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ON A CLASS OF GORENSTEIN IDEALS OF GRADE

FOUR

Yong S. Cho

Abstract. We provide a minimal free resolution for a class of
Gorenstein ideal of grade 4 which is the sum of an almost com-
plete intersection J of grade 3 and a perfect ideal I of grade 3 with
type 2 and λ(I) > 0 geometrically linked by a regular sequence,
where I is generated by odd elements.

1. Introduction

Let R be a commutative noetherian local ring with maximal ideal m,
and let I be a proper ideal of R with finite projective dimension. The
type of a perfect ideal I of grade g is defined to be the dimension of R/m-
vector space ExtgR(R/m, R/I). We denote it by type I. Equivalently, if

F : 0 −−−−→ Fg −−−−→ Fg−1 −−−−→ · · · −−−−→ F1 −−−−→ R

is the minimal free resolution of R/I, then type I = rankFg. A perfect
ideal I of grade g is a complete intersection if I is generated by a regular
sequence x1, x2, · · · , xg, an almost complete intersection if it is minimally
generated by g + 1 elements, and a Gorenstein ideal if I has type 1.

In 1987, Brown [2] gave a structure theorem for a class of perfect
ideals of grade 3 with type 2 and λ(I) = dimkΛ

2
1 > 0, where λ(I) is the

numerical invariant introduced by Kustin and Miller [11] to distinguish
classes of Gorenstein ideals I of grade 4 in term of free resolutions of
R/I. In [9], Kang and Ko introduce the complete matrix f of grade 4
and the ideal K3(f) associated with it to give a structure theorem for
complete intersection of grade 4. Similarly, the almost complete matrix
f of grade 3 with type r determined by an r × 3 matrix A and an r × r
alternating matrix Y [10, Definition 3.3] for a positive integer r with
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r > 1 and the ideal K3(f) associated with it enable us to characterize
almost complete intersections of grade 3 and to give a structure theorem
for these classes. These almost complete matrices distinguish the even
and odd types of almost complete intersections of grade 3. In [9], they
define an n × n skew-symmetrizable matrix (or generalized alternating
matrix) to be a square matrix X such that DXD′ is an alternating
matrix for some diagonal matrices D and D′ [ see Definition 3.1, 9]. We
call this an alternating matrix induced by X and denote it by A(X). In
[5], let r be an odd integer with r > 1. For two elements v, w ∈ m, Choi,
Kang and Ko define an (r+ 2)× (r+ 2) skew-symmetrizable matrix G1

by

G1 =

 B vA

−At Y (1, 2)

 , where B =

[
0 w
−w 0

]
and Y (1, 2) is the r × r alternating matrix of Y obtained by deleting
the first two rows and columns of Y . They observe that there exist a
class of perfect ideals of grade 3, type 2 which is generated by certain
quotients of the submaximal order pfaffians of the alternating matrix
induced by the skew-symmetrizable matrix G1. In [5], similarly, let r be
an even integer with r ≥ 4 and v ∈ m. They define an (r + 3)× (r + 3)
skew-symmetrizable matrix G2 by

G2 =

 0 F̄

−F̄ t Y

 , where F̄ =

 va11 va21 · · · var1
−va12 −va22 · · · −var2
va13 va23 · · · var3

 .
They observe that there exist a class of perfect ideals of grade 3, type 3
which is generated by certain quotients of the submaximal order pfaffians
of the alternating matrix induced by the skew-symmetrizable matrix G2.
In [6], let r be an odd integer with r > 1, s be a regular element, A be
a r × 4 matrix and U be a 4 × 4 alternating matrix. We define an
(r + 4)× (r + 4) skew-symmetrizable matrix G3 by

G3 =

 U sAt

−A Y

 .
We observe that there exist a class of perfect ideals of grade 3, type 2 and
λ(I) = 0 which is generated by certain quotients of the submaximal order
pfaffians of the alternating matrix induced by the skew-symmetrizable
matrix G3.
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In this paper, we construct a class of Gorenstein ideals of grade 4
determined by a skew-symmetrizable matrix G1 and an induced almost

complete matrix f̃ [10]. So we present the minimal free resolution for
a class of Gorenstein ideals of grade 4, and illustrate the structure of
the minimal free resolution. In section 2, we review linkage theory and
some structure theorems for perfect ideals of grade 3. In section 3,

we define an (r + 4) × (r + 3) augmented matrix G̃ determined by an

(r+3)×(r+3) skew-symmetrizable matrixG1 [5] and a 4×(r+3) matrix f̃
extracted from an almost complete matrix f [10]. These play a key role
in constructing a minimal free resolution for a class of Gorenstein ideals
of grade 4 which is the sum of an almost complete intersection J of grade
3 and a perfect ideal I of grade 3 with type 2, λ(I) > 0 geometrically
linked by a regular sequence. This is a remarkable difference from [7]
in which we give a structure theorem for a class of Gorenstein ideal of
grade 4 which is the sum of an almost complete intersection of grade
3 and a Gorenstein ideal of grade 3 geometrically linked by a regular
sequence.

2. Preliminaries

In this section, we review linkage theory and the structure theorems
for some classes of perfect ideals of grade 3 which are given by Brown,
Buchsbaum, Eisenbud, and Sanchez. To review these structure theo-
rems, first we investigate some properties of an alternating matrix. Let
T = (tij) be an n× n alternating matrix with entries in a commutative
ring R. It follows from a linear algebra that if n is odd, the determi-
nant of an alternating matrix T is zero and if n is even, it is a square
of a homogeneous polynomial of degree n

2 in the entries of T, which is

called the pfaffian of T. We will write detT = Pf(T )2. Pfaffians can be
developed along a row just like the determinants. Denote by Pfs(T )
the ideal generated by the sth order pfaffians of T. Let s < n and
(i) = i1, i2, · · · , is denote the index of integers. Let θ(i) denote the sign
of permutation that rearranges (i) in increasing order. If (i) has a re-
peated index, then we set θ(i) = 0. Let τ(i) be the sum of the entries of
(i) and T (i1, i2, · · · , is) an alternating submatrix of T formed by deleting
rows and columns i1, i2, · · · , is from T. Define

T(i) = (−1)τ(i)+1 · θ(i) · Pf (T (i1, i2, · · · , is))(2.1)
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If s = n, we let T(i) = (−1)τ(i)+1θ(i) and if s > n, we let T(i) = 0. Let

t =
[
T1 T2 · · · Tn

]
be the row vector of the maximal order pfaffians

of T, signed appropriately according to the conventions described above.
There is a “Laplace expansion” for developing pfaffians in term of ones
of lower order.

Now we review the structure theorem for a class of type 2, λ(I) >
0 perfect ideals I of grade 3 given by Brown [2]. Kustin and Miller
introduced the numerical invariant λ(I) defined in [11]. Let I be any
ideal in a noetherian local ring R. Let (F, d) be a minimal free resolution
of R/I. Let C be the image of d2 and K the submodule of C which is
generated by the Koszul relations on the entries of d1. We note that if
I is minimally generated by r1, r2, · · · , rn, and {e1, e2, · · · , en} is a basis
of F1, then K is generated by the set {rjei−riej | 1 ≤ i < j ≤ n}. Define

λ(I) = dimk(K + mC)/mC,

where m is the maximal ideal of R and k = R/m. Since λ(I) is the
maximum number of minimal generators of K which can be chosen to be
the part of a minimal basis for C, we see that λ(I) is also the maximum
number of Koszul relations which can appear as rows of a matrix for d2.
Brown gave a structure theorem for a class of type 2, λ(I) > 0 perfect
ideals I of grade 3. The minimal free resolution F of R/I is described
in [2].

Theorem 2.1. [2] Let R be a noetherian local ring with maximal
ideal m. Let n > 4 be an integer. Let I be a type 2 perfect ideal of grade
3 minimally generated by n elements. If λ(I) > 0, then there is an n×n
alternating matrix T = (tij) with t12 = 0 and tij ∈ m such that

(1) if n is odd, then I = (T1, T2, z1T12j + z2Tj : 3 ≤ j ≤ n), for some
z1, z2 ∈ m,

(2) if n is even, then I = (Pf(T ), T12, z1T1j + z2T2j : 3 ≤ j ≤ n), for
some z1, z2 ∈ m.

We observe that there exist a class of perfect ideals of grade 3, type
2 and λ(I) > 0 which is generated by certain quotients of the sub-
maximal order pfaffians of the alternating matrix induced by the skew-
symmetrizable matrix G1.

Definition 2.2. Let A(G1) be the alternating matrix obtained by
multiplying the first two columns of G1 by v. Let xi be an element
defined by xi=A(G1)i/v for i = 1, 2, 3, · · · , n. We define Pfn−1(G1) to
be the ideal generated by n elements xi.
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The following theorem says that if Pfn−1(G1) characterizes a perfect
ideal I of grade 3 satisfying the following properties: (1) I has type 2,
(2) the number of generators for I is odd, (3) λ(I) > 0.

Theorem 2.3. [5] Let R be a commutative noetherian local ring
with maximal ideal m. Let n be an odd integer with n > 3 and v, w
elements in m. Let G1 be the n× n skew-symmetrizable matrix defined
above. Then

(1) If I = Pfn−1(G1) is an ideal of grade 3 with λ(I) > 0, then I is
a perfect ideal of type 2.

(2) Every perfect ideal of grade 3, type 2, λ(I) > 0 minimally gener-
ated by n elements arises as in the way of (1).

We notice that as in [4] or [12], in most cases, linkage is used in
the case of perfect ideals in Gorenstein or Cohen-Macaulay local rings.
However the result that we use here are true for perfect ideals in any
commutative ring, as shown by Golod [8].

Definition 2.4. Let I and J be a perfect ideal of grade g. An
ideal I is linked to J , I ∼ J if there exists a regular sequence x =
x1, x2, · · · , xg in I ∩ J such that J = (x) : I and I = (x) : J, and
geometrically linked to J if I ∼ J and I ∩ J = (x).

A fundamental result is that linkage is a symmetric relation on the
set of perfect ideals in a noetherian ring R.

Theorem 2.5. [12] Let R be a noetherian ring. If I is a perfect
ideal of grade g and x = x1, x2, · · · , xg is a regular sequence in I, then
J = (x) : I is a perfect ideal of grade g and I = (x) : J.

The following theorem provides a method of constructing a Goren-
stein ideal of grade g + 1 from perfect ideals of grade g.

Proposition 2.6. [12] Let R be a noetherian ring. Let I and J
be perfect ideals of grade g. If I and J are geometrically linked, then
H = I + J is a Gorenstein ideal of grade g + 1.

An almost complete intersection of grade g is linked to a Gorenstein
ideal of grade g by a regular sequence x.

Proposition 2.7. [4] Let I and J be perfect ideals of the same grade
g in a noetherian local ring R and suppose that I is linked to J by a
regular sequence x = x1, x2, · · · , xg. Then

(1) If I is Gorenstein, then J = (x, w) for some w ∈ R and
(2) If J is minimally generated by x and w, then I is Gorenstein.
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In [10], Kang, Cho, and Ko introduce the concept of an almost com-
plete matrix f of grade 3 with type r determined by an r × 3 matrix
A and an r × r alternating matrix Y, and define an ideal K3(f) asso-
ciated with an almost complete matrix f of grade 3 to give the struc-
ture theorem for almost complete intersections of grade 3. We define
C = (ci), E = (ej), S = (sij), and Z = (zij) to be a 1 × 3 matrix, a
1 × r matrix, a 3 × r matrix, and a 3 × 3 matrix, respectively. These
matrices are given by the following: For any two integer m < t with
{i,m, t} = {1, 2, 3},

ci =


∑

1≤u<v≤r
i 6=m,t

Yuv

∣∣∣∣∣aum aut

avm avt

∣∣∣∣∣ if r = even

0 if r = odd,

ej =


∑

1≤u<v<w≤r
−YjuvwDuvw if r = even

Yj if r = odd,

sij =


(−1)i+1

∑
1≤h≤r

Yjhahi if r = even

(−1)i+1
∑

1≤u<v≤r
Yjuv

∣∣∣∣∣aum aut

avm avt

∣∣∣∣∣ if r = odd,

Z = diag{−Pf(Y ),−Pf(Y ),−Pf(Y )} if r = even

Z =

 0 Z3 −Z2

−Z3 0 Z1

Z2 −Z1 0

 , z =
[
Z1 Z2 Z3

]
if r = odd,

where Duvw is the determinant of a 3 × 3 submatrix of A formed by

three rows u, v, w of A in this order, and Zi = −
r∑

k=1

Ykaki for i = 1, 2, 3.

We also define an element w in R as follow:

w =

Pf(Y ) if r = even∑
1≤u<v<w≤r

YuvwDuvw if r = odd.

For the case that r is even, for further use we define F to be a 3 × r
matrix given by
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F =

 a11 a21 · · · ar1
−a12 −a22 · · · −ar2
a13 a23 · · · ar3

 = (fij) , where fij = (−1)i+1aji.

In [10], we assume that I is a perfect ideal of grade 3 minimally generated
by n > 4 elements and J = (t1, t2, t3, t4) is an almost complete intersec-
tion of grade 3 and I is linked to J by a regular sequence x = x1, x2, x3.
Let J = (t1, t2, t3, t4) be an almost complete intersection of grade 3.
Then there exists a 4× 3 matrix B = (bij) such that

x =
[
t1 t2 t3 t4

]
B.

Let r > 1 be the type of J . And let D̄uvw be the determinant of a
submatrix of B formed by rows u, v, w in this order. If r is even, P =
(pk1)r×1 given by

pk1 =
∑

1≤u<v<w≤r
−YkuvwDuvwD̄123

−
r∑
l=1

(al1D̄234 + al2D̄134 + al3D̄124)Ykl

= ekD̄123 − (s1kD̄234 − s2kD̄134 + s3kD̄124).

If r is odd, P = (pk1)r×1 given by

pk1 = −YkD̄123 + (s1kD̄234 − s2kD̄134 + s3kD̄124).

Theorem 2.8. [10] Let A, Y,C,E, S, Z, z, w be defined as above over
the noetherian local ring R with maximal ideal m. Let f be an almost

complete matrix of grade 3 determined by A and Y. Let f̃ be a 4×(r+3)
matrix extracted from f.

(1) If r is even and if K3(f) has grade 3, then

F : 0 −−−−→ Rr
f3−−−−→ Rr+3 f2−−−−→ R4 f1−−−−→ R

is a minimal free resolution of R/K3(f), where

f1 =
[
C w

]
, f2 = f̃ =

Z S

C E

 , f3 =

[
F
Y

]
.

(2) If r is odd and if K3(f) has grade 3, then

F : 0 −−−−→ Rr
f3−−−−→ Rr+3 f2−−−−→ R4 f1−−−−→ R
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is a minimal free resolution of R/K3(f), where

f1 =
[
z w

]
, f2 = f̃ =

Z S

C E

 , f3 =
[
A Y

]t
.

In [10], Kang, Cho, and Ko provide the structure theorem for some
classes of perfect ideals of grade 3 which are algebraically linked to
an almost complete intersection of grade 3 by a regular sequence x =
x1, x2, x3. This contains three classes of perfect ideals of grade 3 which
were determined by Buchsbaum-Eisenbud, Brown and Sanchez.

Theorem 2.9. [10] Let R be a noetherian local ring with maximal
ideal m.

(1) Let J and B be an almost complete intersection of grade 3 and
a matrix defined above, respectively. Let x = x1, x2, x3 be a regular
sequence in J defined in (5.1). Let r be the type of J.

(i) Let r be even. Let A,E, S and Y be matrices defined in
(3.2), (3.3), with entries in m, and pk1 an element defined in (5.3) with
pk1 in m, for k = 1, 2, · · · , r.

(ii) Let r be odd. Let A, Y, S and Z be matrices defined in (3.3)
and (3.4), with entries in m, and pk1 an element defined in (5.4) with
pk1 in m, for k = 1, 2, · · · , r.

If I is an ideal generated by x1, x2, x3, p11, p21, · · · , pr1, then I is a
perfect ideal of grade 3 linked to J by a regular sequence x and is type
µ(J/(x)).

(2) Every perfect ideal of grade 3 linked to an almost complete inter-
section J of grade 3 by a regular sequence x = x1, x2, x3 arises in the
way of (1).

3. Resolution of a class of Gorenstein ideal of grade 4

In this section, we define an (r + 4) × (r + 3) augmented matrix G̃
obtained by adding one row to an (r+ 3)× (r+ 3) skew-symmetrizable
matrix G1 [5]. Then we can construct the minimal free resolution for
a class of Gorenstein ideal of grade 4 expressed as the sum of an al-
most complete intersection J of grade 3 and a perfect ideal I of grade
3 with type 2, λ(I) > 0 geometrically linked by a regular sequence.
By the Bass’ result, type J is the minimal number of generators in
(x : J)/(x) = I/(x), where I is linked to J by a regular sequence x.
Since the type of J is even, we can construct a perfect ideal of grade
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3 with type 2 and λ > 0 minimally generated by odd elements by giv-
ing three types of regular sequence in I. Let s, u and v be nonzero
elements in R. For examples, let x be a regular sequence uc1, c2, c3.
Then by Theorem 2.9, I = (uc1, c2, c3, ue1, ue2, · · · , uer). And secondly,
let x be a regular sequence uc1, c2, c3 + vw. Then by Theorem 2.9,
I = (uc1, c2, c3 + vw, ue1 − uvs31, ue2 − uvs32, · · · , uer − uvs3r). And
thirdly, let x be a regular sequence c1, c2, sc3 + uvw. Then by Theorem
2.9, I = (c1, c2, sc3 + uvw, se1 − uvs31, se2 − uvs32, · · · , ser − uvs3r).
Proposition 2.6 provides a method of constructing a Gorenstein ideal
I + J of grade 4 from perfect ideals I and J of grade 3 which are ge-
ometrically linked by a regular sequence. This gives us the following
theorems and examples.

Theorem 3.1. Let R be a noetherian local ring with maximal ideal
m. With notations as above, let I be a perfect ideal of grade 3 with type
2, λ(I) > 0, and J = (c1, c2, c3, w) an almost complete intersection with
the even type r > 1. Let I and J be geometrically linked by a regular
sequence uc1, c2, c3. Then I + J = (c1, c2, c3, w, ue1, ue2, · · · , uer) is a
Gorenstein ideal of grade 4 and

H : 0 −−−−→ R
g4−−−−→ Rr+4 g3−−−−→ R2(r+3) g2−−−−→ Rr+4 g1−−−−→ R

is a minimal free resolution of R/(I + J), where

g1 = (c1, c2, c3, w, ue1, ue2, · · · , uer), g4 = (ue1, ue2, · · · , uer, c1, c2, c3, w)t,

g2 =


0 uF Z S

0 0 C E

−F t Y 0 0

 =

G̃ f̃

0

 ,

g3 =



0 Zt Ct

0 St Et

F 0 0

Y −uF t 0


.

The matrix g2 contains an (r+3)×(r+3) skew-symmetrizable submatrix
G1 [5].

Proof. It follows from lemma 3.6. (1), [10] that H is a complex. To
show that H is exact, it is sufficient to show that the rank and depth
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conditions in the Buchsbaum-Eisenbud acyclicity criterion [3] are satis-
fied. First we prove that the rank condition is satisfied. Clearly, g1 and
g4 have rank 1. We show that g2 and g3 have rank r + 3. We observe
that

Q =

[
uF Z
Y 0

]
is a (r+3)× (r+3) submatrix of g2 whose determinant is equal to −w5.
Since g1g2 = 0 and g1 generates the ideal of grade 4, the determinant of
any (r+4)×(r+4) submatrix of g2 is equal to zero. So g2 has rank r+3.
In the similar way we can know that g3 has rank r + 3. Now we show
that the depth condition is satisfied. Clearly, I1(g1) and I1(g4) have
grade 4. Now we want to show that Ir+3(g2) and Ir+3(g3) have grade 4.
It is sufficient to show that Ir+3(g2) has grade 4. The similar argument

says that Ir+3(g3) has grade 4. For i = 1, 2, 3, we define W
(i)
i to be a

submatrix of g2 obtained by deleting the i row and the corresponding
column of g2. Let m,n be positive integers in the set {2, 3, 4, · · · , r+ 1}
with m < n and p, q positive integers in the set {3, 4, 5, · · · , r + 2} with
p < q. Let w1, w2, · · · , wr+3 be a sequence of positive integers between
1 and 2r + 5 satisfying the following properties:

(a) w1 < w2 < · · · < wr+3.
(b) w1 = 1, w2 = 2, and 3 ≤ w3, w4, · · · , wr ≤ r + 2 with wk 6= p, q

for k = 3, 4, · · · , r.
(c) wr+1 = 2 + r + i, wr+2 = r + 4 +m,wr+3 = r + 4 + n.

Let W
(i)
i (m,n, p, q) be a (r+3)×(r+3) submatrix of W

(i)
i formed by r+3

columns w1, w2, · · · , wr+3 of W
(i)
i . We can compute the determinant of

W
(i)
i (m,n, p, q) as follow. Let T be an (r + 3) × r submatrix of W

(i)
i

formed by the first r columns of W
(i)
i . For i = 1, 2, 3 we define Ti to be

a 3 × r submatrix of T obtained by deleting the last r rows of T. Let
Gi(m,n) and Ui(p, q) be 3×3 matrix and r×r matrix defined in the proof

of Theorem 4.1 in [10], respectively. Then we can write W
(i)
i (m,n, p, q)

as the form

W
(i)
i (m,n, p, q) =

 Ti Gi(m,n)

Ui(p, q) 0

 .
Hence

detW
(i)
i (m,n, p, q) = detGi(m,n) · detUi(p, q).

We use this identity to show that Ir+3(g2) contains c5i for i = 1, 2, 3. If

r = 2 and A(i) is a 2 × 2 submatrix of A obtained by deleting the ith
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column of A, then, as we have shown in the proof of Theorem 4.1 in
[10], the following identity gives us the desired result:

(detA(i))2 detW
(i)
i (2, 3, 3, 4)

= {(−1)i detA(i) detGi(2, 3)} · {(−1)i detA(i) detUi(3, 4)}
= c3i · c2i = c5i .

In the similar way, if r > 2 and d, e ∈ {1, 2, 3} with d < e, d 6= i, e 6= i,

A(i)(k − 1, l − 1) =

[
ak−1 d ak−1 e
al−1 d al−1 e

]
is a 2× 2 submatrix of A obtained by deleting the ith column of A and
(r− 2) rows of A except the (k− 1)th and (l− 1)th rows of it, then the
following identity completes the proof of this part:∑

2≤m<n≤r+1

∑
3≤p<q≤r+2

(−1)i+p+q detA(i)(m− 1, n− 1)

×detA(i)(p̄, q̄) detW
(i)
i (m,n, p, q)

=

 ∑
2≤m<n≤r+1

(−1)iḠi(m,n)

×
 ∑

3≤p<q≤r+2

(−1)p+qŪi(p, q)


= c3i · c2i = c5i ,

where p̄ = p− 2, q̄ = q − 2, and

Ḡi(m,n) = detA(i)(m− 1, n− 1) detGi(m,n),

Ūi(p, q) = detA(i)(p̄, q̄) det(Ui)pq.

Hence Ir+3(g2) contains c5i for i = 1, 2, 3. Finally we complete our
proof of Theorem 3.1 by showing that Ir+3(g2) contains (ue1)

3, (ue2)
3,

· · · , (uer)3. Let v1, v2, · · · , vr+3 be a sequence of positive integers be-
tween 1 and 2r + 6 satisfying the following properties:

(a) v1 < v2 < · · · < vr+3.
(b) vi = i for i = 1, 2, 3, and 4 ≤ v4, v5, · · · , vr+2 ≤ r + 3 with

vk 6= 3 + i for k = 4, 5, · · · , r + 2 and for i = 1, 2, 3.
(c) vr+3 = r + 6 + i.

Let V be a (r + 4) × (r + 3) submatrix of g2 formed by the columns
v1, v2, · · · , vr+3 of it. For i = 1, 2, · · · , r, we let Vi be a (r + 3)× (r + 3)

submatrix of V obtained by deleting the (i+ 4)th row of V. Let (uF )(i)

be submatrice of uF obtained by deleting the ith column of uF . Let
−F ti be a (r− 1)× 3 submatrix of −F t obtained by deleting the ith row
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of it. Then we can write Vi as the form

Vi =

 0 (uF )(i) ci(S)
0 0 ei
−F ti Y (i) 0

 ,
where ci(S) is the ith column of S and Y (i) is an (r − 1) × (r − 1)
alternating submatrix of Y obtained by deleting the ith row and the

corresponding column of Y . Let (Vi)
(r+3)
j be a (r+2)×(r+2) submatrix

of Vi obtained by deleting the jth row and the (r + 3)th column of Vi.
Then we have

detVi = s1i det(Vi)
(r+3)
1 −s2i det(Vi)

(r+3)
2 +s3i det(Vi)

(r+3)
3 −ei det(Vi)

(r+3)
4 .

Direct computations show that for j = 1, 2, 3, 4,

det(Vi)
(r+3)
j = djp

2
i1 , where dj = D̄uvw and {j, u, v, w} = {1, 2, 3, 4}.

Hence for i = 1, 2, 3, 4, we have

detVi = −p2i1(eiD̄123 − s1iD̄234 + s2iD̄134 − s3iD̄124) = −p3i1 = −(uei)
3.

So Ir+3(g2) contains c5i , w
5, and (uei)

3 for i = 1, 2, 3 and for k =
1, 2, 3, · · · , r. Thus if I1(g1) = (c1, c2, c3, w, ue1, ue2, · · · , uer) has grade
4, then the complex H satisfies the depth condition of the Buchsbaum-
Eisenbud acyclicity criterion. Thus H is the resolution of R/H. Since
every entry in the gi’s is contained in the maximal ideal m, it is mini-
mal.

Now we illustrate Theorem 3.1 by investigating the example of Goren-
stein ideal of grade 4 which is the sum of an almost complete intersection
of grade 3 of type 4 and a perfect ideal of grade 3 with type 2, λ > 0
geometrically linked by a regular sequence x.

Example 3.2. Let R = C[[x, y, z, t]] be the formal power series ring
over the field C of complex numbers with indeterminates x, y, z, t and
deg x = deg y = deg z = deg t = 1. Let A = (aij) and Y = (yij) be a
4× 3 matrix and a 4× 4 alternating matrix, respectively, given by

A =


y z x
t x z
z t y
x z y

 , Y =


0 x z t
−x 0 y x
−z −y 0 z
−t −x −z 0

 .
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Then we define

c1 = −x2z − 4xyz + y2z + 2z3 + x2t+ 2xyt− zt2,
c2 = −2x2y − xy2 + y3 + x2z + xyz + xz2 + yz2 − xzt− yzt

−z2t+ yt2,

c3 = x2z + y2z + 2xz2 − x2t− xyt− xzt− 2z2t+ t3,

w = yt,

e1 = −x2y + xyz − z3 + xzt+ yzt− yt2,
e2 = xyz − y2z + xz2 − yz2 − x2t+ y2t,

e3 = x3 − xy2 − xz2 + yz2 − xzt+ yzt,

e4 = xy2 − x2z + z3 − 2yzt+ xt2.

Let J = (c1, c2, c3, w) be an almost complete intersection of grade 3 of
type 4, and let x be a regular sequence xc1, c2, c3. Then I = (x) : J and
I = (xc1, c2, c3, xe1, xe2, xe3, xe4) is a perfect ideal of grade 3 of type 2
by the Bass’ result. Since (x) : I = J , and I ∩ J = x, I and J are
geometrically linked by a regular sequence x. By Proposition 2.6, an
ideal L = I + J = (c1, c2, c3, w, xe1, xe2, xe3, xe4) is a Gorenstein ideal
of grade 4. So the minimal free resolution H of R/L is given by

H : 0 −−−−→ R
g4−−−−→ R8 g3−−−−→ R14 g2−−−−→ R8 g1−−−−→ R,

where
g1 =

[
c1 c2 c3 w xe1 xe2 xe3 xe4

]
,

g2 =


0 xF Z S

0 0 C E

−F t Y 0 0

 =

 G̃
f̃

0

 ,

g3 =



0 Zt Ct

0 St Et

F 0 0

Y −xF t 0


,

where w = Pf(Y ), and g4 =
[
xe1 xe2 xe3 xe4 c1 c2 c3 w

]t
.

Theorem 3.3. Let R be a noetherian local ring with maximal ideal
m. With notations as above, let I be a perfect ideal of grade 3 with type
2, λ(I) > 0, and J = (c1, c2, c3, w) an almost complete intersection with
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the even type r > 1. Let I and J be geometrically linked by a regular
sequence uc1, c2, c3 + vw. Then I + J = (c1, c2, c3, w, ue1 − uvs31, ue2 −
uvs32, · · · , uer − uvs3r) is a Gorenstein ideal of grade 4 and

H : 0 −−−−→ R
g4−−−−→ Rr+4 g3−−−−→ R2(r+3) g2−−−−→ Rr+4 g1−−−−→ R

is a minimal free resolution of R/(I + J), where

g1 = (c1, c2, c3, w, ue1 − uvs31, ue2 − uvs32, · · · , uer − uvs3r),

g2 =


B uF Z S

0 uv[ai3]i=1,2,··· ,r C E

−F t Y 0 0

 =

G̃ f̃

0

 ,

g3 =



0 Zt Ct

0 St Et

F Bt 0

Y −uF t uv[ai3]
t
i=1,2,··· ,r


, B =

 0 uv 0
−uv 0 0

0 0 0

 ,

g4 = (−ue1 + uvs31,−ue2 + uvs32, · · · ,−uer + uvs3r, c1, c2, c3, w)t.

The matrix g2 is determined by an augmented matrix G̃ induced by the
skew-symmetrizable matrix G1 and an induced almost complete matrix

f̃ .

Proof. The same argument in Theorem 3.1 gives us the proof.

Example 3.4. Let R = C[[x, y, z, t]] be the formal power series ring
over the field C of complex numbers with indeterminates x, y, z, t and
deg x = deg y = deg z = deg t = 1. Let A = (aij) and Y = (yij) be a
4× 3 matrix and a 4× 4 alternating matrix, respectively, given by

A =


z y t
y x z
x t y
t z x

 , Y =


0 t x y
−t 0 x t
−x −x 0 z
−y −t −z 0

 .
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Then we define

c1 = −x3 + x2y + xy2 + xz2 + yz2 − y2t− 2xzt− 2yzt+ xt2 + t3,

c2 = −x2y + y3 + x2z − xyz + z3 + x2t+ xzt− 2yzt− yt2,
c3 = −x2y − xyz − y2z + 2xz2 + x2t+ y2t+ xzt− zt2 − t3,
w = xy − xt+ zt,

e1 = x3 + y2z − xz2 − 2xyt+ zt2,

e2 = −x2y − yz2 + y2t+ 2xzt− t3,
e3 = xy2 − x2z + z3 − 2yzt+ xt2,

e4 = −y3 + 2xyz − x2t− z2t+ yt2,

s31 = x2 + z2 − yt, s32 = −x2 + y2 − zt,
s33 = −yz + xt+ t2, s34 = xz − xt− yt.

Let J = (c1, c2, c3, w) be an almost complete intersection of grade 3 of
type 4, and let x be a regular sequence yc1, c2, c3+yw. Then I = (x) : J
and I = (yc1, c2, c3, ye1− y2s31, ye2− y2s32, ye3− y2s33, ye4− y2s34) is a
perfect ideal of grade 3 of type 2 by the Bass’ result. Since (x) : I = J ,
and I ∩J = x, I and J are geometrically linked by a regular sequence x.
By Proposition 2.6, an ideal L = I +J = (c1, c2, c3, w, ye1− y2s31, ye2−
y2s32, ye3 − y2s33, ye4 − y2s34) is a Gorenstein ideal of grade 4. So the
minimal free resolution H of R/L is given by

H : 0 −−−−→ R
g4−−−−→ R8 g3−−−−→ R14 g2−−−−→ R8 g1−−−−→ R,

where

g1 =
[
c1 c2 c3 w ye1 − y2s31 ye2 − y2s32 ye3 − y2s33 ye4 − y2s34

]
,

g2 =


B yF Z S

0 y2[ai3]i=1,2,3,4 C E

−F t Y 0 0

 =

 G̃
f̃

0

 ,

g3 =



0 Zt Ct

0 St Et

F Bt 0

Y −yF t y2[ai3]
t
i=1,2,3,4


, B =

 0 y2 0
−y2 0 0

0 0 0

 ,

g4 =
[
−ye1 + y2s31 −ye2 + y2s32 −ye3 + y2s33 −ye4 + y2s34 c1 c2 c3 w

]t
.
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Theorem 3.5. Let R be a noetherian local ring with maximal ideal
m. With notations as above, let I be a perfect ideal of grade 3 with type
2, λ(I) > 0, and J = (c1, c2, c3, w) an almost complete intersection with
the even type r > 1. Let I and J be geometrically linked by a regular
sequence c1, c2, sc3 + uvw. Then I + J = (c1, c2, c3, w, se1− uvs31, se2−
uvs32, · · · , ser − uvs3r) is a Gorenstein ideal of grade 4 and

H : 0 −−−−→ R
g4−−−−→ Rr+4 g3−−−−→ R2(r+3) g2−−−−→ Rr+4 g1−−−−→ R

is a minimal free resolution of R/(I + J), where

g1 = (c1, c2, c3, w, se1 − uvs31, se2 − uvs32, · · · , ser − uvs3r),

g2 =


B sF Z S

0 uv[ai3]i=1,2,··· ,r C E

−F t Y 0 0

 =

G̃ f̃

0

 ,

g3 =



0 Zt Ct

0 St Et

F Bt 0

Y −sF t uv[ai3]
t
i=1,2,··· ,r


, B =

 0 uv 0
−uv 0 0

0 0 0

 ,

g4 = (−se1 + uvs31,−se2 + uvs32, · · · ,−ser + uvs3r, c1, c2, c3, w)t.

Proof. The same argument in Theorem 3.1 gives us the proof.

Example 3.6. Let R = C[[x, y, z, t]] be the formal power series ring
over the field C of complex numbers with indeterminates x, y, z, t and
deg x = deg y = deg z = deg t. Let A = (aij) and Y = (yij) be a 4 × 3
matrix and a 4× 4 alternating matrix, respectively, given by

A =


y x z
t y x
x z t
z t y

 , Y =


0 z y t
−z 0 y z
−y −y 0 x
−t −z −x 0

 .
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Then we define

c1 = x3 + xy2 − y3 − xyz + yz2 + z3 + xyt− 2xzt− yzt+ yt2 − zt2,
c2 = x2y + y3 + 2xyz + xz2 − yz2 − x2t− y2t− xzt− yzt− z2t+ t3,

c3 = xy2 + x2z − xyz + y2z − yz2 − z3 − x2t− xyt+ y2t+ xzt

−yt2 + zt2,

w = xz − yz + yt,

e1 = xy2 + xz2 − x2t− 2yzt+ t3,

e2 = −x2y + y2z − z3 + 2xzt− yt2,
e3 = −y3 − x2z + yz2 + 2xyt− zt2,
e4 = x3 − 2xyz + y2t+ z2t− xt2,
s31 = x2 + y2 − zt, s32 = −y2 − xz + t2,

s33 = yz + z2 − xt, s34 = xy − yz − zt.
Let J = (c1, c2, c3, w) be an almost complete intersection of grade 3 of
type 4, and let x be a regular sequence c1, c2, xc3+z2w. Then I = (x) : J
and I = (c1, c2, xc3+z2w, xe1−z2s31, xe2−z2s32, xe3−z2s33, xe4−z2s34)
is a perfect ideal of grade 3 of type 2 by the Bass’ result. Since (x) :
I = J , and I ∩ J = x, I and J are geometrically linked by a regular
sequence x. By Proposition 2.6, an ideal L = I+J = (c1, c2, c3, w, xe1−
z2s31, xe2− z2s32, xe3− z2s33, xe4− z2s34) is a Gorenstein ideal of grade
4. So the minimal free resolution H of R/L is given by

H : 0 −−−−→ R
g4−−−−→ R8 g3−−−−→ R14 g2−−−−→ R8 g1−−−−→ R,

where g1, g2, g3, g4 are similarly determined by the above theorem 3.5.
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