Chapter 7

State Encoding Techniquesfor Low-
Power FSM's

7.1.

The problem of minimizing the power consumption in synchronous sequential
circuits is explored in this chapter. A general theoretical framework to solve the
state assignment problem for Finite State Machines (FSMs) is proposed. The
environment enables us to separate the problem in two different tasks. First, we
define some methods to visit the State Transition Graph (STG) and to assign a
priority to the symbolic states. Second, we define some encoding techniques to
associate binary codes to the symbolic states to reduce the switching activity.
Based on this framework, four power-oriented state assignment algorithms have
been identified. These techniques have been applied to the MCNC benchmark
circuits and they have also been compared to other approaches aimed at
reducing the switching activity of the state variables. Experimental results have
shown consistent improvements with respect to previous low-power encoding
methods.

I ntroduction

For control dominated embedded systems, traditional state assignment approaches are no

longer sufficient to satisfy the system-level constraints in terms of power dissipation, hence

severa contributions in the field of low power state assignment have recently appeared in the
literature [155], [14], [143], [185], [173]. Most of the low power synthesis techniques deal

with the problem of dynamic power dissipation, which is the dominant contribution of the

power consumption in CMOS circuits[34], [49].

The goal of this chapter is to present an approach to optimize the state encoding for low

power embedded controllers, given the probabilistic model of the FSM. More in genera, the



190

state assignment problem consists of choosing the binary codes to attribute to the symbolic
states, satisfying the cost metrics, through the minimization of a given cost function. The
encoding problem is NP-complete, therefore most of the proposed state assignment
techniques rely on heuristic solutions.

Within our theoretical framework, we examine a new class of algorithms aimed at reducing
the switching activity of the state variables. Obviously, the minimization of the register
transitions has to be combined with an appropriate implementation of the combinational logic
for obtaining a global power saving, so the state encoding can be the starting point for further
power optimization of the combinational part. The power-oriented cost function, C, should
account for the minimization of the number of logic transitions of the state registers between
two successive clock cycles, assuming the power consumption is proportional to the
switching activity on the state bit lines of the machine.

Therefore, the cost function, C, should consider the sum of the Hamming distances H(ci, c;)
between the codewords ci, ¢; being assigned to al pairs of states s, 5 among which a
transition can occur, by assuming that all the transitions between state pairs in the STG are
equally probable. A more effective state encoding technique should assign adjacent binary
codes to state pairs characterized by very high transition probability. In this case, the cost
function should consider a weighted sum of the Hamming distances between the codewords
[117].

The aim of this chapter is to provide a general framework for low power state assignment.
The approach consists of two different phases. First, we consider the state ordering problem
by iteratively selecting the edge in the STG which maximizes a given weight function to
assign a priority to the symbolic states for the successive phase of encoding. The weight of
each edge in the graph basically reflects the transition probabilities between the corresponding
pair of states. Second, we attribute minimum length codewords to the symbolic states, by
optimizing a given cost function. The cost function ams at assigning codewords with
minimum Hamming distances to states with higher transition probabilities.

The chapter is structured as follows. A brief survey of the most recent state assignment
methods has been provided in Section 7.2. In Section 7.3, we formalize the methodology used
to solve the state ordering problem and we investigate different encoding solutions. In Section
7.4, we describe the proposed heuristic algorithms and we analyze their effectiveness. Finally,
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experimental results derived from the application of these techniques to a standard set of
benchmark circuits have been reported and discussed in Section 7.5, while some conclusions

and future developments for the work have been reported in Section 7.6.

7.2. PreviousWork on State Encoding Techniques

The state encoding problem can be stated as follows. Given the STG representing the initial
FSM specification, the problem consists of finding an assignment of codewords for the FSM
states targeting the minimization of a given cost function, C. In general, the aim of the power
oriented state encoding algorithms is the reduction of the switching activity of the state
registers that, if combined with an appropriate implementation of the combinational logic, can
lead to a global power reduction.

Several techniques to solve the general problem of power-oriented state encoding have been
presented in literature [155], [14], [143], [185], [173] and a state-of-the-art survey of state
encoding techniques for low power has recently appeared in [117].

Most of state encoding techniques are based on heuristic agorithms, being the encoding
problem NP-complete. Specific solutions can be applied to particular classes of STGs, such as
the Gray encoding for STG representing sequential circuits such as counters.

For a STG representing a generic structure, the One-Hot encoding guarantees exactly two
state bit transitions for each clock cycle, however it requires a number of state variables
exactly equal to the number of states (nyar = ng), whilein general /19, Ns/7<Nygr < Ns.

The power-oriented cost function, C, should account for the minimization of the number of
logic transitions of the state registers between two successive clock cycles. Therefore, the cost
function, C, should consider the sum of the Hamming distances H(c;, ¢)) between the
codewords ¢;, ¢; being assigned to all pairs of states s, 5 among which a transition can occur.
The cost function expressed by the previous equation is based on the assumption that all the
transitions between state pairs in the STG are equally probable. By using the probabilistic
model of FSM described in the previous section, we can derive the transition probabilities of
each edge in the graph, given the input probabilities distribution.

A more effective state encoding technique should assign similar codewords to state pairs
characterized by very high transition probability. In this case, the cost function should

consider aweighted sum of the Hamming distances between the codewords:
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C= YW H(: g) ®
[

where W is the weight assigned to the edge from state s to state s in the STG.
The Syclop method [155] considers the conditional state transition probabilities, p;j, as weight
coefficients in the cost function C and it uses the minimum number of state bits (18, ns).
After the computation of the conditional state transition probabilities to label all the edges of
the STG, the Syclop method is based on the ssmulated annealing approach, starting from an
initial random encoding.
The POWS3 state assignment method, proposed by Benini and De Micheli in [14], uses the
total state transition probabilities Pj; as weight factors in C and it enables the designer to
arbitrarily select the number of state variables ny,. After the computation of the P;j values to
label the edges of the STG, the method assumes to eliminate all the unreachable states and the
self-loops. Therewith the STG is transformed into a weighted undirected graph, G, by
collapsing al multiple-directed edges between two states s and 5 into a single undirected
edge whose weight wi; is given by:

wi; = Pjj + P;i for eachi, j 2
The encoding problem is then expressed as an Integer Linear Programming (ILP) problem,
whose complexity is NP-complete. Two algorithms have been proposed. The first one is the
semi-exact algorithm, that is based on the notion of indistinguishability classes of states and a
column-based approach to assign the binary codes to states on a bit-per-bit base. The global
ILP problem is thus decomposed into a set of smaller ILP problems and it is suitable for
medium size FSMs. The second algorithm is a heuristic algorithm to eliminate the exponential
complexity of the semi-exact version, giving a sub-optima polynomial time assignment
applicableto large FSMs.
Another factor to consider during the state assignment for low power is circuit area, in order
to reduce the capacitive loads being switched at each clock cycle. With this purpose, POW3
can apply a modified cost function considering area-related constraints. The weight
coefficient wi; of each edge in the undirected graph, G, becomes a convex combination of the
power and area weights:

wi= aw' + (1 a) wh 3)
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Similarly, the Galops encoding method [143] issues the same cost function as POWS3,
considering a convex combination of the switching activity and the area of the combinational
logic as edge weights in the STG. Then they adopt a genetic local search to perform a local
optimization and in particular they assign codewords by collapsing states based on hybrid
genetic algorithms. However, given the different nature of the considered quantities (number
of transitions and number of literals), the goodness of the global solution is not guaranteed.

On the other hand, the LPSA approach [185] addresses the state assignment problem for both
the 2-level and the multi-level implementations of the next state and output logic, accounting
the loading factors and the switching activities of the present state inputs. Then a simulated-
annealing search strategy is adopted.

An important degree of freedom to be exploited during the state assignment of FSM is the
choice of the number of state variables, ny. In general, we have that /19, Ns[< Nyar <Ns, While
the strategy of most power-driven state encoding algorithms consists of introducing the
minimum possible number of state bits to minimize the corresponding number of registers.
Nevertheless, the use of the minimum number of registers does not guarantee that the
corresponding combinational circuits operate with alower switching activity. In some cases, a
smaller number of storage elements can imply more complex circuits to implement the next
state logic, leading to a corresponding increase in the transition activity of the combinational
part of the FSM [117].

All the above mentioned methods rely on codewords of fixed length, while other methods
based on variable code lengths have been investigated recently [173]. The basic idea is the
application of the Huffman coding technique, where codewords with shorter length are
assigned to states with higher steady-state probability, P;. Although the code length might be
longer than /15, ns/,/the additional registers are disabled for high probable states.

The corresponding FSM implementation requires an additional logic to gate the clock and
thus disable a sub-set of registers, whenever the present state has a shorter code length. A
power overhead is introduced by this clock-gating logic, thus a special case of this general
variable length approach is proposed in [173], in which only two codeword lengths are
allowed. The set of states with higher probabilities is encoded with less than /If, ns/7 bits,
while the other set of states, being less probable, is encoded by more than /14, ns//bits. In this
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way, the clock-gating logic uses only a single minterm. The states in the two sub-sets are then
encoded with a fixed length encoding method.

Explain that exists best case and worst case transition activity for Huffman-based encoding.

7.3. TheFramework for Low-Power State Assignment

Given the FSM description and the input probabilities, we compute the total state transition
probabilities for each edge in the STG, by modeling the FSM as a Markov chain, as shown in
Chapter 2. Then all the unreachable states and the self-loops are eliminated from the graph.
Asin POW3, the STG is then transformed into a weighted undirected graph, G, by collapsing
al multiple-directed edges between two states into a single undirected edge whose weight w;
isgiven by: w;j = P + P;;
By considering the minimum number of state variables (N = 8, ns[), the problem can be
formalized as finding a set of distinct codewords C = {cy, C, ..., Chs}, composed of nyy-bits,
that minimizes the following cost function:
C=3 wjH(; g) (4)

]
The goal isto assign codewords with minimum Hamming distances to states with higher total
transition probabilities. For FSMs with a large number of states, the exact solution may be
unattainable, as the problem is NP-hard, and the solution space to be explored is O (ns 2™).
We propose to organize the state assignment process in two successive phases. First, we
examine the state ordering problem, basically by selecting each time the edge with the largest
weight in G to assign a priority to the symbolic states. Then, we investigate the application to
the states of different encoding techniques, which minimize the adopted cost function.

7.3.1. State Ordering

Let usintroduce now three greedy strategies to solve the state ordering problem.

Method |

The basic idea of the first approach [42] is to identify the path of consecutive nodes in the
graph characterized by the highest transition probabilities. At each step we make a locally
optimal choice of the maximum weight edge with respect to the arrival node selected during

the previous step. More in detail, after computing the weights of the undirected edges, we sort
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them by w;; in decreasing order, then we consider the w;;’s one at a time. At the first step

(k= 1), two codewords are assigned, while at the generic step (k), one or two codewords are

attributed.

At the first step (k= 1), we select wpy(1) = max wi;; and the corresponding edge (Sy(1), Sy(1)).

Then we erase wpq(1) from the sorted list and we select my = max w;; such that i or j is equal to

the index p of s,(1) and mp, = maxw; such that i or j is equal to the index q of sy(1). If

my =My, then s,(1) and s4(1) are swapped to s4(1) and sy(1), otherwise they remain unchanged.

Finally, we can assign s,(1) and s,(1) by applying a suitable encoding style and go to the next

Wij.

At the generic step (K), the algorithm searches for wyq (K) = max wij in the sorted list satisfying

the condition that p(k) or q(k) correspond to the index q(k-1) of the previously assigned state

Sq(k - 1). If the other state sy(K) or s4(k) has already been assigned in the previous steps, we

eliminate the current edge from the list and go to the next wi; otherwise we attribute a

codeword to the unassigned state s,(k) or sq4(k), we erase the considered wyq(k) from the list

and start again from the current top of the list.

If we reach the end of the list without finding any states that satisfy the above condition, we

start back from the current top of the list and we choose the maxw;. Then the algorithm

proceeds depending on:

+ If both states s and 5 have already been assigned, we eliminate the current edge and go to
the next w;

* If just one of the two states has been assigned, we apply a binary code to the unassigned
state between s and s, then we eliminate the present edge and start again from the current
top of thelist;

» If none of s and s has already been assigned, we exploit the same agorithm used in the
first step, then we eliminate w;; and start again from the current top of the list.

Method |1

In the second method [42], we determine the visiting path by making alocally optimal choice

at each step with respect to both the starting and arrival nodes selected during the previous

step. In particular, we sort the edges by wi; in decreasing order, then we consider the w;;’s one
at atime. At the first step (k= 1), we select wyq(1) = max w; and the corresponding edge

(So(1), s¢(1)); we assign two codewords to s,(1) and to s4(1) and we proceed.
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At the generic step (k), the algorithm searches for my = max w;; such that i or j is equal to the

index p(k) of s,(K) and m, = max w;; such that i or j is equal to the index q(k) of sy(K).

If my=>m,, we select the weighted edge corresponding to nmy, otherwise the edge

corresponding to m,. The agorithm proceeds depending on:

 If both states s,(K) and s4(K) have already been assigned in the previous steps, we eliminate
the current edge from the list and the algorithm searches for the new values of m; and my;

» If just one of the two states has been assigned, the weighted edge wp,(K) is selected and a
binary code is applied to the unassigned state s,(Kk) (or sy(K)). Then we eliminate wp(K) and
start again from the top of thelist.

If we are able to find just my (or ny), we select my (or mp) and we apply the same procedure

above described.

If we reach the end of the list and we are unable to find both my and mp, we go back to the top

and we select the max w;; . Then the algorithm works as shown before.

Method |11

In the third method, we identify the path by making alocally optimal choice at each step with

respect to the nodes assigned during the previous steps. More in detail, we start in the same

way as case | and |1, sorting the edges by w; in decreasing order and considering the w;’s one
at atime. At the first step (k= 1), we select wyq(1) = maxw; and the corresponding edge

(Sp(1), 5¢(1)) and we assign two codewords to s,(1) and to s4(1) by applying one of the

encoding methods proposed below and we go to the next w;. At the generic step (K), the

algorithm searches in the whole list for the maximum weight edge my(K) = max w;; such that

p(k) or (k) is equal to the index of a state, which has been assigned in one of the previous

steps.

The algorithm proceeds depending on:

 If both states s,(K) and s4(K) have been already assigned in the previous steps, we eliminate
the current edge from the list and the algorithm searches for the new max w; ;

» If just one of the two states has been assigned, the weighted edge wpq(K) is selected and a
binary code is applied to the unassigned state s,(k) (or s4(K)). Then we eliminate Wpq(K)
from the list and restart.
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7.3.2. State Encoding

The second phase of the state assignment procedure concerns the application of an encoding
technique to the states by following the priority order suggested by one of the previous
gpanning algorithms. The Gray encoding, which guarantees that two consecutive codewords
have minimum Hamming distance, can represent an optimal solution for a particular class of
sequential circuits, such as counters, where all transitions are equally probable. In practice,
this particular class of FSMs is characterized by the fact that a consecutive order of the nodes
in the graph can be easily found and the Gray encoding can be applied successfully. On the
other hand, if we consider a general STG structure, we can exploit the One-Hot encoding to
minimize the average number of transitions of the state lines. In this way, only two state
variables switch when a transition occurs between two states, even if we introduce a number
of state variables equal to the number of states, with an increased consumption related to
registers.

For a general solution, we propose two different encoding styles, without assuming any
specific STG structure and without imposing any constraint on the required state variables. In
the first approach, we start building the vector V¢ which contains all the possible codewords
of minimum length (nyr = £1g2 ns £)); at the generic step of the graph visit we consider the
edge (sy(K), s4(K)) and we apply one of the available codewords to the unassigned state sy(k)
(or s4(K)), satisfying the condition: min H(sy(K), s4(K)). In the second approach, we impose a
different criterion during the assignment, since we choose, for the unassigned state s,(k) (or
S(K)), the binary code that minimizes a partial cost function Cp. As local cost metric, we
adopt the weighted sum of the Hamming distance considering the current edge (Sy(K), Sy(K))
and the edge with the largest weight which contains the unassigned state sy(k). We
investigated the possibility of directly evaluating the total cost function, but the results did not
confirm the effectiveness of this choice.

7.4. Proposed Power-Oriented State Assignment Techniques

In this section, we present four different state assignment methods targeting low-power
consumption, although the proposed framework allows us to combine any one of the proposed

state ordering algorithms with whatever encoding. The primary goal of the proposed methods
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consists of reducing the number of logic transitions at the state lines between two consecutive
clock cycles.

Depth_First Method

In the method called Depth_First, we exploit the first ordering method to identify a path of
consecutive nodes in the graph, with the highest transition probabilities. Since the nodes
belonging to the selected path are characterized by a high probability to be consecutive, our
method attributes the Gray encoding to the states. As an example, the bbar a FSM has been
selected from the MCNC benchmark suite. The bbar a has ns = 10, hence nysr = 4. The
binary codes corresponding to the 4-bit length codewords have been indicated as ¢, = 0000, ¢;
=0001, ..., 15 = 1000. Table 1 contains the related sorted list of wij, obtained by solving the
Chapman-K olmogorov equations by assuming equally probable inputs. The second and third
columns of Table 2 represent, respectively, the priority assigned to each edge and the state
encoding derived with the proposed algorithm to bbar a.

Wip | Wig | Won | Wos | Wos | Was | Wog | Wag | Waz | Was | Wa7 | Wse | Waz | W7 | Wae | Wag | Wer | Weo | Wag | Wio | Wag | Woo
41614121360 219|166 |153| 83 | 83 | 83 | 61 [ 46 | 30 [ 23 | 23 | 20| 11| 10| 5 5 2 1 1

Table 1: The sorted list of w; for bbar a

Minimum_Distance M ethod

In the Minimum_Distance method, we visit the graph by choosing each time the edge with a
maximum weight in the list, which contains one of the two states belonging to the previously
considered edge. Therefore, we follow the second ordering approach, then we apply an
available codeword that minimizes the Hamming distance between the pair of states of the
current edge, as in the second encoding. The corresponding results for the bbar a example
arereported in Table 2.
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Step Depth First Minimum Distance 1 Level 1 Leve Tree
Wjj Assignment Wi Assignment Wjj Assignment Wi Assignment
1 Wa1 $S=C0S=C Wi $S5=C0SHS=C Wip $$=CSH=C Wi $S$5=C0SHS=C
2 Wig $=C Wia $=Cs Wig S =Cis Wig $=Ci5
3 Wao SH=Cs Wio SH=Cr Wio SH=Cr Wo1 =G
4 Woo SH=Cy Wis S=Ci5 Wis S=0Cg Wo3 S3=Cug
5 Wog $=Cs Wiz =G Wiz S7=C3 Was S=Cip
6 Wsg7 S1=6Cs W73 $=6Cs W73 S=C W37 S7=Ci3
7 W73 S8=G W7g S =Ci3 W7g S=C1 Wse S$=C3
8 Was S=0Cg W7e S$=C W7e S$=Cu Wrs $=C
9 Wse $=6Co Wago S = Cio Wso S =Ci3 Wago $=6Cs
Table 2: State assignment table for bbar a
1 Level Method

The 1_Level method follows the same procedure for the state ordering, then it applies one of
the possible codewords to the unassigned state s,(k) (or sy(k)), accounting for a partial cost
function. We choose the binary code ¢, that minimizes the weighted sum of the Hamming
distance, considering the binary codes in the current edge and aso in the edge characterized
by the maximum weight value which contains the unassigned state, sy(k). If the w
coefficients of these two edges are the same, we prefer to introduce a smaller number of
different bits between the states in the current edge. The visiting order and the performed
encoding have been reported in Table 2.

1 Level Tree Method

Inthe 1 Level Tree method, we follow the third visiting approach, since at the generic step
we select the max wj; such that it contains at least one state previously assigned, as shown in
Table 2. For the code assignment, we adopt the partial cost function Cp.

Finally, in Table 3, we compare the Hamming distances between each pair of states in the
graph encoded by several assignment methods for the bbar a example. The final cost
function values, reported in the last column, show better results for the 1 _Level _Tree method.
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Hammin g | Wiz | Wag | Wor | Woa | Wos | Was | Wos | Waa | Waz | Was | Way | Wse | Waz | Wrg | Wie | Wag | Wey | Wao | Wag | Wio | Wag | Woe | COSt
Distances 416|412|360|219|166|153| 83 | 83 |83 |61 (46 |30|23|23(20|11|10| 5 (5|2 |11 Function
DepthFirst 1/1]2]1/1)4]2 3|1 |3|1]1/]2]|]1]|]2]|]2|1]1 12|21 3460
Min_Dist. 111222 |2]|]2|1]1|]2|3|1]1]2]|]3|]2]|1]2]4|3]3 3090
1 Leve 1/1j12})2)1}1|]2|3|]1|]2|]1]1|2]|1|]3|]2|2]|1]|1]|]3|2] 4 2834
lleve Treej 1 |11 |2 1|12 ]1 (12|33 |1 |2]|]1|1]2|2]|1|3|3|]4]2 2730
POW3 1/]1j1)]2)1}1]2]|]1|1]2 3|12 ]1|3|]2|]2]1]|]3]|]3|4]2 2770
Huffman 1112|212 |11 |22 ]|]1|1]1]|2]|2|1]1]|1]2|1]2 2822

Table 3;: Comparison among several state assignment methods for bbar a

7.5. Experimental Results

The four proposed state assignment methods, as well as the POW3 and Huffman-style
encodings, have been applied to the whole set of MCNC benchmark circuits. The Huffman
encodings have been obtained by alowing codewords of any lengths and starting from the
steady state probabilities; the average switching activity has been considered. The values of
the cost functions obtained by applying the different encoding techniques to the benchmarks
circuits are shown in Table4. A comparison between the 1 Level Tree method and the
POW3 and Huffman methods has been reported in columns seven and nine of Table4. The
values of the cost functions corresponding to the 1 Level Tree, POW3 and Huffman methods
have also been reported in Figure 1. Globally, the experimental results have shown that the
proposed method gives an average of 9.92% better results with respect to the POW3 encoding
algorithm. In all cases but one it shows alower cost function. Moreover, the proposed 1Level-
Tree algorithm presents a better behavior in all cases with respect to the Huffman based

encoding, with an average improvement of 28.65%.
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Depth Min_Dist llLev lLev_Tree| POW3 |[%llLevTree| Huff %1levTree

First vs POW3 vs Huff
bbara 348369214 | 311592835 | 285553300 | 275315936 | 279414298 -1.47| 341275454 -19.33
bbse 876445488 | 781572724 | 775728757 | 781165781 | 781295221 -0.02| 995242043 -21.51
bbtas 560869572 | 560869572 | 443478266 | 443478266 | 560869572 -20.93| 632611523 -29.90
bbtasmod | 736956546 | 795652199 | 766304374 | 678260893 | 795652202 -14.75| 1206527406 -43.78
beecount | 461300320 | 429566572 | 429566572 | 429566572 | 429566572 0.00| 576431008 -25.48
cse 340663211 | 250017437 | 243140945 | 243173843 | 246243887 -1.25| 363026018.5 -33.01
dk14 1246602541 | 1191074164 | 1199418369 | 1192786493 | 1192786493 0.00| 1422676049 -16.16
dk15 850434786 | 850434786 | 850434786 | 850434786 | 850434786 0.00| 906521531 -6.19
dk16 2056886695 | 1858252587 | 1837417250 | 1710844268 | 1836987540 -6.87| 2229878388 -23.28
dk17 1197767155 | 1197767155 | 1035087727 | 1035087727 | 1035087727 0.00| 1129982453 -8.40
dk27 1238095248 | 1190476200 | 1190476200 | 1190476200 | 1357142868 -12.28| 1494047929 -20.32
dk512 1711309536 | 1398809537 | 1318452392 | 1235119058 | 1532738108 -19.42| 1933037339 -36.10
donfile | 1375000044 | 1395833378 | 1270833374 | 1270833374 | 1583333384 -19.74| 1604218446 -20.78
ex1l 881491114 | 814035082 | 755849869 | 709589759 | 798246811 -11.11| 934473686.5 -24.07
ex4 521739142 | 543478273 | 543478273 | 500000010 | 608695663 -17.86| 728261071 -31.34
ex6 1136358116 | 1136358116 | 1082571068 | 1071716088 | 1008903549 6.23| 1145928498 -6.48
keyb 732586001 | 557527812 | 556511249 | 556515833 | 556521667 0.00| 781923409 -28.83
kirkman | 250000010 | 250000010 | 250000010 | 281250010 | 343750014 -18.18| 1859375000 -84.87
lion 375000000 | 375000000 | 375000000 | 375000000 | 375000000 0.00| 500000000 -25.00
lion9 AAAANAAAS | AALANAAAS | AA4AAAAAS | 444444448 | 722222228 -38.46| 791673050.5 -43.86
mc 428571432 | 428571432 | 428571432 | 428571432 | 428571432 0.00| 535715027.5 -20.00
modulol2 | 583333338 | 583333338 | 583333338 | 583333338 | 666666672 -12.50| 895840454.5 -34.88
planet 1481424324 | 1432460836 | 1260775543 | 1134389349 | 1578854809 -28.15| 2427091294 -53.26
planetl | 1481424324 | 1432460836 | 1260775543 | 1134389349 | 1578854809 -28.15| 2427091294 -53.26
sl 1307137517 | 1246467796 | 1111954284 | 1104615102 | 1278975255 -13.63| 1709338838 -35.38
51488 346142350 | 340549136 | 332656021 | 334672874 | 338272216 -1.06| 418616028 -20.05
sla 1307137517 | 1246467796 | 1111954284 | 1104615102 | 1278975255 -13.63| 1709338838 -35.38
s208 476104317 | 476104317 | 475004342 | 475004342 | 475090165 -0.02| 562499008.5 -15.55
s27 976190484 | 998599447 | 897759111 | 897759111 | 897759111 0.00| 1065300599 -15.73
s386 876445485 | 781572721 | 775728754 | 781165778 | 781165778 0.00| 995241966.5 -21.51
420 476104317 | 476104317 | 475004342 | 475004342 | 475090165 -0.02| 562499008.5 -15.55
s510 716981169 | 716981169 | 716981169 | 716981169 | 1094339681 -34.48| 1537742082 -53.37
s8 146551728 | 146551728 | 146551728 | 146551728 | 172413798 -15.00| 224135990.5 -34.61
s820 585868299 | 555052156 | 548511763 | 548556122 | 553705440 -0.93| 737975540.5 -25.67
s832 584316521 | 554029118 | 549546154 | 549546163 | 553704019 -0.75| 737975540.5 -25.53
sand 710048745 | 669127075 | 602552419 | 617787022 | 754698569 -18.14| 1071852990 -42.36
shiftreg | 1375000000 | 1000000000 | 1000000000 | 1000000000 | 1375000000 -27.27| 1500000000 -33.33
styr 672352456 | 576434981 | 554459041 | 570323162 | 570503426 -0.03| 762730980.5 -25.23
tav 1000000000 | 1000000000 | 1000000000 | 1000000000 | 1000000000 0.00| 1500000000 -33.33
tbk 1134317126 | 1078203754 | 1098476979 | 1069153210 | 1087616330 -1.70| 1228897992 -13.00
tma 262041291 | 224385038 | 195066485 | 190590292 | 219740721 -13.27| 263484507 -27.67
trainll | 583333350 | 458333346 | 458333346 | 458333346 | 500000014 -8.33| 541661053.5 -15.38
train4 400000001 | 400000001 | 400000001 | 400000001 | 600000001 -33.33| 600000000 -33.33
Average % -9.92 -28.65

Table 4. Comparison of cost functions obtained by applying several state encoding techniquesto MCNC

benchmarks
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Figure 1: Comparison of cost functions obtained by applying several state encoding techniquesto MCNC
benchmarks.

7.6. Summary

This chapter approached the problem of low-power state encoding for sequential circuits. In
particular, after areview of the most recent works related to the state assignment of FSMs for
power optimization, the chapter has been devoted to propose a general framework to support
the problem of finding a state assignment to minimize the power consumption. The theoretical
framework aims at reducing the switching activity of the state variables. Based on this
framework, we proposed four different state assignment techniques. Experimental results
have shown the effectiveness of the proposed methods. More in detail, the cost functions
obtained by the best of the proposed methods provides an average power saving of 9.92%
28.65% with respect to the POW3 and the Huffman-based encoding algorithms. Finally, work
isin progress aiming at evaluating other state encoding methods. We are investigating a step
one backward method for the state ordering process, while we are focusing on variable length

codes to be applied during the successive encoding process.




