
Chapter 7

State Encoding Techniques for Low-
Power FSMs

The problem of minimizing the power consumption in synchronous sequential
circuits is explored in this chapter. A general theoretical framework to solve the
state assignment problem for Finite State Machines (FSMs) is proposed. The
environment enables us to separate the problem in two different tasks. First, we
define some methods to visit the State Transition Graph (STG) and to assign a
priority to the symbolic states. Second, we define some encoding techniques to
associate binary codes to the symbolic states to reduce the switching activity.
Based on this framework, four power-oriented state assignment algorithms have
been identified. These techniques have been applied to the MCNC benchmark
circuits and they have also been compared to other approaches aimed at
reducing the switching activity of the state variables. Experimental results have
shown consistent improvements with respect to previous low-power encoding
methods.

7.1. Introduction

For control dominated embedded systems, traditional state assignment approaches are no

longer sufficient to satisfy the system-level constraints in terms of power dissipation, hence

several contributions in the field of low power state assignment have recently appeared in the

literature [155], [14], [143], [185], [173]. Most of the low power synthesis techniques deal

with the problem of dynamic power dissipation, which is the dominant contribution of the

power consumption in CMOS circuits [34], [49].

The goal of this chapter is to present an approach to optimize the state encoding for low

power embedded controllers, given the probabilistic model of the FSM. More in general, the

190

state assignment problem consists of choosing the binary codes to attribute to the symbolic

states, satisfying the cost metrics, through the minimization of a given cost function. The

encoding problem is NP-complete, therefore most of the proposed state assignment

techniques rely on heuristic solutions.

Within our theoretical framework, we examine a new class of algorithms aimed at reducing

the switching activity of the state variables. Obviously, the minimization of the register

transitions has to be combined with an appropriate implementation of the combinational logic

for obtaining a global power saving, so the state encoding can be the starting point for further

power optimization of the combinational part. The power-oriented cost function, C, should

account for the minimization of the number of logic transitions of the state registers between

two successive clock cycles, assuming the power consumption is proportional to the

switching activity on the state bit lines of the machine.

Therefore, the cost function, C, should consider the sum of the Hamming distances H(ci, cj)

between the codewords ci, cj being assigned to all pairs of states si, sj among which a

transition can occur, by assuming that all the transitions between state pairs in the STG are

equally probable. A more effective state encoding technique should assign adjacent binary

codes to state pairs characterized by very high transition probability. In this case, the cost

function should consider a weighted sum of the Hamming distances between the codewords

[117].

The aim of this chapter is to provide a general framework for low power state assignment.

The approach consists of two different phases. First, we consider the state ordering problem

by iteratively selecting the edge in the STG which maximizes a given weight function to

assign a priority to the symbolic states for the successive phase of encoding. The weight of

each edge in the graph basically reflects the transition probabilities between the corresponding

pair of states. Second, we attribute minimum length codewords to the symbolic states, by

optimizing a given cost function. The cost function aims at assigning codewords with

minimum Hamming distances to states with higher transition probabilities.

The chapter is structured as follows. A brief survey of the most recent state assignment

methods has been provided in Section 7.2. In Section 7.3, we formalize the methodology used

to solve the state ordering problem and we investigate different encoding solutions. In Section

7.4, we describe the proposed heuristic algorithms and we analyze their effectiveness. Finally,

Chapter 7. State Encoding Techniques for Low Power FSMs 191

experimental results derived from the application of these techniques to a standard set of

benchmark circuits have been reported and discussed in Section 7.5, while some conclusions

and future developments for the work have been reported in Section 7.6.

7.2. Previous Work on State Encoding Techniques

The state encoding problem can be stated as follows. Given the STG representing the initial

FSM specification, the problem consists of finding an assignment of codewords for the FSM

states targeting the minimization of a given cost function, C. In general, the aim of the power

oriented state encoding algorithms is the reduction of the switching activity of the state

registers that, if combined with an appropriate implementation of the combinational logic, can

lead to a global power reduction.

Several techniques to solve the general problem of power-oriented state encoding have been

presented in literature [155], [14], [143], [185], [173] and a state-of-the-art survey of state

encoding techniques for low power has recently appeared in [117].

Most of state encoding techniques are based on heuristic algorithms, being the encoding

problem NP-complete. Specific solutions can be applied to particular classes of STGs, such as

the Gray encoding for STG representing sequential circuits such as counters.

For a STG representing a generic structure, the One-Hot encoding guarantees exactly two

state bit transitions for each clock cycle, however it requires a number of state variables

exactly equal to the number of states (nvar = ns), while in general  lg2 ns ≤ nvar ≤ ns.

The power-oriented cost function, C, should account for the minimization of the number of

logic transitions of the state registers between two successive clock cycles. Therefore, the cost

function, C, should consider the sum of the Hamming distances H(ci, cj) between the

codewords ci, cj being assigned to all pairs of states si, sj among which a transition can occur.

The cost function expressed by the previous equation is based on the assumption that all the

transitions between state pairs in the STG are equally probable. By using the probabilistic

model of FSM described in the previous section, we can derive the transition probabilities of

each edge in the graph, given the input probabilities distribution.

A more effective state encoding technique should assign similar codewords to state pairs

characterized by very high transition probability. In this case, the cost function should

consider a weighted sum of the Hamming distances between the codewords:

192

C = ∑
 i

 j
Wij H(ci ; cj) (1)

where Wij is the weight assigned to the edge from state si to state sj in the STG.

The Syclop method [155] considers the conditional state transition probabilities, pij, as weight

coefficients in the cost function C and it uses the minimum number of state bits ( lg2 ns).

After the computation of the conditional state transition probabilities to label all the edges of

the STG, the Syclop method is based on the simulated annealing approach, starting from an

initial random encoding.

The POW3 state assignment method, proposed by Benini and De Micheli in [14], uses the

total state transition probabilities Pij as weight factors in C and it enables the designer to

arbitrarily select the number of state variables nvar. After the computation of the Pij values to

label the edges of the STG, the method assumes to eliminate all the unreachable states and the

self-loops. Therewith the STG is transformed into a weighted undirected graph, G, by

collapsing all multiple-directed edges between two states si and sj into a single undirected

edge whose weight wij is given by:

wij = Pij + Pji for each i, j (2)

The encoding problem is then expressed as an Integer Linear Programming (ILP) problem,

whose complexity is NP-complete. Two algorithms have been proposed. The first one is the

semi-exact algorithm, that is based on the notion of indistinguishability classes of states and a

column-based approach to assign the binary codes to states on a bit-per-bit base. The global

ILP problem is thus decomposed into a set of smaller ILP problems and it is suitable for

medium size FSMs. The second algorithm is a heuristic algorithm to eliminate the exponential

complexity of the semi-exact version, giving a sub-optimal polynomial time assignment

applicable to large FSMs.

Another factor to consider during the state assignment for low power is circuit area, in order

to reduce the capacitive loads being switched at each clock cycle. With this purpose, POW3

can apply a modified cost function considering area-related constraints. The weight

coefficient wij of each edge in the undirected graph, G, becomes a convex combination of the

power and area weights:

 wij = α wP
ij + (1- α) wA

ji (3)

Chapter 7. State Encoding Techniques for Low Power FSMs 193

Similarly, the Galops encoding method [143] issues the same cost function as POW3,

considering a convex combination of the switching activity and the area of the combinational

logic as edge weights in the STG. Then they adopt a genetic local search to perform a local

optimization and in particular they assign codewords by collapsing states based on hybrid

genetic algorithms. However, given the different nature of the considered quantities (number

of transitions and number of literals), the goodness of the global solution is not guaranteed.

On the other hand, the LPSA approach [185] addresses the state assignment problem for both

the 2-level and the multi-level implementations of the next state and output logic, accounting

the loading factors and the switching activities of the present state inputs. Then a simulated-

annealing search strategy is adopted.

An important degree of freedom to be exploited during the state assignment of FSM is the

choice of the number of state variables, nvar. In general, we have that  lg2 ns ≤ nvar ≤ ns, while

the strategy of most power-driven state encoding algorithms consists of introducing the

minimum possible number of state bits to minimize the corresponding number of registers.

Nevertheless, the use of the minimum number of registers does not guarantee that the

corresponding combinational circuits operate with a lower switching activity. In some cases, a

smaller number of storage elements can imply more complex circuits to implement the next

state logic, leading to a corresponding increase in the transition activity of the combinational

part of the FSM [117].

All the above mentioned methods rely on codewords of fixed length, while other methods

based on variable code lengths have been investigated recently [173]. The basic idea is the

application of the Huffman coding technique, where codewords with shorter length are

assigned to states with higher steady-state probability, Pi. Although the code length might be

longer than  lg2 ns , the additional registers are disabled for high probable states.

The corresponding FSM implementation requires an additional logic to gate the clock and

thus disable a sub-set of registers, whenever the present state has a shorter code length. A

power overhead is introduced by this clock-gating logic, thus a special case of this general

variable length approach is proposed in [173], in which only two codeword lengths are

allowed. The set of states with higher probabilities is encoded with less than  lg2 ns bits,

while the other set of states, being less probable, is encoded by more than  lg2 ns bits. In this

194

way, the clock-gating logic uses only a single minterm. The states in the two sub-sets are then

encoded with a fixed length encoding method.

Explain that exists best case and worst case transition activity for Huffman-based encoding.

7.3. The Framework for Low-Power State Assignment

Given the FSM description and the input probabilities, we compute the total state transition

probabilities for each edge in the STG, by modeling the FSM as a Markov chain, as shown in

Chapter 2. Then all the unreachable states and the self-loops are eliminated from the graph.

As in POW3, the STG is then transformed into a weighted undirected graph, G, by collapsing

all multiple-directed edges between two states into a single undirected edge whose weight wij

is given by: wij = Pij + Pji

By considering the minimum number of state variables (nvar =  lg2 ns), the problem can be

formalized as finding a set of distinct codewords C = {c1, c2, ..., cnS}, composed of nvar-bits,

that minimizes the following cost function:

C = ∑
ij

 wij H(ci; cj) (4)

The goal is to assign codewords with minimum Hamming distances to states with higher total

transition probabilities. For FSMs with a large number of states, the exact solution may be

unattainable, as the problem is NP-hard, and the solution space to be explored is O (ns 2
ns).

We propose to organize the state assignment process in two successive phases. First, we

examine the state ordering problem, basically by selecting each time the edge with the largest

weight in G to assign a priority to the symbolic states. Then, we investigate the application to

the states of different encoding techniques, which minimize the adopted cost function.

7.3.1. State Ordering
Let us introduce now three greedy strategies to solve the state ordering problem.

Method I

The basic idea of the first approach [42] is to identify the path of consecutive nodes in the

graph characterized by the highest transition probabilities. At each step we make a locally

optimal choice of the maximum weight edge with respect to the arrival node selected during

the previous step. More in detail, after computing the weights of the undirected edges, we sort

Chapter 7. State Encoding Techniques for Low Power FSMs 195

them by wij in decreasing order, then we consider the wij’s one at a time. At the first step

(k = 1), two codewords are assigned, while at the generic step (k), one or two codewords are

attributed.

At the first step (k = 1), we select wpq(1) = max wij and the corresponding edge (sp(1), sq(1)).

Then we erase wpq(1) from the sorted list and we select m1 = max wij such that i or j is equal to

the index p of sp(1) and m2 = max wij such that i or j is equal to the index q of sq(1). If

m1 ≥ m2, then sp(1) and sq(1) are swapped to sq(1) and sp(1), otherwise they remain unchanged.

Finally, we can assign sp(1) and sq(1) by applying a suitable encoding style and go to the next

wij.

At the generic step (k), the algorithm searches for wpq (k) = max wij in the sorted list satisfying

the condition that p(k) or q(k) correspond to the index q(k-1) of the previously assigned state

sq(k - 1). If the other state sp(k) or sq(k) has already been assigned in the previous steps, we

eliminate the current edge from the list and go to the next wij; otherwise we attribute a

codeword to the unassigned state sp(k) or sq(k), we erase the considered wpq(k) from the list

and start again from the current top of the list.

If we reach the end of the list without finding any states that satisfy the above condition, we

start back from the current top of the list and we choose the max wij. Then the algorithm

proceeds depending on:

• If both states si and sj have already been assigned, we eliminate the current edge and go to

the next wij;

• If just one of the two states has been assigned, we apply a binary code to the unassigned

state between si and sj, then we eliminate the present edge and start again from the current

top of the list;

• If none of si and sj has already been assigned, we exploit the same algorithm used in the

first step, then we eliminate wij and start again from the current top of the list.

Method II

In the second method [42], we determine the visiting path by making a locally optimal choice

at each step with respect to both the starting and arrival nodes selected during the previous

step. In particular, we sort the edges by wij in decreasing order, then we consider the wij’s one

at a time. At the first step (k = 1), we select wpq(1) = max wij and the corresponding edge

(sp(1), sq(1)); we assign two codewords to sp(1) and to sq(1) and we proceed.

196

At the generic step (k), the algorithm searches for m1 = max wij such that i or j is equal to the

index p(k) of sp(k) and m2 = max wij such that i or j is equal to the index q(k) of sq(k).

If m1 ≥ m2, we select the weighted edge corresponding to m1, otherwise the edge

corresponding to m2. The algorithm proceeds depending on:

• If both states sp(k) and sq(k) have already been assigned in the previous steps, we eliminate

the current edge from the list and the algorithm searches for the new values of m1 and m2;

• If just one of the two states has been assigned, the weighted edge wpq(k) is selected and a

binary code is applied to the unassigned state sp(k) (or sq(k)). Then we eliminate wpq(k) and

start again from the top of the list.

If we are able to find just m1 (or m2), we select m1 (or m2) and we apply the same procedure

above described.

If we reach the end of the list and we are unable to find both m1 and m2, we go back to the top

and we select the max wij . Then the algorithm works as shown before.

Method III

In the third method, we identify the path by making a locally optimal choice at each step with

respect to the nodes assigned during the previous steps. More in detail, we start in the same

way as case I and II, sorting the edges by wij in decreasing order and considering the wij’s one

at a time. At the first step (k = 1), we select wpq(1) = max wij and the corresponding edge

(sp(1), sq(1)) and we assign two codewords to sp(1) and to sq(1) by applying one of the

encoding methods proposed below and we go to the next wij. At the generic step (k), the

algorithm searches in the whole list for the maximum weight edge mpq(k) = max wij such that

p(k) or q(k) is equal to the index of a state, which has been assigned in one of the previous

steps.

The algorithm proceeds depending on:

• If both states sp(k) and sq(k) have been already assigned in the previous steps, we eliminate

the current edge from the list and the algorithm searches for the new max wij ;

• If just one of the two states has been assigned, the weighted edge wpq(k) is selected and a

binary code is applied to the unassigned state sp(k) (or sq(k)). Then we eliminate wpq(k)

from the list and restart.

Chapter 7. State Encoding Techniques for Low Power FSMs 197

7.3.2. State Encoding
The second phase of the state assignment procedure concerns the application of an encoding

technique to the states by following the priority order suggested by one of the previous

spanning algorithms. The Gray encoding, which guarantees that two consecutive codewords

have minimum Hamming distance, can represent an optimal solution for a particular class of

sequential circuits, such as counters, where all transitions are equally probable. In practice,

this particular class of FSMs is characterized by the fact that a consecutive order of the nodes

in the graph can be easily found and the Gray encoding can be applied successfully. On the

other hand, if we consider a general STG structure, we can exploit the One-Hot encoding to

minimize the average number of transitions of the state lines. In this way, only two state

variables switch when a transition occurs between two states, even if we introduce a number

of state variables equal to the number of states, with an increased consumption related to

registers.

For a general solution, we propose two different encoding styles, without assuming any

specific STG structure and without imposing any constraint on the required state variables. In

the first approach, we start building the vector VC which contains all the possible codewords

of minimum length (nvar =  lg2 ns ); at the generic step of the graph visit we consider the

edge (sp(k), sq(k)) and we apply one of the available codewords to the unassigned state sp(k)

(or sq(k)), satisfying the condition: min H(sp(k), sq(k)). In the second approach, we impose a

different criterion during the assignment, since we choose, for the unassigned state sp(k) (or

sq(k)), the binary code that minimizes a partial cost function CP. As local cost metric, we

adopt the weighted sum of the Hamming distance considering the current edge (sp(k), sq(k))

and the edge with the largest weight which contains the unassigned state sp(k). We

investigated the possibility of directly evaluating the total cost function, but the results did not

confirm the effectiveness of this choice.

7.4. Proposed Power-Oriented State Assignment Techniques

In this section, we present four different state assignment methods targeting low-power

consumption, although the proposed framework allows us to combine any one of the proposed

state ordering algorithms with whatever encoding. The primary goal of the proposed methods

198

consists of reducing the number of logic transitions at the state lines between two consecutive

clock cycles.

Depth_First Method

In the method called Depth_First, we exploit the first ordering method to identify a path of

consecutive nodes in the graph, with the highest transition probabilities. Since the nodes

belonging to the selected path are characterized by a high probability to be consecutive, our

method attributes the Gray encoding to the states. As an example, the bbara FSM has been

selected from the MCNC benchmark suite. The bbara has ns = 10, hence nvar = 4. The

binary codes corresponding to the 4-bit length codewords have been indicated as c0 = 0000, c1

= 0001, …, c15 = 1000. Table 1 contains the related sorted list of wij, obtained by solving the

Chapman-Kolmogorov equations by assuming equally probable inputs. The second and third

columns of Table 2 represent, respectively, the priority assigned to each edge and the state

encoding derived with the proposed algorithm to bbara.

w12 w14 w01 w04 w23 w45 w24 w34 w37 w15 w17 w56 w47 w78 w16 w18 w67 w89 w48 w19 w49 w09

416 412 360 219 166 153 83 83 83 61 46 30 23 23 20 11 10 5 5 2 1 1

Table 1: The sorted list of wij for bbara

Minimum_Distance Method

In the Minimum_Distance method, we visit the graph by choosing each time the edge with a

maximum weight in the list, which contains one of the two states belonging to the previously

considered edge. Therefore, we follow the second ordering approach, then we apply an

available codeword that minimizes the Hamming distance between the pair of states of the

current edge, as in the second encoding. The corresponding results for the bbara example

are reported in Table 2.

Chapter 7. State Encoding Techniques for Low Power FSMs 199

Depth_First Minimum_Distance 1_Level 1_Level_TreeStep
wij Assignment wij Assignment wij Assignment wij Assignment

1 w21 s2 = c0, s1 = c1 w12 s1 = c0, s2 = c1 w12 s1 = c0, s2 = c1 w12 s1 = c0, s2 = c1

2 w14 s4 = c2 w14 s4 = c3 w14 s4 = c15 w14 s4 = c15

3 w40 s0 = c3 w10 s0 = c7 w10 s0 = c7 w01 s0 = c7

4 w09 s9 = c4 w15 s5 = c15 w15 s5 = c8 w23 s3 = c14

5 w98 s8 = c5 w17 s7 = c2 w17 s7 = c3 w45 s5 = c12

6 w87 s7 = c6 w73 s3 = c5 w73 s3 = c2 w37 s7 = c13

7 w73 s3 = c7 w78 s8 = c13 w78 s8 = c12 w56 s6 = c3

8 w45 s5 = c8 w76 s6 = c4 w76 s6 = c11 w78 s8 = c2

9 w56 s6 = c9 w89 s9 = c10 w89 s9 = c13 w89 s9 = c5

Table 2: State assignment table for bbara

1_Level Method

The 1_Level method follows the same procedure for the state ordering, then it applies one of

the possible codewords to the unassigned state sp(k) (or sq(k)), accounting for a partial cost

function. We choose the binary code ck that minimizes the weighted sum of the Hamming

distance, considering the binary codes in the current edge and also in the edge characterized

by the maximum weight value which contains the unassigned state, sp(k). If the wij

coefficients of these two edges are the same, we prefer to introduce a smaller number of

different bits between the states in the current edge. The visiting order and the performed

encoding have been reported in Table 2.

1_Level_Tree Method

In the 1_Level_Tree method, we follow the third visiting approach, since at the generic step

we select the max wij such that it contains at least one state previously assigned, as shown in

Table 2. For the code assignment, we adopt the partial cost function CP.

Finally, in Table 3, we compare the Hamming distances between each pair of states in the

graph encoded by several assignment methods for the bbara example. The final cost

function values, reported in the last column, show better results for the 1_Level_Tree method.

200

w12 w14 w01 w04 w23 w45 w24 w34 w37 w15 w17 w56 w47 w78 w16 w18 w67 w89 w48 w19 w49 w09Hamming
Distances 416 412 360 219 166 153 83 83 83 61 46 30 23 23 20 11 10 5 5 2 1 1

Cost
Function

DepthFirst 1 1 2 1 1 4 2 3 1 3 1 1 2 1 2 2 1 1 1 2 2 1 3460

Min_Dist. 1 1 1 2 2 2 2 2 1 1 2 3 1 1 2 3 2 1 2 4 3 3 3090

1_Level 1 1 1 2 1 1 2 3 1 2 1 1 2 1 3 2 2 1 1 3 2 4 2834

1_Level_Tree 1 1 1 2 1 1 2 1 1 2 3 1 2 1 1 2 2 1 3 3 4 2 2730

POW3 1 1 1 2 1 1 2 1 1 2 3 1 2 1 3 2 2 1 3 3 4 2 2770

Huffman 1 1 1 2 2 1 2 1 1 2 2 1 1 1 2 2 1 1 1 2 1 2 2822

Table 3: Comparison among several state assignment methods for bbara

7.5. Experimental Results

The four proposed state assignment methods, as well as the POW3 and Huffman-style

encodings, have been applied to the whole set of MCNC benchmark circuits. The Huffman

encodings have been obtained by allowing codewords of any lengths and starting from the

steady state probabilities; the average switching activity has been considered. The values of

the cost functions obtained by applying the different encoding techniques to the benchmarks

circuits are shown in Table 4. A comparison between the 1_Level_Tree method and the

POW3 and Huffman methods has been reported in columns seven and nine of Table 4. The

values of the cost functions corresponding to the 1_Level_Tree, POW3 and Huffman methods

have also been reported in Figure 1. Globally, the experimental results have shown that the

proposed method gives an average of 9.92% better results with respect to the POW3 encoding

algorithm. In all cases but one it shows a lower cost function. Moreover, the proposed 1Level-

Tree algorithm presents a better behavior in all cases with respect to the Huffman based

encoding, with an average improvement of 28.65%.

Chapter 7. State Encoding Techniques for Low Power FSMs 201

Depth
First

Min_Dist 1Lev 1Lev_Tree POW3 %1LevTree
vs POW3

Huff %1LevTree
vs Huff

bbara 348369214 311592835 285553300 275315936 279414298 -1.47 341275454 -19.33

bbse 876445488 781572724 775728757 781165781 781295221 -0.02 995242043 -21.51

bbtas 560869572 560869572 443478266 443478266 560869572 -20.93 632611523 -29.90

bbtasmod 736956546 795652199 766304374 678260893 795652202 -14.75 1206527406 -43.78

beecount 461300320 429566572 429566572 429566572 429566572 0.00 576431008 -25.48

cse 340663211 250017437 243140945 243173843 246243887 -1.25 363026018.5 -33.01

dk14 1246602541 1191074164 1199418369 1192786493 1192786493 0.00 1422676049 -16.16

dk15 850434786 850434786 850434786 850434786 850434786 0.00 906521531 -6.19

dk16 2056886695 1858252587 1837417250 1710844268 1836987540 -6.87 2229878388 -23.28

dk17 1197767155 1197767155 1035087727 1035087727 1035087727 0.00 1129982453 -8.40

dk27 1238095248 1190476200 1190476200 1190476200 1357142868 -12.28 1494047929 -20.32

dk512 1711309536 1398809537 1318452392 1235119058 1532738108 -19.42 1933037339 -36.10

donfile 1375000044 1395833378 1270833374 1270833374 1583333384 -19.74 1604218446 -20.78

ex1 881491114 814035082 755849869 709589759 798246811 -11.11 934473686.5 -24.07

ex4 521739142 543478273 543478273 500000010 608695663 -17.86 728261071 -31.34

ex6 1136358116 1136358116 1082571068 1071716088 1008903549 6.23 1145928498 -6.48

keyb 732586001 557527812 556511249 556515833 556521667 0.00 781923409 -28.83

kirkman 250000010 250000010 250000010 281250010 343750014 -18.18 1859375000 -84.87

lion 375000000 375000000 375000000 375000000 375000000 0.00 500000000 -25.00

lion9 444444448 444444448 444444448 444444448 722222228 -38.46 791673050.5 -43.86

mc 428571432 428571432 428571432 428571432 428571432 0.00 535715027.5 -20.00

modulo12 583333338 583333338 583333338 583333338 666666672 -12.50 895840454.5 -34.88

planet 1481424324 1432460836 1260775543 1134389349 1578854809 -28.15 2427091294 -53.26

planet1 1481424324 1432460836 1260775543 1134389349 1578854809 -28.15 2427091294 -53.26

s1 1307137517 1246467796 1111954284 1104615102 1278975255 -13.63 1709338838 -35.38

s1488 346142350 340549136 332656021 334672874 338272216 -1.06 418616028 -20.05

s1a 1307137517 1246467796 1111954284 1104615102 1278975255 -13.63 1709338838 -35.38

s208 476104317 476104317 475004342 475004342 475090165 -0.02 562499008.5 -15.55

s27 976190484 998599447 897759111 897759111 897759111 0.00 1065300599 -15.73

s386 876445485 781572721 775728754 781165778 781165778 0.00 995241966.5 -21.51

s420 476104317 476104317 475004342 475004342 475090165 -0.02 562499008.5 -15.55

s510 716981169 716981169 716981169 716981169 1094339681 -34.48 1537742082 -53.37

s8 146551728 146551728 146551728 146551728 172413798 -15.00 224135990.5 -34.61

s820 585868299 555052156 548511763 548556122 553705440 -0.93 737975540.5 -25.67

s832 584316521 554029118 549546154 549546163 553704019 -0.75 737975540.5 -25.53

sand 710048745 669127075 602552419 617787022 754698569 -18.14 1071852990 -42.36

shiftreg 1375000000 1000000000 1000000000 1000000000 1375000000 -27.27 1500000000 -33.33

styr 672352456 576434981 554459041 570323162 570503426 -0.03 762730980.5 -25.23

tav 1000000000 1000000000 1000000000 1000000000 1000000000 0.00 1500000000 -33.33

tbk 1134317126 1078203754 1098476979 1069153210 1087616330 -1.70 1228897992 -13.00

tma 262041291 224385038 195066485 190590292 219740721 -13.27 263484507 -27.67

train11 583333350 458333346 458333346 458333346 500000014 -8.33 541661053.5 -15.38

train4 400000001 400000001 400000001 400000001 600000001 -33.33 600000000 -33.33

Average % -9.92 -28.65

Table 4. Comparison of cost functions obtained by applying several state encoding techniques to MCNC
benchmarks

202

b
b

a
ra

b
b

se

b
b

ta
s

b
b

ta
sm

o
d

b
e

e
co

u
n

t

cs
e

d
k1

4

d
k1

5

d
k1

6

d
k1

7

d
k2

7

d
k5

1
2

d
o

n
fil

e

e
x1

e
x4

e
x6

ke
yb

ki
rk

m
a

n

lio
n

lio
n

9

m
c

m
o

d
u

lo
1

2

p
la

n
e

t

p
la

n
e

t1 s1

s1
4

8
8

s1
a

s2
0

8

s2
7

s3
8

6

s4
2

0

s5
1

0 s8

s8
2

0

s8
3

2

sa
n

d

sh
ift

re
g

st
yr ta
v

tb
k

tm
a

tr
a

in
1

1

tr
a

in
4

1Level Tree Pow3 Huffman

Figure 1: Comparison of cost functions obtained by applying several state encoding techniques to MCNC
benchmarks.

7.6. Summary

This chapter approached the problem of low-power state encoding for sequential circuits. In

particular, after a review of the most recent works related to the state assignment of FSMs for

power optimization, the chapter has been devoted to propose a general framework to support

the problem of finding a state assignment to minimize the power consumption. The theoretical

framework aims at reducing the switching activity of the state variables. Based on this

framework, we proposed four different state assignment techniques. Experimental results

have shown the effectiveness of the proposed methods. More in detail, the cost functions

obtained by the best of the proposed methods provides an average power saving of 9.92%

28.65% with respect to the POW3 and the Huffman-based encoding algorithms. Finally, work

is in progress aiming at evaluating other state encoding methods. We are investigating a step

one backward method for the state ordering process, while we are focusing on variable length

codes to be applied during the successive encoding process.

