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Abstract: Emerging technologies of wireless and mobile communication enable people to accumulate a large volume 
of time-stamped locations, which appear in the form of a continuous moving object trajectory. How to accurately pre-
dict the uncertain mobility of objects becomes an important and challenging problem. Existing algorithms for trajectory 
prediction in moving objects databases mainly focus on identifying frequent trajectory patterns, and do not take ac-
count of the effect of essential dynamic environmental factors. In this study, a general schema for predicting uncertain 
trajectories of moving objects with dynamic environment awareness is presented, and the key techniques in trajectory 
prediction are addressed in detail. In order to accurately predict the trajectories, a trajectory prediction algorithm based 
on continuous time Bayesian networks (CTBNs) is improved and applied, which takes dynamic environmental factors 
into full consideration. Experiments conducted on synthetic trajectory data verify the effectiveness of the improved al-
gorithm, which also guarantees the time performance as well.  
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1  Introduction 
 

he rapid development of wireless communication 
and location-awareness techniques has gradually 

improved the capability of tracing the instant spatio-
temporal position of continuously moving objects, 
which promotes the study of intelligent traffic control, 
intelligent navigation, military command, and fleet 
management. This emerging environment presents a lot 
of challenges in moving objects databases. How to accu-
rately predict the uncertain trajectory of moving objects 
becomes an essential problem. In addition, the mobile 
environment of objects often changes dynamically. Thus, 
we cannot only predict the trajectory (or path) of mov-
ing objects depending on static environment, i.e., con-
strained traffic networks. It is important to take into full 
consideration the following complex dynamic environ-
mental factors: (1) the change of moving speed and di-
rection, for example, running at a high speed or slowing 
down to turn over; (2) traffic situations, for instance, 
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traffic lights or traffic jam; and, (3) weather conditions, 
e.g., frog, snow, or rainstorm. 

Dynamic environmental factors include the macro 
traffic network environment, internal natural environ-
ment, and external natural environment that can change 
dynamically in form and state with time. The main char-
acteristics of dynamic environmental factors are insta-
bility and diversification. In this study, dynamic envi-
ronment awareness is defined to model these dynami-
cally changed environmental factors affecting the loca-
tion of moving objects, as well as to quantify and for-
malize these environmental factors that are hard to ex-
press. It becomes a research focus to effectively and ef-
ficiently predict the uncertain trajectories of moving ob-
jects by taking the dynamic environmental factors into 
full consideration. 

It is a difficult and challenging problem to predict 
the trajectories of moving objects due to the following 
reasons: 

(1) It is not feasible to apply traditional data mining 
approaches to discovering frequent paths of moving 
objects, because the trajectory data stream of continu-
ously moving objects obtained by global positioning 
systems (GPS) is unstable and changes dynamically. 
We need to develop steady and scalable trajectory min-
ing approaches. 
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(2) It is necessary to efficiently obtain the positions 
of moving objects, as the predicting results after a 
long period of time are useless due to the real-time 
requirement. 

(3) Most existing predicting algorithms depend on 
several input parameters, which can greatly affect the 
prediction accuracy. We need to take into consideration 
important external factors and the knowledge of domain 
experts. 

(4) If the predicting algorithm is not well designed, 
the computation cost increases in an exponential order 
as the number of moving objects grows quickly. 

The main contribution of this paper includes the fol-
lowing: 

(1) We present a generic schema of trajectory predic-
tion with dynamic environment awareness and introduce 
the key techniques to solve problems in this schema. 
The proposed schema is appropriate to line as well as 
region objects besides the point objects. And the pro-
posed index structure can greatly improve the efficiency 
of predicting. 

(2) We identify four important dynamic environ-
mental factors that can exert influence on the motion 
states of objects. 

(3) We apply a trajectory prediction algorithm based 
on continuous time Bayesian networks (CTBNs), 
namely PutMode, which takes into full consideration the 
effect of dynamic environmental factors. And we im-
prove the PutMode algorithm by quantifying the traffic 
situation and integrating it into the linear function. 

(4) Experiments are conducted on synthetic trajectory 
data generated on real-world maps to demonstrate the 
effectiveness and efficiency of PutMode by comparing it 
with the Naive algorithm. 
 
2. Related work 
 

Existing works relevant to trajectory prediction 
mainly focus on discovering frequent trajectory patterns, 
indexing and querying continuously moving objects, un-
certainty management of moving objects, and trajectory 
prediction. The typical works are presented as follows. 

 Discovering frequent trajectory patterns. Tao et al. 
[1] proposed a schema to monitor and index moving ob-
jects and developed a frequent trajectory patterns mining 
algorithm called STP-tree, which can query objects in an 
effective manner. In order to discover frequent trajec-
tory patterns, Morzy [2] proposed an efficient frequent 
trajectory mining algorithm, namely Traj-PrefixSpan, 
which uses a probabilistic model to compute the most 
possible location of objects based on moving rules. 
However, the typical works introduced in [3-5] need to 
scan trajectory databases for several times, which is 
time-consuming. 

 Indexing and querying moving objects. It is an  
essential phase to index moving objects in trajectory 
prediction. The indexing techniques can be classified 
into two categories: indexing historical trajectories, and 
indexing current and future trajectories [6]. Ding et al. 
[7] proposed the UTR-tree to index uncertain trajecto-
ries of moving objects in constrained road networks. 
TPR-tree [8] is a widely used indexing method, which 
models the motion state of moving objects in linear 
functions and uses the linear interpolation method to de-
pict the complex moving behavior. Another work is by 
Pfoser and Jensen [9]. They proposed to transform 2-
dimensional moving curves into 1-dimensional set of 
segments, and then map these segments into the corre-
sponding trajectory. Li et al. [10] proposed an improved 
UTR-tree, which indexes static constrained road net-
works by R*-tree and employs R*-tree and Hash array 
to manage dynamically changed location information. 
As for indexing the current and future location of mov-
ing objects, there are several works based on R-tree. RR-
tree [11] is a typical structure, which contains two op-
erations, including the update operation and the group-
ing operation. Tao et al. [12] proposed the TPR*-tree 
index structure that takes into full consideration the 
unique features of dynamic objects by a set of improved 
construction algorithms. ANR-tree [13] is a recently 
proposed index updating approach, which uses adaptive 
unit to group neighboring objects with similar move-
ment patterns. The main problem in indexing moving 
objects is that the update cost of index is high. RR-tree 
and TPR*-tree are alternative solutions for efficient in-
dexing, but these approaches are constrained by the 
fixed networks. We have to improve these algorithms to 
adapt to unfixed networks or propose generic indexing 
structures. The newly proposed querying processing 
models for moving objects are detailedly discussed in 
[14-16]. 

 Uncertainty management of moving objects. There 
are several uncertainty factors that can affect the posi-
tion of moving objects, such as, uncertain location, ap-
pearing or disappearing, and uncertain moving behav-
iors. Currently, researchers mainly concentrated on 
managing the uncertain location of moving objects. Tra-
jcevski et al. [17] proposed the probability density func-
tions to describe the uncertainty associated with the lo-
cation, and identified syntactic variants for systematic 
incorporation of uncertainty in the continuous nearest-
neighbor queries. Pfoser et al. [18] used the error el-
lipse to represent the positions of moving-point objects 
and quantified the imprecisions in the proposed repre-
sentation. Ding et al. [19] employed the distance 
threshold that affects the update of locations, the speed 
threshold, and the speed in some time point to compute 
the most possible positions in a POS×T plane, in which 
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POS represents the position dimension and T is the 
time dimension. 

 Trajectory prediction of moving objects. Recently, 
this research topic has attracted a number of researchers. 
Jeung et al. [20] proposed a hybrid trajectory prediction 
model called TPT-tree based on trajectory patterns and 
moving functions, which employs the node update strat-
egy of Signature tree, and uses the premise similarity 
measures, forward query processing, and backward 
query processing to predict the frequent trajectory pat-
terns in an accurate fashion. Parker et al. [21] proposed 
an efficient and effective mobility destination prediction 
approach based on distinct axioms that can be employed 
to measure the difference between the predicted itinerar-
ies and the real ones. Guo et al. [22] proposed novel un-
certain trajectory measures, and used them to discover 
the uncertain trajectory patterns. Song et al. [23] intro-
duced the limits of predictability in human mobility in 
Science. They found a 93% predictability in user mobil-
ity across the whole user base by calculating the entropy 
of each individual’s trajectory. In addition, they proved 
that users’ regular mobility path is independent of the dis-
tance users cover. Jeung et al. [24] proposed a network 
mobility model to capture the turning patterns at junctions 
and the travel speeds on road segments of objects. How-
ever, the proposed method is only applicable to constraint 
road networks. Chen et al. [25] presented a personal  

route prediction system using a probabilistic model 
based on historical trajectory data. This system em-
ployed Markov model to obtain the continuous route 
patterns using frequent trajectory pattern mining method 
with low time cost. These existing trajectory prediction 
algorithms often overlook the effect of some important 
and complex dynamic environmental factors, such as 
speed, moving direction, and users’ travel experiences. 
The existing methods lack generality as moving objects 
may follow the dynamic motion patterns in real life. In 
[26], Qiao et al. applied CTBNs to predict the uncertain 
trajectory of moving objects. However, they did not in-
dex the objects before predicting.  
 
3. Schema of trajectory prediction with dy-

namic environment awareness 
 

In this study, we aim to solve the following important 
problems of uncertain trajectory prediction of objects 
with dynamic environment awareness:  

(1) designing a generic schema of uncertain man-
agement, which is applicable to various kinds of moving 
objects and can automatically determine different man-
agement strategies for the corresponding objects;  

(2) developing new spatio-temporal index structures, 
which are efficiently updated and are not constrained by 
the fixed networks as well; and, 

 
Fig. 1  Schema of trajectory prediction under dynamic environment 
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(3) predicting uncertain trajectories of moving objects 
by including a full consideration of the dynamic envi-
ronmental factors in an effective and efficient manner.  

We propose the schema as shown in Fig. 1 to handle 
these three problems, where the annotations in the rec-
tangles represent the strategies to solve the correspond-
ing problems. 
 
4. Key techniques for predicting uncertain 

trajectories 
 

For solving the key problems addressed in Section 3, 
we use the following strategies in this study. 

 
4.1. Managing the uncertain motion of objects 
 

We use the following models corresponding to dif-
ferent kinds of moving objects to depict the possible 
motion curve of objects. In general, the objects are clas-
sified into three categories: point, line, and region ob-
jects. We design different trajectory volumes as shown  
in Fig. 2 to approximate the possible motion curve of 
different kinds of objects. 

Here we take point objects as an example to intro-
duce the theory of managing uncertain motion [26]. 

For each point (x,y,t) along a trajectory, the uncertain 
area is a disk with radius r. A possible motion curve Ptr 

of trajectory tr can be expressed by a function fPtr:  
t→r2 for any time t  [t1,tn]. Assuming that an object 
moves at a constant speed vi, the 3D point (fPtr ,t)  inside 
an uncertain area of the expected location at a given 
time instant t satisfies 

2 2 2( ( )) ( ( )) .x y
i i i ix x v t y y v t r       (1)

 

4.2. Indexing the current and future positions of moving 
objects 

 
We design a new index structure called UMO-tree 

with low updating cost as shown in Fig. 3. UMO-tree is 
partitioned into two layers, where the upper layer Rroad is 
a two dimensional R*-tree that is used to index the 
streets in static road networks, and the lower layer R*-
tree that indexes the moving objects denoted by Robject in 
the leaf node of Rroad. In contrast to traditional R*-tree 
indexing structures, the leaf nodes in Rroad contain the 
road information based on their spatial positions, which 
can help reduce the number of nodes, the dead space for 
storing nodes, and the overlapped area. Hdata is a Hash 
table that is used to store the instant information of ob-
jects, e.g., moving speed and location. 

The advantage of the proposed index structure is that 
it uses R*-tree to index the static road information with 
less change. In addition, UMO-tree uses R*-tree and 
Hash table to manage the dynamic moving information 
in order to efficiently index the current and future posi-
tions of objects. 

 
4.3. Predicting uncertain trajectories of moving objects 

with dynamic environment awareness 
 

We have to quantify the dynamic environmental fac-
tors including the location, speed, direction, and traffic 
situation. These dynamic environmental factors are for-
malized by the following methods: 

a) Location: it is quantified by the identification 
number of each street. 

b) Speed: it is divided into several levels according to 
the speed criterion. For example, it is represented by 
{s1,s2,…,s5} for cars. 

 
 

   
(a) Point (b) Line (c) Region 

Fig. 2  Trajectory volumes of different kinds of moving objects 
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Fig. 3  Two layer indexing structure based on R*-tree 
 

c) Direction: objects often move forward, turn left or 
right, and move back, which can greatly affect the mo-
tion of objects. In addition, the direction contains some 
second-order information which takes into consideration 
specific situations. For instance, if we know the previ-
ous street, we could roughly estimate the direction at the 
current street. The detail is presented in [26]. 

d) Traffic situation: it contains the cases of traffic 
lights and traffic jam. As for traffic lights, we divide 
them into four cases, i.e., green in South and North, red 
in East and West; yellow in South and North, red in 
Eastand West; green in East and West, red in South and 
North; yellow in East and West, red in South and North. 
As for traffic jam, we classify the traffic situation into 
three levels: no jam, jam, and serious jam. 

Then, we use the numerical approach proposed in [26] 
to quantify the above dynamic environmental factors, 
and design a linear function to model these factors. In 
[26], the authors have verified that the linear function 
can be employed to map the motion state of objects to 
one unique value that can be used to construct the condi-
tional intensity matrix (CIM) of trajectories. 

In this study, we use continuous time Bayesian net-
works (CTBNs) to calculate the state transition probabil-
ity changing continuously over time. It is reasonable to 
depict a trajectory as a CTBN, because the dynamic en-
vironmental factors in the same state have the property 
of continuous time. Due to space limitation, please refer 
to [27] for the detail of CTBNs. 

The trajectory prediction algorithm is borrowed from 
[26] and contains the following phases: 

(1) Use the linear function F(X) to compute the state 
values in each trajectory by integrating these four dy-
namic environmental factors, which are denoted by a 

four-tuple vector X={(x1,x2,x3,x4) | xi [1,4] represents 
location, speed, direction, and traffic situation}, where 
the finite domain of each variable is dom(xi). 

(2) Create the conditional intensity matrix based on 
the given state values. Let L be the combined state of 
four variables with regard to each dynamic environ-
mental factor. The domain of L is f(L)={l1,l2,…,ln}, and 
L is determined by its previous state L (t). A CIM of a 
trajectory is defined as the following matrix: 

1 12 1

21 2 2
| '

1 2

( ') ( ') ( ')
( ') ( ') ( ')

( ') ( ') ( ')

l l l
n

l l l
n

L L

l l l
n n n

p L p L p L
p L p L p L

p L p L p L

 
  
 
 

  

M

K

K

M M O M

K

, (2) 

where the element )'(Lpl
ij  in a CIM represents the in-

stantaneous probability of state transition from li to lj. 
The transition probability can be calculated by 

( ') ( ') / ( '),l l l
ij ij iji j

p L f L f L


   (3)

in which )'(Lf l
ij is the occurrence frequency of visiting 

a street in a trajectory where the state of an object 
changes from li to lj, and the frequency is calculated 
based on the historical data. 

(3) Finally, compute the visiting probability of each 
trajectory by multiplying the state values in a trajectory, 
and find the possible trajectories. The algorithm is given 
below [26]. The trajectory prediction algorithm contains 
three essential phases [26]: 

i) Initialize a null state chain C0 and add s0 to it (lines 
1–2);  

MV 
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ii) Find the state chain whose product of the previous 
transition probabilities is greater than ε (lines 3–9); 

iii) Compute the xy-coordinate of each state and the 
time interval between two states in each trajectory and 
finally output the predicted results (lines 10–15).  

Algorithm 1  Trajectory prediction based on CTBNs 
Input: A CIM M, an initial state s0 of a object, a probability 
threshold ε, a radius r of a trajectory volume. 
Output: a set of possible trajectories T ={T1,T2,…,Tn}. 
1. N←Ø; C0←Ø; 
2. C.put(s0);  C0.prob = 1;  N.put(C0); 
3. for each Cp N do 
4.  {i←Cp.lastIndex();}  
5. for (each state j in the ith row of M & M(i,j) ≠ 0)  
6.   if (Cp.prob*M(i,j) ≥ ε) then 
7.    {C’p = Cp; C’p.put(j); 
8.     C’p.prob←C’p.prob*M(i,j); 
9.     N.put(C’p);} 
10.for each Cp N do 
11.  {Tp=CalTraj(Cp);  
12.  for each state κ in Cp do 
13.    {τ←CalTime(tr);  
14.     Tp.put(ts,te,τ);} 
15.  Output(Tp);} 

 
5. Experiments 
 

In order to evaluate the effectiveness and efficiency 
of the trajectory prediction algorithm based on CTBNs 
that takes the dynamic environmental factors into full 
consideration, we conducted experiments to compare the 
proposed PutMode [26] with the Naive prediction algo-
rithm (Naive for short) that does not take into account 
the effect of the presented four dynamic environmental 
factors. We have improved PutMode algorithm by quan-
tifying the traffic situation and integrating it into the lin-
ear function. In addition, by extensive experiments, we 
find that the improved PutMode algorithm is better than 
the old-fashioned one.  

Both algorithms were implemented in Java and the 
experiments were performed on an AMD Athlon 5000+, 
3.0 GHz CPU with 2.0 GHz of main memory, running 
on Ubuntu Linux 8.04 operating system. 

All experiments were run on the data set that is gen-
erated by Brinkhoff’s network-based generator [28]. The 
data were generated with real-world maps by the net-
work-based spatio-temporal data generating approach 
[29]. The data set was obtained from the New York state 
map consisting of 3 287 nodes and 3 997 edges. The 
probability threshold  and the radius r are important in-
put parameters in Algorithm 1, we have to tune these pa-
rameters before conducting experiments. The detail of 
the parameter tuning process is available in [26].  

5.1. Effectiveness comparison of trajectory prediction 
 

The prediction accuracy is defined by [26]: 

N
nAccuracy  , (4)

where n is the number of the hits set of trajectories and 
N is the number of the real-world trajectories during a 
given time interval. The implication of hits is defined as 
follows [26]. 

For t = (s1, τ1) Tr and t  = (s2, τ2)  Tr , where{s1, 
s2} s, {τ1, τ2} τ, s is the set of streets and τ is the set 
of timestamps, t should satisfy the τ-containment [30] 
which means t is contained in t satisfying 

1) 1, 2,[0, ], ,
kk ik n s s    

2) 1, ,[1, ],| | ,k kk n        

where 
1

, 2,
k

k

i
k jj i

 


 
  , [1, ]k n  . 

In this set of experiments, we use the accuracy meas-
ure to compare the effectiveness of trajectory prediction 
between PutMode and Naive algorithms in the New 
York data set. The results are given in Fig. 4. 

One can see from Fig. 4 that PutMode outperforms 
Naive in any case with an average gap of 10.3% as the 
number of moving objects grows. This is because Put-
Mode takes account of the dynamic environmental fac-
tors including the current location, direction, speed, and 
traffic situation. 
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Fig. 4  Prediction accuracy comparison between PutMode and 
Naive algorithms 

 
5.2. Efficiency comparison of trajectory prediction 
 

In order to further verify the time performance of 
PutMode, we compare the runtime of trajectory predic-
tion with the number of initial states of objects on the 
New York trajectory data set. The results are shown in 
Fig. 5. 
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From Fig. 5, we observe that Naive wins in all cases, 
because it only uses the transfer from one street to an-
other to represent the state transition [26]. However, 
PutMode uses the linear function integrating four dy-
namic environmental factors to determine one state 
transformation that is time intensive. In addition, it is in-
teresting to see that the prediction time of PutMode 
grows linearly with the number of initial states of ob-
jects. The reason is that the prediction time is deter-
mined by the number of state chains (see Algorithm 1 
for detail), which in turn depends on the number of ini-
tial states of moving objects [26]. 
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Fig. 5  Prediction time comparison between PutMode and Na-
ive algorithms 

 
6. Conclusion 
 

In order to cope with the problem of effectively pre-
dicting the uncertain trajectories of moving objects, we 
have proposed a schema of trajectory prediction under a 
dynamic environment. We presented the key techniques 
for managing the uncertain motion of objects, indexing 
the current and future positions of moving objects, and 
predicting the moving trajectories. Then, we improved a 
trajectory prediction algorithm based on CTBNs by 
quantifying the traffic situation and integrating it into 
the linear function, and employed it to predict the uncer-
tain trajectories of moving objects under a dynamic en-
vironment. Finally, we carried out experiments to esti-
mate the accuracy and time performance of the intro-
duced algorithm. 

There are several challenges that we plan to study in 
the future. One is to improve the efficiency of the Put-
Mode algorithm by reducing the useless states of mov-
ing objects. Another is to propose another accurate 
model to represent these dynamic environmental factors. 
Finally, we plan to apply the PutMode algorithm and the 
proposed schema to tracing and predicting human mo-
bility or travel itineraries.  
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