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Interactions between dynamics on different temporal scales of about a century long record of
data of the daily mean surface air temperature from various European locations have been detected
using a form of the conditional mutual information, statistically tested using the Fourier-transform
and multifractal surrogate data methods. An information transfer from larger to smaller time scales
has been observed as the influence of the phase of slow oscillatory phenomena with the periods
around 6–11 years on the amplitudes of the variability characterized by the smaller temporal scales
from a few months to 4–5 years. The overall effect of the slow oscillations on the inter-annual
temperature variability within the range 1–2◦C has been observed in large areas of Europe.
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Understanding the complexity in the atmospheric dy-
namics and climate evolution is a great scientific chal-
lenge with a potentially high societal impact. Attempts
to infer nonlinear dynamical mechanisms from meteo-
rological data date back to the 1980’s when a number
of researchers claimed detections of a weather or cli-
mate attractor of a low dimension [1–3]. Other authors
pointed to a limited reliability of chaos-identification al-
gorithms and considered the observed low-dimensional
weather/climate attractors as spurious [4, 5]. Paluš &
Novotná [6] even found the air temperature data well-
explained by a linear stochastic process, when the de-
pendence between a temperature time series {x(t)} and
its lagged twin {x(t+τ)} was considered. Hlinka et al. [7]
extended the later result to the dependence between the
monthly time series of the gridded whole-Earth air tem-
perature reanalysis data.

On the other hand, a search for repetitive patterns
on specific temporal scales in the temperature and other
meteorological data has led to an identification of oscil-
latory phenomena possibly possessing a nonlinear origin
and exhibiting phase synchronization between oscillatory
modes extracted either from different types of climate-
related data or data recorded at different locations on
Earth [8–10]. Global circulation phenomena, identified
as the principal modes of the atmospheric variability also
show a complex nonlinear behavior [11, 12] and phase
synchronization [13]. A different perspective in under-
standing the complexity of the atmospheric dynamics is
open by very active research in uncovering the long-term
persistence and multifractality in climate-related time se-
ries including the air temperature [14–17].

Assuming that natural complex systems exhibit oscil-
lations and fluctuations on a wide range of time scales,

Gans et al. [18] propose a framework for analysis of in-
teractions across the temporal scales by quantifying de-
pendence among instantaneous amplitudes and frequen-
cies of oscillatory dynamics obtained from experimental
time series using digital filters and the Hilbert trans-
form. Cross-frequency interactions, in particular, a cross-
frequency phase–amplitude coupling has recently been
observed in electrophysiological signals reflecting the
brain dynamics. Beyond the synchronization phenom-
ena on particular temporal scales, the cross-frequency
coupling enriches the cooperative behavior of neuronal
networks and apparently plays an important functional
role in neuronal computation, communication and learn-
ing [19].

It can generally be expected that long-term air tem-
perature recordings reflect complex atmospheric dynam-
ics on multiple temporal scales. Considering the oscilla-
tory and synchronization phenomena observed on vari-
ous scales of the atmospheric dynamics [8–10], in accord
with Gans et al. [18], we will study in the air tempera-
ture recordings possible oscillations and fluctuations on
a wide range of the time scales using the phase dynam-
ics approach [20]. For an arbitrary time series s(t) the
analytic signal ψ(t) is a complex function of time defined
as

ψ(t) = s(t) + iŝ(t) = A(t)eiϕ(t). (1)

The instantaneous phase ϕ(t) of the signal s(t) is then

ϕ(t) = arctan
ŝ(t)

s(t)
, (2)

and its instantaneous amplitude is

A(t) =
√
s(t)2 + ŝ(t)2. (3)
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The imaginary part ŝ(t) of the analytic signal ψ(t) is
usually obtained by using the Hilbert transform of s(t)
[18, 20]. Since the Hilbert transform is a unit gain filter at
each frequency, broad-band signals from multiscale pro-
cesses should be pre-filtered to the frequency band of in-
terest. In this study a continuous complex wavelet trans-
form (CCWT thereafter) with the Morlet wavelet [21] is
applied directly to experimental time series s(t). At each
time scale (frequency) the complex wavelet coefficients
can be directly used in Eq. (2) and (3) for the estimation
of the phase ϕ(t) and the amplitude A(t), respectively.
The CCWT provides both the band-pass filtering of the
signal and the estimation of the instantaneous phase and
the instantaneous amplitude.
Let time series {x(t)} and {y(t)} be realizations of sta-

tionary, ergodic stochastic processes {X(t)} and {Y (t)}.
Information about the future Xτ of the process {X},
shifted τ time units forward, contained in the process
{Y } can be measured by the conditional mutual infor-
mation (CMI) I(Y ;Xτ |X), also known as the transfer
entropy [22]. Paluš & Vejmelka [23] show that in the
time series representation the functional I(y(t);x(t +
τ)|x(t), x(t− η), . . . x(t−mη)) can be used for inference
of causal (causality in the Granger sense [24]) influence
of {Y } on {X}. The conditioning variables depend on
memory/dimensionality of the process {X}. Paluš & Ste-
fanovska [25] demonstrate that the CMI can be applied to
instantaneous phases of interacting oscillatory processes
in order to detect the direction of coupling, i.e., to dis-
cern the driving from the driven system. Here we study a
possible influence of the phase ϕ1 of slow oscillations on
the amplitude A2 of higher-frequency variability of the
same multiscale process, using the functional

I(ϕ1(t);A2(t+ τ)|A2(t), A2(t− η), . . . , A2(t−mη)), (4)

where τ is the forward time lag, η is the backward time
lag in them+1-dimensional condition. For the statistical
evaluation of the CMI (4) we use two types of surrogate
data: the Fourier transform (FT) surrogate data [26] rep-
resenting the null hypothesis of a linear stochastic pro-
cess in which no interactions between different temporal
scales exist. We perform just the randomization of the
Fourier phases. No amplitude adjustment is done since
in the next step the surrogate time series is processed
by the CCWT and the exact preservation of the signal
frequency content is of the main interest. A more sophis-
ticated null hypothesis is represented by the multifractal
(MF) surrogate data [27] in which possible information
transfer from larger to smaller scales, explained by ran-
dom cascades on wavelet dyadic trees, is preserved.
In this study we use daily mean surface air temper-

ature (SAT) time series recorded in various European
locations: The data from Bamberg, Basel, De Bilt, Pots-
dam, Vienna and Zuerich from the period 1901–1999 are
a part of the data compiled for the European Climate
Assessment [28]; the record from Prague-Klementinum

is extended till 2008, and the SAT data from a number
of German stations extended till 2011 are available due
to the German Climate Data Center [29]. The inclusion
criterion for this study is the availability of at least 90
years of uninterrupted daily mean SAT recording, since
the computations of the CMI (4) have been performed
using the time series length 32768 daily samples. CMI
estimators [24] suffer from bias and variance of various
origins [23, 30]. Therefore the relatively large amount of
data was required in order to obtain reliable estimates,
even though we used an estimator of the mutual infor-
mation derived for Gaussian processes [31–34]. For more
details see the Supplemental material [35]. The func-
tional (4) is evaluated and averaged for the forward lags
τ from 1 to 750 days. The backward lag η is set to 1/4 of
the period of the slower oscillations characterized by the
phase ϕ1, following the embedding construction recipe
based on the first minimum of the mutual information
[36].

The temporal evolution of the raw daily mean SAT
data from mid-latitude locations is dominated by the an-
nual cycle. In many climate-related studies deseasonal-
ized SAT “anomalies” are used. In this study, however,
we are interested in discovering interactions of all rel-
evant temporal scales, therefore the raw SAT data are
used for the computation of the CMI (4). The used sur-
rogate data algorithms, however, might not accurately
reproduce such a strong cyclic component. The latter
is not consistent with the used multifractal model [27]
and even the FT surrogate data procedure fails to re-
produce a strong cyclicity and/or long coherence times
[37]. Therefore, before the randomization, the season-
ality in both mean and variance is removed from each
SAT time series. This is done by computing the means
and the variances for each calendar day. These sea-
sonal means are subtracted from the raw SAT data of
the corresponding days and the resulted SAT anomalies
(SATA thereafter) are divided by the corresponding sea-
sonal variances. Such deseasonalized data enter either
the FT or MF randomization procedure. Then, the orig-
inal seasonality in variance and mean is added back to
each surrogate data realization. Each “seasonalized” sur-
rogate realization undergoes the same processing proce-
dure as the original SAT data - the CCWT is used to
obtain the phase ϕ1 of slow oscillations and the ampli-
tude A2 of higher-frequency variability, both used in the
CMI (4) estimation. For each pair of the studied tempo-
ral scales, one thousand surrogate realizations are used
for an empirical estimation of the percentiles of the CMI
(4) surrogate distribution. We record the highest per-
centile exceeded by the value of the CMI (4) computed
from the original SAT data. This “significance level”
is simply related to the statistical significance of a sin-
gle statistical test: the “significance level” equal to 0.99
means that the CMI value is significantly greater than
zero with p < 0.01. The two used randomization pro-
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FIG. 1. Causal influence of the phase of slower oscillations
on the amplitude of faster fluctuations in the daily surface air
temperature from (a) Potsdam, (b) Hamburg, (c) Vienna, and
(d) De Bilt. The significance levels for the conditional mutual
information (4) with the 3-dimensional condition, obtained
using the Fourier-transform surrogate data, are grey-coded if
they are greater than 0.95.

cedures give consistent results. Further details on the
statistical evaluation are given in the Supplemental ma-
terial [35].
The significance levels for the CMI (4) computed us-

ing the SAT from four European locations are presented
in Fig. 1. In the SAT from the Central European loca-
tions around and northward from 50◦N (e.g. in Potsdam
(Fig. 1a), or Prague [35]), but also more in the north-west
direction, e.g. in the SAT from Hamburg (Fig. 1b), the
oscillatory processes with the periods between 6 and 11
years influence the variability on the time scales between
2–3 years, around 3–4 months, and, at the largest extent,
at and around the annual cycle. The pattern changes in
the locations more to the South, e.g. in Vienna (Fig. 1c),
or more to the West, close to the Netherland coast (De
Bilt, Fig. 1d.) In the latter two cases a decrease of the
involvement of the driven variability on the scales close
to the annual cycle is observed, accompanied by emer-
gence of the driven variability on the time scales around
4–5 years. A more detailed look at the significance levels
for the patterns of the directional ϕ1–A2 interactions for
the A2 periods around the annual cycle is presented in
Fig. 2a for the SAT data from the Prague-Klementinum
station. Here, as well as in Fig. 1, we present a quantita-
tive evidence that these slow (the time scale 6–11 years)
phenomena influence the variability on the shorter time
scales. Yet this quantitative evidence for the causal cross-
scale interactions does not give an estimate of the size of
the effect. Let us evaluate the conditional means (CM
thereafter) of the amplitude A2 taken conditionally on
the present value of the phase ϕ1 using 8 bins in the in-
terval (−π, π). Then, in Fig. 2b for the Prague SATA,
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FIG. 2. (Color online) (a) Causal influence (significance lev-
els are color-coded if they are greater than 0.95) of the phase
of slower oscillations on the amplitude of faster fluctuations
in the daily surface air temperature. (b) Differences (relative
values) of the maximum and minimum conditional means of
the amplitude A2 (periods on the ordinate), conditioned on
the phase ϕ1 (periods on the abscissa). (c) The (CCWT-
extracted) phase of the 8-year cycle (light/blue line, radi-
ans) and the moving-averages of the amplitude (dark/red
curve, arbitrary units) of the 1.3-year cycle. (d) The (CCWT-
extracted) phase of the 8-year cycle (light/blue line, rescaled
values) and the moving-averages of the total SATA variabil-
ity (dark/red curve, ◦C). The Prague-Klementinum SAT data
were analyzed, the MA’s were computed in a 1-year moving
window.

we plot the difference between the maximum and min-
imum values of the eight A2 CM’s in the eighth phase
bins within the cycle of ϕ1. This difference reflects a
“strength” of the dependence of A2(t) on ϕ1(t). However,
due to the redundant character of the CCWT decomposi-
tion, these differences for different time scales give only a
relative quantification of the change of the amplitude A2

of the fast variability within the slow cycle characterized
by the phase ϕ1.

We can see in Fig. 2b that the strongest effect is exerted
by the phase of the oscillations with the period around 8
years on the variability characterized by the period ap-
proximately 1.3 years. In order to see the evolution of
ϕ1 and A2 in time, in Fig. 2c we plot the phase of the
8-year cycle (lighter/blue sawtooth lines, in each cycle
rising from zero to 2π radians) and the relative values of
the moving average (MA) of A2 for the period 1.3 years.
We can see the tendency of A2 to reach higher values in
the first half of each 8-year cycle (ϕ1 between 0 and π)
than in the second half of the cycle (ϕ1 between π and
2π). In order to see the effect of the phase ϕ1 on the
temperature variability in a real physical quantity (◦C),
the MA values for the total SATA variability, together
with the phase of the 8-year cycle is plotted in Fig. 2d.
In all cycles (but the cycle in the years 1986–1995) the
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SATA variability reaches the maxima around the middle
of the 8-year cycle.

Oscillatory phenomena with the periods between 6
and 11 years, however, most frequently with the period
around 7–8 years have been observed in the air tempera-
ture and other meteorological data by many authors (see
Ref. [10] and references therein). Recalling the study of
Paluš & Novotná [8, 10], in Fig. 3a we present a histogram
of the instantaneous periods of an oscillatory mode ex-
tracted from the Prague SAT using the singular spectrum
analysis [8]. The period of this oscillatory phenomenon
fluctuates in a wide range, however, the most frequent
period is close to 8 years. Considering this observation
and the results in Fig. 2b, we use the CCWT in or-
der to extract the instantaneous phase of the oscillatory
mode with the central wavelet period 8 years. Again,
using 8 bins in the interval (−π, π) we evaluate the con-
ditional SAT means taken conditionally on this phase.
The maximum difference of the SAT conditional means
within the 8-year cycle is 1.56◦C (Fig. 3b). In order to
remove the influence of the annual cycle itself, we repeat
the computations for the SAT anomalies. The SATA
CM’s in Fig. 3c make the effect of the 8-year cycle on the
SATA variability, observed in Fig. 2d, even more visible:
The minimum SATA CM -0.81◦C is located in the first
bin and the maximum 0.71◦C in the fifth of the eight
bins covering the interval (−π, π). The maximum SATA
CM difference within the 8-year cycle is equal to 1.52◦C.
These differences have been obtained from the SAT and
SATA Prague data in the period 1958–2003 (16384 daily
samples starting from 1/1 1958) due to a comparability
with the results from the gridded reanalysis data. The
ERA SATA (a concatenation of the ERA-40 and ERA-
Interim datasets [38]) on a regular 2.5◦ x 2.5◦ grid over
Europe underwent the same conditional mean analysis
using the phase of the CCWT-extracted 8-year cycle.
The maximum differences of the conditional SATA means
within the 8-year cycle which are statistically significant
(i.e., exceeding the MF surrogate mean by more than 2.4
standard deviations) are grey-coded in Fig. 4. Consis-
tently with the station data, the ERA data suggests that
the 8-year cycle explains the inter-annual temperature
variability in the range 1.5◦C in the marked areas of the
Czech Republic, Germany, Poland, as well as in parts of
other European countries. In some areas of Germany and
Poland this value reaches 2◦C.

We have presented, for the first time, the quantita-
tive evidence for the information transfer from larger to
smaller time scales in the atmospheric dynamics. The
information transfer has been observed in the surface
air temperature daily mean time series as the causal
influence of the phase of slow oscillatory phenomena
with the periods around 6–11 years on the amplitudes
of the variability characterized by the smaller temporal
scales from a few months to 4–5 years. We hypothe-
size that the observed phenomenon might stem from lo-
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FIG. 3. (a) Histogram of instantaneous periods of the os-
cillatory mode extracted from the Prague-Klementinum SAT
using the singular spectrum decomposition. (b, c) Condi-
tional means of the Prague-Klementinum (b) SAT, and (c)
SAT anomalies, computed conditionally on the phase of the
SAT oscillatory mode extracted using the CCWT with the
central wavelet period 8 years.
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cal effects of the North Atlantic Oscillation, one of the
global modes of the atmospheric circulation variability
[35]. Chekroun et al. [39] observed that the phase of the
low-frequency variability of the El Niño-Southern Oscil-
lation determines the character of high-frequency vari-
ability (“weather noise”) of the sea-surface temperature
in the tropical Pacific. In this study we have probably ob-
served a regional manifestation of a general phenomenon
of cross-scale interactions in the atmospheric dynamics in
which global, low-frequency modes influence local, high-
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frequency variability. This phenomenon requires further
study and understanding of its mechanism and deserves
considerable attention in evaluation of the recent climate
changes, at least on a regional level, since the overall ef-
fect of the slow oscillations on the inter-annual tempera-
ture variability within the range 1–2◦C has been observed
in large areas of (mainly Central) Europe.
This study was supported by the Czech Science Foun-

dation, Project No. P103/11/J068.
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