k \geq 5$. If $r=0$, since $t \geq 2$, by Corollary 2 and Lemma 6 ,
$m=\left(s_{i}+s_{i+1}+s_{i+2}+s_{i+3}\right)+\left(s_{i+4}+s_{i+5}+s_{i+6}+s_{i+7}\right)+\cdots+\left(s_{i+4 t-8}+\cdots+s_{i+4 t-5}\right)$
$+s_{i+4 t-4}+s_{i+4 t-3}+\left(s_{k-2}+s_{k-1}+s_{k}\right) \geq 6(t-1)+2+6=6 t+2$. So $k=i+4 t=i+\frac{2}{3}(6 t+2)-\frac{4}{3} \leq i+\frac{2}{3} m-\frac{4}{3}$. For $r=1,2,3$, by using Lemma 5, Corollary 2 and Lemma 6, we can prove it similarly. In particular, if $i=1$, then $k \leq 1+\frac{2}{3}\left(n-s_{0}\right)-\frac{4}{3}=\frac{2}{3} n-\frac{2}{3} s_{0}-\frac{1}{3}$.

Lemma 8. If $s_{0}=3$, then $k \leq \frac{2}{3} n-\frac{19}{3}$.
Proof. Since $s_{0}=3,<S_{0}>$ is a cycle of length 3. For each $v \in S_{0}$, there is $w \in V \backslash S_{0}$ such that $\{v, w\} \in E$. Suppose $S_{0}=\left\{v_{1}, v_{2}, v_{3}\right\}$. If $1 \leq i<j \leq 3$ and $\left\{v_{i}, w^{\prime}\right\},\left\{v_{j}, w^{\prime}\right\} \in E$ for some $w^{\prime} \in S_{1}$, since $v_{i} \rightarrow$ $w^{\prime} \rightarrow v_{j} \rightarrow v_{i}$ is a cycle of length $3, w^{\prime} \in S_{0}$, which is a contradiction. So $s_{1} \geq 3$ and for each $w \in S_{1}$ there is only one $v \in S_{0}$ such that $w \longrightarrow v$. Suppose $w_{1}, w_{2} \in S_{1}$ and $\left\{w_{1}, w_{2}\right\} \in E$. If $\left\{w_{1}, v_{i}\right\},\left\{w_{2}, v_{i}\right\} \in E, w_{1} \rightarrow$ $v_{i} \rightarrow w_{2} \rightarrow w_{1}$ is a circuit of length 3. This is a contradiction. If $\left\{w_{1}, v_{i}\right\},\left\{w_{2}, v_{j}\right\} \in E$ for $1 \leq i<j \leq 3, w_{1} \rightarrow v_{i} \rightarrow v_{k} \rightarrow v_{j} \rightarrow w_{2} \rightarrow w_{1}$ is a circuit of length 5 where v_{k} is an element of S_{0} different from v_{i} and v_{j}. This is a contradiction. So any two elements of S_{1} are not adjacent. For each $w \in S_{1}$ such that $\left\{v_{i}, w\right\} \in E$, the number of vertices $u \in S_{2}$ satisfying $\{u, w\} \in E$ is at least two.

If $u \in S_{2}$ and $u \xrightarrow{2} v_{i}$ and $u \xrightarrow{2} v_{j}$ for $1 \leq i<j \leq 3, u \xrightarrow{2} v_{i} \xrightarrow{1}$ $v_{j} \xrightarrow{2} u$ is a closed walk of length 5 . If v_{k} is an element of S_{0} different from v_{i} and v_{j}, this walk does not pass through v_{k}. So there is an odd cycle different from $\left\langle S_{0}\right\rangle$. This is a contradiction. So for all $u \in S_{2}$, there is only one $v \in S_{0}$ such that $v \xrightarrow{2} u$. Thus S_{2} has at least six elements. Since $s_{3}+s_{4}+\cdots+s_{k}=n-s_{0}-s_{1}-s_{2} \leq n-12$, by Lemma $7, k \leq 3+\frac{2}{3}(n-12)-\frac{4}{3}=\frac{2}{3} n-\frac{19}{3}$.

Lemma 9.

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k
$$

Proof. If $v, w \in V, v \in S_{i}, w \in S_{j}$ for some $i, j \leq k$. There are $v_{0}, w_{0} \in S_{0}$ such that $v \xrightarrow{i} v_{0}$ and $w \xrightarrow{j} w_{0}$. If $t=\exp \left(<S_{0}>\right.$ $)+2 k-i-j \geq \exp \left(<S_{0}>\right)$, there is a walk $v_{0} \xrightarrow{t} w_{0}$. So $v \xrightarrow{i} v_{0} \xrightarrow{t}$ $w_{0} \xrightarrow{j} w$. So $\exp (G) \leq \exp \left(<S_{0}>\right)+2 k$.

Corollary 3. If $s_{0}=3$, then

$$
\exp (G) \leq \frac{4}{3} n-\frac{32}{3}
$$

Lemma 10. If $\exp \left(<S_{0}>\right)=s_{0}-1$, then s_{0} is odd and $<S_{0}>$ is Hamiltonian.

Proof. Since $\exp \left(<S_{0}>\right)=s_{0}-1$, there are $v, w \in S_{0}$ such that $\exp _{\left\langle S_{0}\right\rangle}(v, w)=s_{0}-1$. If $v \in \bigcup_{C \in \Gamma} V_{C}$, there exists $C_{1} \in \Gamma$ such that $v \in$ $V_{C_{1}}$. There is $w^{\prime} \in V_{C_{1}}$ such that $\operatorname{dist}_{<S_{0}>}\left(w, w^{\prime}\right)=\operatorname{dist}_{<S_{0}>}\left(w, C_{1}\right)=t$. If $w^{\prime} \xrightarrow{\alpha} v$ along C_{1} with $\alpha \leq \frac{l_{C_{1}-1}}{2}$, there is $w^{\prime} \xrightarrow{l_{C_{1}-\alpha}} v$ along C_{1}. We have $s_{0}-1=\exp _{\left\langle S_{0}\right\rangle}(w, v) \leq l_{C_{1}}-\alpha+t-1 \leq s_{0}-\alpha-1$. So $w^{\prime}=v$ and $l_{C_{1}}+t=s_{0}$. Thus $S_{0}=V_{C_{1}} \cup\left\{w_{i} \mid 0 \leq i \leq t-1\right\}$. Suppose $t \geq 1$. Choose $w=w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{t}=v$ where $w_{i} \in S_{0}$. Since $\operatorname{dist}_{<S_{0}>}\left(w, C_{1}\right)=t$, if $j-i \geq 2, w_{i}$ and w_{j} are not adjacent. In particular, w is not adjacent to w_{i} for $2 \leq i \leq t-1$. Since $\operatorname{deg}_{<S_{0}>}(w) \geq 2$ and $S_{0}=V_{C_{1}} \cup\left\{w_{i} \mid 0 \leq i \leq t-1\right\}, w$ is adjacent to at least one elements of $V_{C_{1}}$. So $t=1$ and there is $\tilde{v} \in V_{C_{1}}$ such that $\tilde{v} \neq v$ and $\{w, \tilde{v}\} \in E$. If $\tilde{v} \xrightarrow{\beta} v$ along $C_{!}$with $1 \leq \beta \leq \frac{l_{C_{1}-1}}{2}$, since $\tilde{v} \xrightarrow{l_{C_{1}}-\beta} v$ along $C_{1}, s_{0}-1=\exp _{\left\langle S_{0}\right\rangle}(v, w) \leq s_{0}-\beta-1 \leq s_{0}-2$. This is a contradiction. So $t=0$. Since $l_{C_{1}}=s-0,<S_{0}>$ is Hamiltonian. Since $C_{1} \in \Gamma, s_{0}=l_{C_{1}}$ is odd. If $v \notin \bigcup_{C \in \Gamma} V_{C}$, by similar method as used in case II of Lemma 3, we can obtain $\exp _{\left\langle S_{0}\right\rangle}(v, w) \leq s_{0}-3$, which is a contradiction.

Note that if there are two vertices whose degree in $\left\langle S_{0}\right\rangle$ is 1 or 2 then $s_{1} \geq 2$. And so $s_{2} \geq 4$.

4. Proof of main theorem

Let $G=(V, E)$ be a primitive graph and $\operatorname{deg}(v) \geq 3$ for all $v \in V$.
Proposition 1. If G has $6 t$ or $6 t+1$ vertices and $t \geq 2$, then

$$
\exp (G) \leq 8 t-4
$$

Proof. If $s_{0}=3$, then

$$
\exp (G) \leq 8 t-\frac{32}{3}<8 t-4
$$

by Corollary 3 . Suppose that $s_{0} \geq 8$. If $n \leq s_{0}+7$, then by Lemma 6 , $k \leq 4$. By Lemma 9,

$$
\exp (G) \leq s_{0}+7 \leq n+7 \leq 6 t+7<8 t-4
$$

If $n \geq s_{0}+8$, then by Lemma 3, 7 and 9 ,
$\exp (G) \leq s_{0}+2 k-1 \leq s_{0}+2\left(\frac{2}{3} \cdot 6 t-\frac{2}{3} s_{0}-\frac{1}{3}\right)-1 \leq 8 t-\frac{8}{3}-\frac{5}{3}<8 t-4$.
If $s_{0}=7$, by Lemma 3, 7 and 9 ,

$$
\exp (G) \leq 7+2 k-1 \leq 6+2\left(\frac{2}{3} \cdot 6 t-\frac{2}{3} \cdot 7-\frac{1}{3}\right)=8 t-4
$$

If $s_{0}=6$, by Lemma 7 ,

$$
k \leq \frac{2}{3} \cdot 6 t-\frac{2}{3} \cdot 6-\frac{1}{3}=4 t-\frac{13}{3} .
$$

So $k \leq 4 t-5$. By Lemma 9,

$$
\exp (G) \leq 5+2 k \leq 8 t-5<8 t-4
$$

If $s_{0}=4$, then $\exp \left(<S_{0}>\right)=2$. By Lemma 3, 7 and 9 ,

$$
\exp (G) \leq 2+2\left(\frac{2}{3} \cdot 6 t-\frac{2}{3} \cdot 4-\frac{1}{3}\right)=8 t-4 .
$$

If $s_{0}=5$, by Lemma $7, k \leq \frac{2}{3} \cdot 6 t-\frac{2}{3} \cdot 5-\frac{1}{3}=4 t-\frac{11}{3}$. So $k \leq 4 t-4$. By Lemma 9,

$$
\exp (G) \leq 4+2(4 t-4)=8 t-4
$$

Proposition 2. If G has $6 t+2$ or $6 t+3$ vertices and $t \geq 2$, then

$$
\exp (G) \leq 8 t-2
$$

Proof. If $s_{0}=3$, by Corollary 3,

$$
\exp (G) \leq \frac{4}{3}(6 t+2)-\frac{32}{3}=8 t-8
$$

If $s_{0} \geq 10$, by Lemma 3, 7 and 9 ,

$$
\begin{aligned}
\exp (G) & \leq s_{0}-1+2 k \leq s_{0}-1+2\left(\frac{2}{3}(6 t+2)-\frac{2}{3} s_{0}-\frac{1}{3}\right) \\
& =8 t-\frac{s_{0}}{3}+1 \leq 8 t-\frac{7}{3}<8 t-2 .
\end{aligned}
$$

If $s_{0}=9$, by Lemma $7, k \leq \frac{2}{3}(6 t+2)-\frac{2}{3} 9-\frac{1}{3}=4 t-5$. By Lemma 9 ,

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k \leq 8+2(4 t-5)=8 t-2 .
$$

If $s_{0}=8$, by Lemma $7, k \leq \frac{2}{3}(6 t+2)-\frac{2}{3} \cdot 8-\frac{1}{3}=4 t-\frac{13}{3}$. So $k \leq 4 t-5$. Then by Lemma 9,

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k \leq 7+2(4 t-5)=8 t-3
$$

If $s_{0}=6$, by Lemma 3,7 and 9 ,

$$
k \leq \frac{2}{3}(6 t+2)-\frac{12}{3}-\frac{1}{3}=4 t-3 .
$$

So

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k \leq 5+2(4 t-3)=8 t-1
$$

Since $8 t-1 \geq 6 t+3$ and $8 t-1$ is odd, by $[2], \exp (G) \neq 8 t-1$. So $\exp (G) \leq 8 t-2$.
If $s_{0}=4$, by Lemma $7, k \leq \frac{2}{3}(6 t+2)-\frac{2}{3} 4-\frac{1}{3} \leq 4 t-\frac{5}{3}$. So $k \leq 4 t-2$. By Lemma 9,

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k \leq 2+2(4 t-2)=8 t-2
$$

If $s_{0}=7$, by Lemma $7, k \leq 4 t-\frac{11}{3}$. So $k \leq 4 t-4$. By Lemma 9 ,

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k \leq 6+2(4 t-4)=8 t-2 .
$$

If $s_{0}=5$, by Lemma $7, k \leq 4 t-\frac{7}{3}$. So $k \leq 4 t-3$. By Lemma 9 ,

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k \leq 4+2(4 t-3)=8 t-2 .
$$

Proposition 3. If G has $6 t+4$ vertices and $t \geq 2$, then

$$
\exp (G) \leq 8 t
$$

Proof. If $s_{0}=3$, by Lemma 8 and Corollary $3, \exp (G) \leq \frac{4}{3}(6 t+4)-$ $\frac{32}{3}=8 t-\frac{16}{3}<8 t$.

If $s_{0} \geq 10$, by Lemma $7, k \leq \frac{2}{3}(6 t+4)-\frac{20}{3}-\frac{1}{3}=4 t-\frac{13}{3}$. Thus $k \leq 4 t-5$. By Lemma $9, \exp (G) \leq 9+8 t-10=8 t-1$.

If $s_{0}=8$, by Lemma $7, k \leq \frac{2}{3}(6 t+4)-\frac{16}{3}-\frac{1}{3}=4 t-3$. By Lemma $9, \exp (G) \leq 7+2(4 t-3)=8 t+1$. Since $8 t>6 t+3=n-1$, by [2], $\exp (G)$ is even. So $\exp (G) \leq 8 t$.

If $s_{0}=6$, by Lemma $7, k \leq 4 t-\frac{5}{3}$ and thus we have $k \leq 4 t-2$. So $\exp (G) \leq 5+2(4 t-2)=8 t+1$. Since $8 t>6 t+3=n-1$, by [2], $\exp (G)$ is even. So $\exp (G)=8 t$.

If $s_{0}=9$, by Lemma $7, k \leq 4 t-4$ and $\exp (G) \leq 8+2(4 t-4)=8 t$.
If $s_{0}=7$, we have $k \leq 4 t-3$ and $8 t \leq \exp (G) \leq 6+2(4 t-3)=8 t$.
If $s_{0}=4$, then $\exp \left(<S_{0}>\right)=2$. Since $k \leq \frac{2}{3}(6 t+4)-\frac{8}{3}-\frac{1}{3}=4 t-\frac{1}{3}$, $k \leq 4 t-1$, we have $\exp (G) \leq 2+2(4 t-1)=8 t$.

Finally, if $s_{0}=5, k \leq \frac{2}{3}(6 t+4)-\frac{10}{3}-\frac{1}{3}=4 t-1$. If $k=4 t-1$, $6 t+4=s_{0}+\left(s_{1}+\cdots+s_{4 t-4}\right)+\left(s_{4 t-3}+s_{4 t-2}+s_{4 t-1}\right) \geq 5+6 t-6+$ $6=6 t+5$. This is a contradiction. So $k \leq 4 t-2$. By Lemma 9 , $\exp (G) \leq 5+8 t-4-1=8 t$.

Proposition 4. If G has $6 t+5$ vertices and $t \geq 2$, then

$$
\exp (G) \leq 8 t+2
$$

Proof. If $s_{0}=3$, by Corollary 3,

$$
\exp (G) \leq \frac{4}{3}(6 t+5)-\frac{32}{3}=8 t-4<8 t+2
$$

If $s_{0} \geq 10$, by Lemma 3,7 and 9 ,

$$
\exp (G) \leq 9+2\left(\frac{2}{3} n-\frac{2}{3} s_{0}-\frac{1}{3}\right)=8 t+\frac{5}{3}<8 t+2 .
$$

If $s_{0}=9$, by Lemma $7, k \leq \frac{2}{3}(6 t+5)-\frac{18}{3}-\frac{1}{3}=4 t-3$. By Lemma 9 ,

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k \leq 9+2(4 t-3)=8 t+2
$$

If $s_{0}=8$, by Lemma $7, k \leq \frac{2}{3}(6 t+5)-\frac{16}{3}-\frac{1}{3}=4 t-\frac{7}{3}$. So $k \leq 4 t-3$. By Lemma 9,

$$
\exp (G) \leq \exp \left(<S_{0}>\right)+2 k \leq 8 t+1<8 t+2 .
$$

If $s_{0}=7$, by Lemma $7, k \leq 4 t-\frac{5}{3}$. So $k \leq 4 t-2$. By Lemma 9 , $\exp (G) \leq 6+2(4 t-2)=8 t+2$.

If $s_{0}=6$, by Lemma $7, k \leq \frac{2}{3}(6 t+5)-\frac{12}{3}-\frac{1}{3}=4 t-1$. So $\exp (G) \leq$ $5+2(4 t-1)=8 t+3$.

If $s_{0}=4, k \leq 4 t+\frac{1}{3}$. So $k \leq 4 t$. By Lemma $9, \exp (G) \leq 2+2(4 t)=$ $8 t+2$.

If $s_{0}=5$, since $k \leq \frac{2}{3}(6 t+5)-\frac{10}{3}-\frac{1}{3}=4 t-\frac{1}{3}, k \leq 4 t-1$. By Lemma $9, \exp (G) \leq 4+2(4 t-1)=8 t+2$.

The following figure gives examples which assert the upper bound given in Propositions 1-4 are extremal.

$$
n=6 t
$$

$$
\ggg
$$

$$
n=6 t+1
$$

$$
\sum
$$

$$
n=6 t+2
$$

$$
n=6 t+3
$$

$n=6 t+4$

$n=6 t+5$

Figure 1.

So we have the following Proposition.

Proposition 5. If $t \geq 2$ and $0 \leq r \leq 5$, then there is a primitive graph G on $6 t+r$ vertices such that the minimum degree of G is 3 and

$$
\exp (G)=\left\{\begin{array}{l}
8 t-4, \text { for } r=0,1 \\
8 t-2 \text { for } r=2,3, \\
8 t \text { for } r=4, \\
8 t+2 \text { for } r=5
\end{array}\right.
$$

Thus Theorem 1 is proved.
Remark 1. For $n \leq 11$, the upper bound of $\exp (G)$ in Theorem 1 is still true except $n=4$. In that case, $G \simeq K_{4}$ and $\exp (G)=2$. The graphs in Figure 2 are extremal cases.

Figure 2.

References

[1] R.A. Brualdi and J.A. Ross, On the exponent of a primitive, nearly reducible matrix, Math. Oper. Res. 5(1980), 229-241.
[2] J. Cai, K.M. Zhang, The characterization of symmertric primitive matrices with exponent $2 n-2 r$, Linear Multilinear Algebra 39(1995), 391-396.
[3] A. Dulmage and N. Mendelsohn, On the exponent of a primitive,nearly reducible matrix, Math. Oper. Res. 5(1980), 229-241.
[4] J.C. Holladay and R.S. Varga, On powers of non-negative matrices, Proc. Amer. Math. Soc. 9(1958), 631-634.
[5] B.M. Kim, B.C. Song and W. Hwang, Wielandt type theorem for cartesian product of digraphs, Linear Algebra Appl. 429(2008), 841-848.
[6] V. Klee, Classification and enumeration of minimum (d,3,3)-graphs for odd d, J. Combin. Theory Ser. B 28(1980), 184-207.
[7] V. Klee and H. Quaife, Minimum graphs of specified diameter, connectivity and valence, Math. Oper. Res. 1(1)(1976), 28-31.
[8] V. Klee and H. Quaife, Classification and enumeration of minimum ($d, 1,3$)graphs and minimum (d,2,3)-graphs, J. Combin. Theory Ser. B 23(1977), 8393.
[9] M. Lewin, On exponents of primitive matrices, Numer. Math. 18(1971), 154161.
[10] J.W. Moon and N.J. Pullman, On the powers of tournament matrices, J. Combinatorial Theory 3(1967), 1-9.
[11] J. Ross, On the exponent of a primitive, nearly reducible matrix. II, SIAM J. Alg. Discr. Meth. 3(1982), 395-410.
[12] J. Shao, The exponent set of primitive, nearly reducible matrices, SIAM J. Alg. Discr. Meth. 8(1987), 578-584.
[13] J. Shen, Exponents of 2-regular digraphs, Discrete Math. 214(2000), 211-219.
[14] H. Wielandt, Unzerleghare, nicht negative Matrizen, Math. Z. 52(1950) 642-645.
[15] K. Zhang, On Lewin and Vitek's conjecture about the exponent set of primitve matrices, Linear Algebra Appl. 96(1987), 101-108.

Department of Mathematics
Gangneung-Wonju National University
Gangneung, Korea
E-mail: bcsong@gwnu.ac.kr
Department of Mathematics
Gangneung-Wonju National University
Gangneung, Korea
E-mail: kbm@gwnu.ac.kr

[^0]: Received September 15, 2011. Revised December 3, 2011. Accepted December 5, 2011.

 2000 Mathematics Subject Classification: 15A48, 05C20, 05C50.
 Key words and phrases: maximal exponent, minimum degree, primitive graph.
 This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
 *Corresponding author.

