
GLYPH: A New Instantiation of the GLP Digital Signature

Scheme

Arjun Chopra∗

Abstract

In 2012 Güneysu, et al. proposed GLP, a practical and efficient post-quantum digital
signature scheme based on the computational hardness of the Ring Learning With Errors
problem. It has some advantages over more recent efficient post-quantum digital signature
proposals such as BLISS and Ring-TESLA, but Ring Learning With Errors hardness is
more fully understood now than when GLP was published a half decade ago. Although not
broken, GLP as originally proposed is no longer considered to offer strong levels of security.

We propose GLYPH, a new instantiation of GLP, parametrised for 128 bits of security
under the very conservative assumptions proposed in [2], which gives a strong assurance
that it will be secure against forgery even if there are further developments in lattice crypt-
analysis. Parameters to obtain this strong security level in an efficient manner were not
possible within the original formulation of GLP, as they are not compatible with a signature
compression algorithm, and to address this we also propose a new form of the compression
algorithm which works efficiently with wider ranges of parameters.

We have produced a software implementation of GLYPH, and we place it in the public
domain at github.com/quantumsafelattices/glyph.

Keywords: Cryptography, Post-Quantum Cryptography, Lattice, Ring-LWE, Ring Learn-
ing With Errors, Digital Signature, GLP

1 Introduction

Lattice-based cryptographic primitives are emerging as promising post-quantum alternatives
for classical asymmetric public key cryptography. There are now mature proposals for efficient
and secure Diffie–Hellman-like key agreements such as [5, 2, 12, 13] which have strong security
guarantees and have been shown to work within real-world protocols. However practical post-
quantum alternatives to classical digital signature schemes are only now beginning to emerge.
Three main contenders for post-quantum alternatives to current digital signature schemes are
the ‘BLISS’ proposal of Ducas et al. in [8], the ‘Ring-TESLA’ proposal of Akleylek et al. in

∗arjun.chopra.vsc@safe-mail.net. Associate Consultant, VS Communications

1

[3], latterly improved by Barreto et al. in [4] and by the present author in [7], and the ‘GLP’
proposal of Güneysu, et al. in [10].

BLISS is especially efficient and compact, so is a natural contender for a post-quantum digital
signature scheme, however this efficiency and compactness is obtained by use of Discrete Gaus-
sian sampling, which is especially hard to secure against timing and other side-channel attacks
as demonstrated, for example, in [9, 11, 6]. Therefore it may be advantageous to consider
signature schemes that do not employ Discrete Gaussian sampling.

Ring-TESLA is not as efficient as BLISS, as it was designed with the especial assurance of
a ‘tight security reduction’ to the Ring Learning With Errors (Ring-LWE) problem in mind.
However, recently a flaw has been found in the reduction, although this has not been shown to
lead to a practical attack. Recent improvements have been proposed to Ring-TESLA such as
in [4] and [7], although they do not address the security proof’s flaws.

GLP is a strong contender, as it is more efficient than Ring-TESLA and, unlike both BLISS
and Ring-TESLA, does not use Discrete Gaussian sampling. It has a security reduction to
the Decisional Compact Knapsack (DCK) problem which is a specific case of the Ring-LWE
problem. However, Ring-LWE security is better understood now than it was five years ago when
[10] was first published, and the instantiation proposed there is no longer considered to offer the
desired security against modern cryptanalysis. GLP had originally proposed two parameters
sets intended to offer either 100, or more than 256 bits of security, however these estimates have
been substantially reduced over time, as noted in [8].

In this paper we shall propose a new instantiation of GLP which offers over 128 bits of se-
curity under the conservative model proposed in [2] by Alkim et al, which makes optimistic
assumptions about the capabilities of an adversary, so should offer long term assurance. We
call our instantiation GLYPH. A key innovation in GLYPH, which keeps the scheme as efficient
as possible, is an improved ‘signature compression’ routine. The compression routine originally
proposed in [10] works only for certain paramter sets, and is not compatible with the ones we
propose here.

We have implemented GLYPH in software, and we place this in the public domain at
github.com/quantumsafelattices/glyph.

2 Preliminaries

In this section we shall recap preliminaries necessary to understand the GLP signature scheme.

2

2.1 Cyclotomic Rings

Let R = Z/ 〈Φm(x)〉 = Z[ζm] be the m-th cyclotomic ring, where Φm(x) is the m-th cyclotomic
polynomial and ζm is a primitive m-th root of unity. The degree n of R is the degree of Φm,
which is given by the Euler totient function φ(m). In this paper m shall be a power of two or
shall be prime.

In the case where m is a power of 2, the situation is n = φ(m) = m/2 and Φm(x) = 1+xn. This
case has the advantage of practical efficiencies and simplifications, but has the disadvantage of
restricting to a narrow range of parameter sizes. A wider choice of parameter sizes is provided
when instead m is prime, from which n = φ(m) = m− 1, and Φm(x) = 1 + x+ x2 + . . .+ xn.

For any integer q we shall let Rq denote the quotient ring R/qR. Multiple bases for the rings
R and Rq are considered in the literature and used for efficient implementations, however
for ease of exposition we shall here consider only the natural basis for R and Rq given by{

1, ζ, ζ2, . . . , ζn−1
}

, also known as the power basis.

Elements of Rq are represented as
∑

i xi · ζi where the coefficients xi are integers in [0, q). We
shall also refer to coefficients that are negative mod q for consistency with the language in [10].
These shall be interpreted as the appropriate mod q representation in [0, q), for example −3 as
4 mod q in the simple case where q = 7. We shall also refer to the absolute value of a coefficient,
which shall mean the absolute value of its representation in [(1− q)/2, (q + 1)/2] mod q.

For any integer K we define Rq,K the set of K-bounded elements to be those elements of Rq
whose coefficients all have absolute value less than K.

For any integer ω, we define Sω the set of ω-sparse elements of Rq to be the 2ω
(
n
ω

)
elements for

which ω of the xi are ±1 mod q, and the remainder are zero.

For any integer K we shall define the rounding function d·cK : Rq → Rq as follows. We can
uniquely write each xi in the form xi = ri(2K + 1) + si with si ∈ [−K,K]. We shall denote1 si
as remK(xi) and ri as dxicK , and then⌈∑

i

xi · ζi
⌋
K

=
∑
i

dxicK · ζ
i.

2.2 The Ring-LWE and DCK problems

We here recall the Ring-LWE distribution, and the associated decision and search problems:

Definition 1 (Ring-LWE Distribution). For an s ∈ Rq and a distribution χ over R, a sample
from the Ring-LWE Distribution As,χ over Rq × Rq is generated by sampling a uniformly at
random in Rq, sampling e from χ, and outputting (a, as+ e).

1The notation remK(xi) is not standard, but we shall adopt it to distinguish from the earlier modq notation.

3

Definition 2 (Decision Ring-LWE). The Decision Ring-LWE Problem is to distinguish with
non-negligible advantage between independent samples from As,χ where s is chosen once and
for all, and the same number of uniformly random and independent samples from Rq ×Rq.

Definition 3 (Search Ring-LWE). The Search Ring-LWE Problem is to recover s with non-
negligible advantage from samples from As,χ where s is chosen once and for all.

We shall consider only the case where χ is the co-ordinate-wise uniform distribution on {−1, 0, 1} mod
q, which is called the Decisional Compact Knapsack (DCK) problem in [10].

The Ring-LWE problem is a special ideal-lattice case of the general Learning With Errors
(LWE) problem defined over lattices:

Definition 4 (LWE Distribution). For an s ∈ Znq and a distribution χ over Z, a sample from
the LWE Distribution Bs,χ over Znq × Zq is generated by sampling b uniformly at random in
Znq , sampling e from χ, and outputing (b,b · s + e mod q).

Definition 5 (Decision LWE). The Decision LWE Problem is to distinguish with non-negligible
advantage between independent samples from Bs,χ where s is chosen once and for all, and the
same number of uniformly random and independent samples from Znq × Zq.

Definition 6 (Search LWE). The Search LWE Problem is to recover s with non-negligible
advantage from samples from Bs,χ where s is chosen once and for all.

A single Ring-LWE sample (a, as+ e) corresponds to n LWE samples:

(b0,b1 · s + e1 mod q), . . . , (bn−1,bn−1 · s + en mod q).

Each bi is the vector of coefficients for the polynomial ζia, s is vector of coefficients from s,
and the ei are the coefficients of e. Therefore the bit-level hardness of Ring-LWE problems can
be estimated from the bit-level hardness of LWE problems.

Concrete assessments of LWE security are given by Albrecht et al. in [1], and most recently
and conservatively by Alkim et al. in [2], which analyses lattice sieving in conjunction with the
Block Kirkine Zolotarev (BKZ) 2.0 algorithm.

3 The GLP signature scheme

In this section we shall describe the GLP signature scheme as presented in [10]. The components
of GLP are Key Generation, Sign and Verify. In addition to the parameters m,n, q in Section
2, there are integer parameters ω, κ,B and auxiliary functions H and F .

GLP requires a κ-bit hash function H : {0, 1}∗ → {0, 1}κ and an encoding function F : {0, 1}κ →
Sω from the output of H to the sparse elements of Rq.

4

The output size κ of the hash function H must have at least the required security level λ of the
signature scheme, for instance κ could be 256 for up to 128 bits of security and H instantiated
as SHA256. It must be chosen so that the output space of H is larger than the number of
ω-sparse elements of Rq. The encoding function F must be chosen so that the probability of
mapping two hash outputs to the same sparse element is less than one in 2λ. This will be
satisfied if the number of ω-sparse elements of Rq is larger than 2λ.

To make signatures as compact as possible, GLP also uses a compression algorithm, which
allows a polynomial in Rq to be efficiently represented by its ‘high bits’, and is summarised by
the following lemma from [10].

Lemma 1. There is an algorithm Compress(y, z) that for any q, n,B, ω where 2n(B−ω)/q ≥ 1
and q is much larger than 2(B − ω)/n takes as inputs y ∈ Rq, z ∈ Rq,B−ω and outputs z′ in
Rq,B−ω such that

1. dy + z′cB−ω = dy + zcB−ω

2. z′ can be represented with only 2n+ dlog2 (2(B − ω) + 1)e · 6(B−ω)nq bits

with probability greater than 0.98.

We shall now describe the operation of the GLP signature scheme.

Key Generation

Input: Uniformly-sampled public parameter a ∈ Rq.
Output: Private/public key pair (r, t).

1. Sample s, e ∈ Rq,1

2. t← as+ e

3. r ← (s, e)

4. Return (r, t)

The private key (s, e) can be theoretically represented in 2n log2(3) bits of memory, and the
public key as+ e can be represented in n log2(q) bits.

5

Sign

Input: Message µ, private key (s, e), public parameter a,
public key t = as+ e.
Output: Signature (z1, z2, c).

1. Sample y1, y2 ∈ Rq,B.

2. c′ ← H
(
day1 + y2cB−ω , µ

)
3. c← F (c′)

4. z1 ← sc+ y1

5. z2 ← ec+ y2

6. If any coefficient of z1 or z2 exceeds B−ω in absolute
value then goto step 1

7. z2 ← Compress((az1 − tc), z2)

8. Return (z1, z2, c)

Restarting in step 6 will reduce performance by extending the signing process. The per-
coefficient probability of restarting is approximately 1−(2(B − ω) + 1) / (2B + 1), so the overall

probability of passing through these steps without restarting is 1−
(

1− 2(B−ω)+1
2B+1

)2n
. A signa-

ture (z1, z2, c) can be theoretically represented by n log2(2(B − ω) + 1) bits of memory for z1,

by 2n+ dlog2 (2(B − ω) + 1)e · 6(B−ω)nq bits for z2, and by ω log2(2n) bits for c.

Verify

Input: Message µ, signature (z1, z2, c), public key t, public
parameter a.

1. If any coefficient of z1, z2 has absolute value greater
than B − ω then return Reject.

2. d′ ← H
(
daz1 + z2 − tccB−ω , µ

)
.

3. d← F (d′)

4. If d = c then return Accept, otherwise return Reject.

6

4 GLYPH: A new instantiation of GLP

In this section we shall describe GLYPH, our new proposal to instantiate GLP, which comprises
new parameters and a new instantiation of the algorithm Compress.

We have instantiated the public parameter a for the scheme in a per-domain manner, where
each certificate root authority chooses public parameters which it shares with its users. This
addresses, as far as possible for a signature scheme, the threat identified in [2], where re-using a
public parameter may allow a global all-for-the-price-of-one attack if an adversary can perform a
massive precomputation, or if the public parameter was chosen in an untrustworthy way. Below
the root authority level there is negligible advantage to further varying public parameters, since
a single successful attack against the authority is in itself an all-for-the-price-of-one compromise.

Security is always of especial importance when choosing parameters for any signature scheme,
as just one cryptanalytic success against a root authority’s public key will allow an adversary
to sign certificates at all levels of the trust hierarchy. It is for this reason that we have picked
parameters for 128 bits of security using the conservative NewHope security analysis described
in [2], which makes several assumptions about potential future developments in cryptanalysis
that are optimistic from the attacker’s perspective. We also include the parameter sets ‘Set I’
and ‘Set II’ proposed in [10] for comparison.

[10] Set I [10] Set II GLYPH

m 1024 2048 2048
n 512 1024 1024
q 8383489 16760833 59393
B 16383 32767 16383
ω 32 32 16

Signature size (kB) 0.9 1.9 1.8
Secret key size (kB) 0.1 0.3 0.3
Public key size (kB) 1.5 3.1 2.0

Expected number of repetitions 7 7 7

Hamming weight of q 13 11 5

Conservative security level (bits) < 80 91 137

We stress that we do not claim the ‘Set I’ or ‘Set II’ parameters can be broken by any attack
known today in 280 or 291 basic operations, as NewHope is very optimistic about an attacker’s
capabilities. However, even if all of those capabilities were realised, GLYPH would still require
more than 2128 basic operations to defeat.

We have chosen m = 2048 to be a power of 2 with n = 1024, which Section 5 shall show
achieves 137 bits of security. As explained in Section 2, we could have chosen m to be prime,
with n = m− 1 less than 1024. This would allow more compact signatures and keys, and still
achieve the desired 128 bits of security, but the performance would be worse, as the Number

7

Theoretic Transform for m prime is considerably less efficient than for m a power of 2. However
in practice a prime m achieving the required security is not much smaller than 1024, so key
and signature sizes would be nearly unchanged, and therefore we do not recommend m prime
in this case.

In line with the original GLP paper we have instantiated the hash function H with SHA256 as
this provides the required 128 bits of security. We have instantiated the encoding function F
using AES in counter mode, seeding with the input, and setting coefficients from the output.
This is approach is different to [10], which used a function specifically tailored for ω = 32. It
leads to a small reduction in performance, but allows greater flexibility in parameter choice.

With our new parameter choices above, the Compress algorithm described in Lemma 1 fails so
often as to be unusable, because our prime q is much smaller than in the original GLP paper
and so the requirement for q to be much larger than 2(B − ω)/n no longer holds. To address
this we introduce Compress2, a new form of the Compress algorithm:

Compress2

Input: y ∈ Rq, z ∈ Rq,B−ω
Output:z′ ∈ Rq,B−ω.

1. for i = 0 to n− 1 do

2. z′i ← CompressCoefficient(yi, zi)

3. end for

CompressCoefficient

Input: u ∈ [0, q), v ∈ [−(B − ω), (B − ω)]
Output: v′ ∈ {−(B − ω), 0, B − ω}

1. if u+ v ∈ [0, q) then

2. if du+ vcB−ω > ducB−ω then return B − ω

3. else if du+ vcB−ω < ducB−ω then return −(B−ω)

4. else return 0

5. else if u < B − ω then return −(B − ω)

6. else return (B − ω)

8

The Lemma below shows that whenever certain modular conditions are satisfied by the param-
eters, Compress2 outperforms Compress, as the output can be represented in with less memory,
and it succeeds with probability 1 rather than 0.98. Most importantly, these conditions can be
satisfied by a range of q, such as the choice recommended above that otherwise would be too
small to use with Compress.

Lemma 2. If q ≥ 2(B − ω) + 1 and remB−ω(q) ≥ 0 then the output z′ of Compress2 is such
that

1. z′ can be represented with n log2(3) bits.

2. dy + z′cB−ω = dy + zcB−ω.

Proof. 1. There are only three possibilities for any of the n coefficients of z′, as they can be
only −(B − ω), 0, or B − ω. Therefore z′ can be represented with n log2(3) bits.

2. There is an s ∈ [0, B − ω] for which

q = r(2(B − ω) + 1) + s

because of the condition remB−ω(q) ≥ 0. The output z′ is specified by the coefficients u
of y and v of z.

If u+v is in [0, q) then there is no wraparound in its computation mod q and the conclusion
is a trivial fact of integer arithmetic. CompressCoefficient returns on lines 2,3, or 4.
However if u+v is not in [0, q) then because of the sizes of u and v, either u is in [0, B−ω),
when it returns on line 5, or u is in [q − (B − ω), q), when it returns on line 6.

If it is line 5 then

u+ v mod q = q − t = r(2(B − ω) + 1) + (s− t)

for t ∈ [0, B − ω). As s, t are both in [0, B − ω], therefore s− t is in [−(B − ω), (B − ω)].
Therefore, by the definition of d·cB−ω in Section 2, du+ v mod qcB−ω = r. A similar
calculation shows that du+ v′ mod qcB−ω = r.

If it is instead line 6 then we know that u + v is in [q, q + (B − ω)] and so u + v mod q
is in [0, (B − ω)). Therefore du+ v mod qcB−ω = 0. A similar calculation shows that
du+ v′ mod qcB−ω = 0.

5 Security Analysis

We now analyse the security of GLYPH. Although GLP comes with a security proof that a
succesful forger will be able to solve the DCK instance of the Ring-LWE problem, we also need
to assess the security of the specific parameters we have chosen.

9

5.1 Primal key recovery attack

In a primal key recovery attack, the adversary attempts to recover the secret key s from the
public key t = as+e, which can be viewed as a Ring-LWE sample. The strongest known attacks
against Ring-LWE consider it as an instance of the Learning With Errors (LWE) problem. We
assume an adversary has access to n samples (ai, ti) ∈ Zn+1 of the form ai · s + ei = ti mod q
for a fixed secret s ∈ Zn that is to be recovered and secret error terms ei ∈ Z. To optimise the
attack they may choose to use a number l of samples that is less than n.

Because our analysis of the primal key recovery merges several analyses in the literature, we
present the approach in some detail.

5.1.1 BKZ attack

The l samples (ai, ti) allow us to construct a matrix A ∈ Zl×nq whose rows are the ai and vector

t ∈ Zlq whose entries are the ti. The adversary builds the lattice

Λ =
{

(x,y, z) ∈ Zl+n+1 : (A| − Il| − t) · (x,y, z) = 0 mod q
}
,

which is of dimension d = l + n+ 1. They then look to solve the unique Short Vector Problem
(unique-SVP) problem in Λ to recover s.

We use the conservative geometric series assumption, that is that when BKZ is run with block
size b on a lattice with dimension d, it finds a basis b∗i whose Gram-Schmidt norms are given
by

‖b∗i ‖ = δd−2i−1Vol (Λ)1/d

where δ =
(

(πb)1/b · b/2πe
)1/2(b−1)

. The cost of finding the shortest vector within the block is

then estimated conservatively to be 20.292b basic operations with a classical computer, or 20.2075b

basic operations with a quantum computer.

The standard deviation of coefficients drawn from {−1, 0, 1} is 0.81, and the block size b is
selected to be as small as possible subject to it being possible to find the unique solution, which
is detected when s has projected norm 0.81

√
b smaller than

∥∥b∗d−b∥∥.

5.1.2 Exhaustive and Meet-in-the-middle attacks

It is possible to exhaust over all possible coefficients of s with asymptotically2 3n basic opera-
tions. Following the approach described in Section 5.1 of [1] this can be reduced to 30.5n basic
operations with a meet-in-the-middle attack, but with an increased memory requirement. An

2In reality there will be an additional factor of 2n in the cost so this is optimistic from the attacker’s perspective.

10

adversary computes and stores a vector J0 of the inner products of the first half of each ai with
the first half of each candidate s, and likewise a vector J1 of the inner products of the second
halves. They then look for instances where J0 + J1 − t mod q is small.

5.1.3 Hybrid attack

It is possible to combine a BKZ attack and a meet-in-the-middle attack. A meet-in-the-middle
attack is run to recover the final r co-ordinates of s. This is combined with a precomputed basis
of the first n− r co-ordinates to recover the full secret. We can view the BKZ and meet-in-the-
middle attacks above as special cases of this hybrid, when r = 0 or r = n, so in this sense it is
the ‘only’ primal key recovery attack that we need to analyse.

In more detail, let A′ be the first n− r columns of A, and let A′′ be the remaining r columns.
Let s′ be the first n− r co-ordinates of s and s′′ be the final r co-ordinates. Let t′ be the first
n− r co-ordinates of t and t′′ be the final r co-ordinates. An adversary constructs the lattice

Λ =
{

(x,y) ∈ Zl+n−r :
(
A′| − Il

)
· (x,y) = 0 mod q

}
,

which is of dimension d = l + n − r. An adversary runs BKZ on this lattice with pre-chosen
block-size b to obtain a reduced basis of vectors b∗i .

The adversary then runs a meet-in-the-middle attack on s′′. They compute and store a vector
of inner products J0 of the first half of each row from A′′ with the first half of each candidate s′′,
and likewise the inner products J1 of the second halves. They then use their precomputed basis
to perform Bounded Distance Decoding (BDD) and find instances where J0 + J1 − t′′ mod q is
very close to a point in Λ. For such instances, they find a close vector s′ in Λ. For BDD to
succeed, it is necessary that the projected norm 0.81

√
b of s′ be smaller than ‖b∗d−b‖.

5.2 Dual key recovery attack

In a dual key recovery attack, the adversary attempts to distinguish the public key t = as+ e
from a uniformly sampled element of Rq via a BKZ lattice attack. Unlike our primal analysis,
the approach here mirrors exactly that in [2] so we omit details.

5.3 Forgery attack

In a forgery attack, an adversary attempts to produce a forged signature for a message µ of
their choice, without knowledge of the secret key. We assume the following approach:

11

Forgery attack

Input: Message µ, public key t, public parameter a.

1. Sample uniform y ∈ Rq.

2. c′ ← H(y, µ).

3. c← F (c′).

4. h← tc+ y

5. Use BKZ to find z1, z2 ∈ Rq,B−ω with az1 + z2 = h.

6. Return (z1, z2, c).

The critical stage of the forgery attack is step 5, which we approach by constructing a random-
SVP instance and solving using BKZ. Unlike the unique-SVP instance considered for key re-
covery, the adversary does not have flexibility in the number l of samples that they use. The
required (z1, z2) will be a vector of length (B − ω)

√
2n, whose projection onto blocksize b is

(B − ω)
√
b. We therefore pick b to be as small as possible subject to this projection being

smaller than ‖b∗0‖ = δd−1qn/d.

5.4 Security results for GLYPH parameters

We record the results of the above security analysis for the GLYPH parameters recommended
in Section 4.

primal key recovery dual key recovery forgery

b 477 601 469
m 746 856 1024
r 176 - -

Attack cost 139.5 175.8 137.17
(log2 basic classical computer operations)

6 Conclusion

Lattice-based cryptography is a promising post-quantum alternative to classical public key
cryptography. The GLP algorithm is a competitive digitial signature scheme, for which we
have recommended GLYPH, a new instantiation to address developments in lattice cryptanalysis
since the original proposal in [10].

12

References

[1] M.R. Albrecht, R. Player, and S. Scott. On the concrete hardness of Learning with Errors.
Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[2] E. Alkim, L. Ducas, T Pöppelmann and P. Schwabe. Post-quantum key exchange — a new
hope. In USENIX Security 2016.

[3] S. Akleylek, N. Bindel, J. Buchmann, J. Krämer, and G. A. Marson. An Ef-
ficient Lattice-Based Signature Scheme with Provably Secure Instantiation.
http://eprint.iacr.org/2016/030.

[4] P. S. L. M. Barreto, P. Longa, M. Naehring, J. E. Ricardini, and G. Zanon. Sharper
Ring-LWE Signatures. http://eprint.iacr.org/2016/1026.

[5] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem. http://eprint.iacr.org/2014/599.

[6] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, Gauss, and Reload – a
Cache Attack on the BLISS Lattice-Based Signature Scheme Cryptographic Hardware and
Embedded Systems CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages
323–345. Springer, 2016

[7] A. Chopra. Improved Parameters for the Ring-TESLA Digital Signature Scheme.
http://eprint.iacr.org/2016/1099

[8] L. Ducas, A. Durmas, T. Lepoint, and V. Lyubashevsky. Lattice signatures and Bimodal
Gaussians. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 40–56, Santa Barbara, CA, USA, Aug. 18–22, 2013. Springer, Heidelberg,
Germany.

[9] T. Espitau, P–A Fouque, B. Gerard, and M. Tibouchi. Side-Channel Attacks on BLISS
Lattice-Based Signatures – Exploiting Branch Tracing Against strongSwan and Electro-
magnatic Emanations in Microcontrollers. http://eprint.iacr.org/2017/583

[10] T. Guneysu, V. Lyubashevsky, and T. Pöppelmann. Practical Lattice-Based Cryptography:
A Signature Scheme for Embedded Systems. In E. Prouff and P. Schaumont, editors,
Cryptographic Hardware and Embedded Systems CHES 2012, volume 7428 of Lecture
Notes in Computer Science, pages 530–547. Springer, 2012.

[11] P. Pessl and L. G. Bruinderink, and Y. Yarom. To BLISS-B or not to
be - Attacking strongSwan’s Implementation of Post-Quantum Signatures.
http://eprint.iacr.org/2017/490

[12] V. Singh. A Practical Key Exchange for the Internet using Lattice Cryptography.
http://eprint.iacr.org/2015/138.

[13] V. Singh and A. Chopra. Even More Practical Key Exchanges for the Internet Using Lattice
Cryptography http://eprint.iacr.org/2015/1120.

13

