
proceedings of the
american mathematical society
Volume 81, Number 4, April 1981

EXTENSION OF A THEOREM OF GUDDER AND SCHELP

TO POLYNOMIALS OF ORTHOMODULAR LATTICES

LADISLAV BERAN

Abstract. Consider a polynomial expression p(b, c,. .., d) = e where any two of

the elements b,c,.. . ,d commute. If an element a commutes with e, then b

commutes with p(a, c, . . . , d).

1. Introduction. In this paper, £ = (L, V> A, '> 0> 1) always means an orthomod-

ular lattice. If a, b G L and a = (a A b) V (a A b'), then a, b are said to com-

mute; in this case we write aCb.

First recall some useful properties of the relation C (see e.g. [2, pp. 52-53]).

1.1. Lemma, (i) 7/ a, b, c G L are such that aCb and aCc, then aCb A c and

aCb V c.

(ii) 7/ {a, b, c} = {x, v, z} is a subset oSL, and ijxCy and xCz, then a A (b V c)

= (aAb)V(aAc) and ay (b A c) = (a V b) A (a V c).

A well-known result states that if a, b G L and aCb, then bCa. For orthomodu-

lar lattices a result of Gudder and Schelp [5, p. 235] can be simplified and

formulated in the following way: If aCb A c and bCc, then bCa A c. The author's

paper arose as the result of attempts to generalize these two special situations.

2. Preliminaries. In what follows, {b, c2, . . . , cn) denotes a subset of L where

any two elements commute.

2.1. Lemma. Let p be an n-ary lattice polynomial. Then

(l)p(b, c2, .. ., c„) = Bx(b, c2, . . ., c„) A B2(b, c2, . . ., c„), where

(2) Bx(yx, x2, . . . , x„) = A (v, V V (*,!' e Ij)\j G J),

(3) B2( v„ x2, . . . , x„) = A (V(**l* e x,)\t e T)
and where I}, J, Kr T are finite sets.

Proof. By Lemma l(ii), the sublattice generated by b, c2, .. ., c„ is distributive

and the assertion follows from [1, Theorem 12, p. 145].

2.2. Corollary. Let ex = d, e2,. . . , e„ G L be such that e¡Cej Sor 1 </,/<«

and suppose (I) is valid. Then

p(d, e2,..., e„) = Bx(d, e2, . . . , e„) A B2(d, e2,.. ., en)

where 7?, and B2 are the same polynomials as in (2) and (3).
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2.3. Proposition. IS a, b G L are such that aCb A c and bCc, then bCa A c.

Proof. Since a = [a A (b A c)] V [a A (ft A c)'\, we have

a' = (a' V b' V C) A[a' V (b A e)].

Thus

a'Vç'r {(a' V ft' V c') A[a' V(*Ac)]}V C.

However, a' V b' V C > a A (b' V C) = [a' V (b A e)j and it follows a'\/(b A

c) Ca! V ft' V C. Similarly, c'Ca' V b' V C. By Lemma l.l(ii),

á V C = (a' V ft' V O A[o' V c' V (ft A c)].

But c' V (ft A c) = c' V ft» by Lemma 1.1 (ii). Therefore

a' V C = (a' V C V *') A (a' V C V ft)

and, finally, a A c = [(a A c) A ft] V [(a A c) A b'].

3. Key lemma and main theorem. We begin this section with the following

technical lemma.

3.1. Lemma. Let p be an n-ary lattice polynomial and let (1) be valid. Then Sor

every a G L

DXAD2< p(a, c2, . . ., c„) < D2

where

£>, = A(V(c,|/e7y.)|yey),

»2 = A (V (ck\k G K,)\ t G T).

Proof. Since p is a lattice polynomial, by [3, Lemma 6, p. 33] we have

p(0, c2, . . ., c„) < p(a, c2,. . . , c„) < p(l, c2, ..., c„).

By Corollary 2.2,

p(0, c2, . . . , c„) = Bx(0, c2,..., c„) A B2(0, c2, . . ., c„) = DXA D2.

Moreover,

p(l, c2, . . ., cn) = 5,(1, c2, . . ., c„) A B2(l, c2, . . ., c„) = D2.

3.2. Theorem. Let cx, c2, . . . , cn and a be elements oS an orthomodular lattice. IS

CjCcj Sor any 1 <, i,j < n and // aCp(cx, c2,. . ., c„) where p is an n-ary lattice

polynomial, then

ckCp(cx, c2,..., ck_x, a, ck+x,..., cn)

Sor every k = 1,2,...,«.

Proof. We may assume that k = I. Let ft = c,. By assumption,

aCp(b, c2, . . ., cn). From Lemma l.l(i), ctCp(b, c2, . . . , cn) for every i = 2, . . ., «.

By the same lemma we also havep(a, c2,. . . , c„)Cp(b, c2,. . ., c„). That is,

Bx(b, c2,..., c„) A B2(b, c2,..., c„)Cp(a, c2, . . ., c„).

Since bCc: for every / = 2, . . . , «,

Bx(b, c2,..., c) = ft v (A (V (c,\i g Ij)\j Gj)) = by Dx.
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Replacing B2(b, c2, . . ., c„) by D2 we see that

(b V Dx) A D2Cp(a, c2, . . ., cn).

By Lemma 1.1(a), bCDx and bCD2. Hence (b A F>z) V (#, A D2)Cp(a, c2, . . . , c„)

and also ft A D2CDX A D2. In view of the assertion dual to Proposition 2.3,

b A D2Cp(a, c2, . . . , c„) V (Dx A D2). Then, by Lemma 3.1, b A

D2Cp(a, c2, . . ., c„). Similarly, bCp(a, c2,. . . , c„) AD2= p(a, c2, . . ., c„).

Remark. We conclude by observing that the assertion of Theorem 3.2 is optimal

in the following sense: If q is a polynomial in V> A aQd ', then an analogue of

Theorem 3.2 need not be valid. This can easily be seen by considering the

orthomodular lattice constructed by Greechie's classical method [4] from two

copies of 23 (cf. Figure 1). Let q(x, y) = (x A y) V •*'• Here we have aCq(d', e) =

1 but d' and q(a, e) = b do not commute.
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