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Abstract

Much of the human cortical surface is obscured from view by the complex
pattern of folds, making the spatial relationship between different surface
locations hard to interpret. Methods for viewing large portions of the brain’s
surface in a single flattened representation are described.  The flattened
representation preserves several key spatial relationships between regions on the
cortical surface. The principles used in the implementations and evaluations of the
implemen-tation using artificial test surfaces are provided. Results of applying the
methods to structural magnetic resonance measurements of the human brain are
also shown.  The implementation details are available in the source code which is
freely available on the Internet.
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Introduction
The rapid growth of functional magnetic

resonance imaging (fMRI) has served to
motivate the development of new methods for
analyzing and visualizing neuroimaging data.
In this paper we describe methods we have
developed that fall at the intersection of
visualization and analysis.  Specifically, we
consider methods for visualizing and
analyzing the spatial distribution of activity
measured along the two-dimensional cortical
surface.

The motivation for developing new
methods of analysis and visualization flows
from consideration of the limitations with
current methods.  Perhaps the most
widespread representation of fMRI
measurements is a multi-slice image.  In this
representation, measurements of the brain
volume are shown as a set of two-dimensional
images that represent both the anatomical and
functional activity in a series of planar slices
through the brain volume.  Using this format it
is difficult to appreciate the spatial
relationships between points in separate
images.   Furthermore, when seen in separate
images the position of any but the most
familiar anatomical features is very hard to
infer.

A second widely used format colors the
surface of a three-dimensional brain
rendering.  This format greatly improves one’s
ability to see the relative spatial relationships
between different loci of activity. The
difficulty with this method is that much of the
cortical gray matter is buried within sulci
whose shape varies across individuals and
whose form is quite complex.  Consequently,
this approach offers only a coarse
representation of the spatial position of the
activity, useful mainly for distinguishing
between activity separated by a few
centimeters along the cortical sheet.   Such
observations can be important in many cases,

but this visualization method does not
approach the potential resolution of the fMRI
signal nor can the method be used for various
types of measurements often made in
computational neuroimaging (Wandell, 1999).

During the last fifteen years, a number of
authors have described a third approach to
visualization methods, and this paper forms
part of that series. Schwartz, Dale, Drury,
Goebel and their collaborators define a variety
of methods of transforming the folded cortical
surface into simpler forms that can be viewed
in a single image while preserving some
aspects of the spatial relationships (Carman,
Drury, & Van Essen, 1995; Dale, Fischl, &
Sereno, 1999; Dale & Sereno, 1993; Drury et
al., 1996; Fischl, Sereno, & Dale, 1999;
Wandell, Engel, & Hel-Or, 1996).  The
conceptual issues concerning these
visualization methods can be divided into two
main theoretical topics.

The first important theoretical challenge is
to specify how to identify and then transform
the spatial relationships inherent in the MR
measurements to the relationships inherent in
the cortical surface.  These two
representations have fundamentally different
neighborhood relationships that are illustrated
in  Figure 1.  The instrumental sampling of the
MR signal falls on a regular grid of points that
spans a volume.  In conventional analysis, one
treats adjacent points as connected for
averaging and visualizing.  The rectangular
sampling lattice of the MR measurements is
illustrated in panel (a). Adjacency
relationships inherent in the cortical surface
do not follow this pattern of connectivity.
Rather, as shown in panel (b), the connections
trace out a two-dimensional sheet along a
complicated path within this volume and
points that are adjacent in the MR data are not
adjacent in the cortical sheet.

For example,  the two highlighted points
are adjacent in the MR measurements and
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would be blurred under conventional
convolution operations.  But, they are not
adjacent on the cortical sheet.  We refer to the
neighborhood relationships as defining the
configuration or topology, and we describe the
discrepancy in the identity of neighboring
points as a topological inconsistency between
the instrumental samples and the cortical
surface samples.

In recent years, the instrumental sample
spacing has become significantly finer than
the size of important brain structures such as

the principal sulci and gyri. Hence, to
represent and visualize data acquired at the
instrumental resolution accurately, it is
necessary to develop computational methods
to relate the instrumental sampling and the
position of the cortex. Identifying and using
the proper neighbor relationships is an
important step in developing algorithms both
for visualization and analysis.

One example of why neighborhood
relationships matter may be appreciated by
considering two different types of  brain atlas

(a) (b )

Figure 1.  The sampling grid of the fMRI signal and the spatial structure of cortical gray
matter. The nearest-neighbors in cortex differ from the usual assignment of nearest
neighbors to the fMRI signal, so that adjacent points in the fMRI grid are not adjacent in
gray matter.  Methods that average across the fMRI grid, without respecting the cortical
neighborhoods, will provide an inaccurate picture of brain activity.  See text for details.
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maps. The widely used Talairach
representation of brain coordinates (Talairach
& Tournoux, 1988) defines a rectangular grid
that is closely coupled to the measurement
space, but not to the intrinsic shape of the
cortex.  In contrast, (Van Essen, Drury, Joshi,
& Miller, 1998) propose a surface-based
representation that registers activity with
respect to sample positions along the cortex.
This representation is used in several
laboratories for visualization, spatial
averaging, and noise removal (Engel, Glover,
& Wandell, 1997; Tootell, Dale, Sereno, &
Malach, 1996; Tootell et al., 1997) and it is
also used in recent software products
(http://www.brainvoyger.de).

Figure 2 illustrates a second reason why
identifying the proper topology is important in
the visualization of MR images. The figure
illustrates how inconsistent topology can
cause problems in visualizing signals using
the “glass-brain” representation.  Panel (a)
shows an axial anatomical image.  In the
glass-brain representation used in SPM ’96,
statistical parameter maps measured along
lines 3 cm from the surface of the brain are
averaged and shown as activity on a three-
dimensional rendering of the whole brain
(panel b).  The lines superimposed on the axial
image show the set of integrating lines whose
parameter maps are averaged and then
displayed.  This averaging, with respect to the

(a) (b)

Figure 2. Spatial averaging of the fMRI signals used in the “glass brain” representation.
This representation averages across gray matter positions that are widely spaced in the
brain.  (a) An axial anatomical image with superimposed lines showing the 3 cm trajectory
used to create volumetric representations of statistical parameter maps.  (b) A glass brain
representation obtained from SPM ’96, showing the values of a parameter map on the
cortical surface.
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topology of the instrumental coordinates, does
not capture the topology of the brain.  Hence,
the activity portrayed on the surface can only
provide a coarse summary of the local
activity. The mismatch between the averaging
in instrumental space (straight lines) and the
curved shape of the cortical surface degrades
the effective spatial resolution of the
representation.

Several aspects of visualization and
averaging can be improved by using the
proper cortical gray matter neighborhoods to
guide visualization and analysis.  First, the
neighbor relationships can be used to create
flattened representations so that activity from
the entire surface can be viewed in a single
image.  How this can be accomplished is the
main focus of this paper. Second, the neighbor
relationships serve as the basis for three-
dimensional rendering of the brain.  Often
renderings of the boundary between the gray
and white matter provides a  satisfactory
method for visualizing most of the surface
area in a small number of views.  With the
widespread use of inexpensive processors for
three dimensional rendering, these
visualizations are now practical and
satisfactory for interactive data analysis.
Third, the neighbor relationship can be used
for statistical processing that combines and
compares data properly with respect to their
locations on the surface of the gray matter.
Combining and comparing measurements in a
way that respects the location of the data with
respect to the gray matter is far superior to
methods that are based on the instrumental
sampling grid.  We believe that the use of
cortical neighborhood relationships will
become a very important part of data analysis
in the next few years.

Elsewhere, we have described and
distributed algorithms for segmenting cortical
gray matter and producing representations that
specify the connectivity (neighborhood
relationships) of points on the surface (Teo,
Sapiro, & Wandell, 1997). We refer to the

connectivity between points as the mesh
topology. Here, we describe procedures for
transforming the connected representation to a
flattened surface. In the first part of the paper
the key principles of the algorithms are
described, and a mathematical method for
initiating the unfolding process using a
representation without any twists in the
surface is explained. Quantitative evaluations
of the algorithm using analytic test sets to
illustrate the method and its limitations are
described.  The method is then illustrated
using anatomical MR images of the human
brain. Finally, related work in the literature is
discussed, and the limitations of common
measures, such as Gaussian curvature, are
described.  The complete algorithm includes
many implementation details, and the
interested reader can see these in the source
code which is distributed on the Internet
(http://white.stanford.edu).

Algorithm Overview
The motivation for the algorithms we

describe can be understood by considering the
fundamental flattening problem illustrated in
Figure 3.  The image shows a plane along with
two quadratic surfaces, like bowls extruded
through the sheet.  These extrusions are
typical of cortex, though their precise shape
varies and some extrusions are more similar to
ridges than bowls.  The entire cortex consists
of many pieces similar to this one but folded
into a crumpled shape.

Were there no extrusions, or technically
were the surface developable, unfolding the
crumpled representation and preserving the
distances between points (as measured along
the surface itself) would be possible (Horn,
1986).  If all the distance relationships are
preserved, other metric quantities (e.g., angles
and areas) would be preserved as well.  When
the cortical surface includes regions like the
half-sphere and half-ellipsoid, no flattened
representation can precisely preserve the
distance relationships.
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One way to see why a distance-preserving
flattened representation is impossible is to
consider the area of cortex within the regions
marked on the figure.  The circle shown on the
plane contains much less surface area (π r 2 )
than the equal-perimeter circle that bounds
the ellipsoidal extrusion  (> 2 π r 2). There is
no way to make these circles map in the same
way to a flattened representation while
simultaneously preserving the relationships
between the points falling inside the circles.
One must choose the most important quantity
to preserve.

The quantity we place the greatest value
on preserving in the flattened representation is
illustrated in Figure 4.  Panel (a) shows a set
of closed curves on the surface in Figure 3.
The curves are equidistant (within the cortical
sheet) from a central point between the sphere
and ellipsoid. Were the surface a simple plane,
the curves would be a series of concentric
rings. The conic forms inserted within the
surface deform the equidistant curves, and in
one case splits the distance contour into two
unconnected parts, each of which is itself a
closed curve.  The dark points on the curves
show a set of sample points, also called nodes,

that are spaced evenly on the contours.  These
nodes form a coarse sampling grid that spans
the surface. Panel (b) shows the result of
applying a mesh generation algorithm to this
sampling grid.  Adjacent points on the closed
curves are connected and nearby points on
adjacent rings are connected by edges.  These
edges are then pruned to remove any
intersections, except if doing so would create
a node with fewer than three edges.  A graph
containing no intersecting edges is a planar
graph (Bollobas, 1991).

Like Drury et al. (1996), a main objective
in creating the flattened representation is to
preserve the arrangement of the nodes and

Figure 3. Why flattening distorts distances.
The surface contains three regions.  One is
planar, a second has a portion of a sphere
inserted, and the third has a portion of an
ellipsoid inserted. The perimeters of the two
circles are the same, but the areas contained
within them differ. The flattened
representations described here mainly distort
the distance relationships between nodes on the
spherical and ellipsoidal regions.

Figure 4.  (a) Curves equidistant from the
central point are shown. The curves show
points at 5mm, 10mm, 15mm, and so forth.
The ellipsoidal insertion breaks the 15 mm
curve into two disconnected parts (arrow), each
of which forms a simple contour.   The dark
points on the curves are sample nodes placed
along the curves at roughly equal steps.  (b)
The results of the mesh generation applied to
the sample nodes in (a).

(a)

(b)
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edges.  We preserve neighborhood
relationships between the sample nodes and
prevent large twists from occurring in the
flattened representation. A key element of the
algorithm, then, is the method used to create
the mesh on the cortical surface that
guarantees that the flattened  representation
has no twists or tears.  A novel aspect of our
design is that nodes can be placed within the
plane, preserving the mesh topology, in a
single step.  No iterative processing is
required, resulting in a significant
computational advantage.

The initial placement of the nodes can
result in a spacing that differs significantly
from the cortical spacing.  After creating the
initial flattened representation, the two-
dimensional positions of the nodes are
adjusted in order to match cortical and planar
graph distances between sample nodes. To
match these distances we find the shortest
distance (geodesic) between all pairs of
sample nodes, storing both the path and the
total distance.  In an iterative loop sample

node positions are adjusted to match the sum
of the  edge lengths along the stored path with
the lengths of the corresponding cortical
geodesics.  Only adjustments in the two-
dimensional node position that preserve the
mesh topology (no edge intersections can be
created) are considered.  Although the planar
and cortical distances cannot be matched
perfectly, the initial placement can be
substantially improved.  A quantitative
evaluation of the distances is presented in the
Results section.

Results
In this section we measure the distortions

introduced by the unfolding algorithm.  We
first illustrate some of the properties of the
algorithm by making measurements using
three test surfaces designed to evaluate the
algorithm.  Then, we show examples of
unfolded human brains.  The distortions in
these example brains can be compared to the
distortions observed in the test surfaces.

(a) (b)

Figure 5.  (a) The initial planar position of the sample nodes. A Delaunay triangulation of the nodes
is also shown. The spacing of points in the high density regions (solid arrows) and low density
regions (dashed arrows) are poor distance matches to the corresponding distances on the test surface.
(b) The triangulated sample node positions after applying adjusting the node positions to improve the
planar and cortical distance matches.   Even after this procedure, density remains very high in the
region near the ellipsoid.  Throughout the representation, however, the topology is correct.
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(a) (b)

(c)
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sFigure 6.  (a) A test surface comprising a

plane with different portions of a sphere
inserted.  (b) The positions of the sample
nodes after flattening.  (c) A histogram
summarizing the distance errors (distance in
cortex minus distance on the plane) between
sample nodes.

(a) (b)
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Figure 7.  A test surface comprising a plane
with a portion of a sphere near the center and
near the perimeter.   Other details as in Figure 6.



Wandell et al. Cortical Visualization January 2000

9

Curvature distortions
The distance distortions introduced by the

unfolding method are evaluated here by
analyzing the results of unfolding several
different types of test surfaces.  Consider,
first, the surface  shown in Figure 6a.  The
surface consists of a plane that has several
spheres inserted into it. The spheres are
inserted to different degrees, some just
emerging above the surface and others
ballooning out significantly. Consider this
surface as representing the white matter, so
that gray matter would cover the surface. The
sample nodes, which are not shown on the
surface, were chosen automatically (but with a
spacing that was small enough so that the
nodes were fairly evenly spaced as measured
along the surface).  Panel (b) shows the final
locations of the sample nodes after unfolding

the surface.  The sample nodes are relatively
compressed at locations corresponding to the
large spheres.  The amount of the distortion is
larger at the larger spheres.

Panel (c)  measures the distortion by
comparing the distance between points
measured along the geodesic path through the
sample nodes on the original surface (dm) with
the distance measured along the same path in
the planar representation (dp).  In order to
compare distances between nearby and widely
separated points, we plot the fractional error,
(dp - dm  ) / dm, so that positive and negative
errors represent an expansion and compression
of the planar distances, respectively.   The
extreme distortions of the planar distances are
roughly 40 percent of the distance on the
surface, though for most of the points the
distance distortions are relatively small.  The
values in this figure can be used to compare

(a) (b)

(c)

Fractional distance error
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esFigure 8.  A test surface comprising a folded
plane.  The flattened representation represents
both the mesh properties and the distance
properties accurately (typical error of less than
1 percent). Some error is expected due to
quantization noise.  Other details as in Figure 6.
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with the values presented later for flattened
representations of human brains.

Perimeter distortions
The unfolding algorithm introduces

distortions in a space-variant manner.
Specifically, nodes on the perimeter are placed
down separately from the other sample nodes.
Consequently, the errors associated with a
distortion in the center of the unfolded region
are slightly different from those near the
perimeter.  We have observed this variation in
normal unfolding, and it is illustrated for the
test surface shown in Figure 7a.  This figure
comprises a single plane with two identical
spheres inserted into it, one near the center of
the plane and the other near a corner.  The
representation of the sample nodes shows the

usual compression near the spheres, but the
nature of the compression is somewhat
different for the central and peripheral
spheres.  Panel (b) shows that the majority of
the distortions of the central sample nodes are
more localized than those of the peripheral
nodes. In practice, perimeter distortions that
influence the visualization can be avoided
simply by setting the perimeter to be more
than 5 mm from the area of interest. Notice
that the fractional distance error for this
surface is considerably smaller than for the
surface in Figure 6.

Folded planar regions
Finally, the discrete sampling of the

original MR measurements and numerical
errors in the algorithm will introduce some

(b)(a)

(c) (d)
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Figure 9.  Flattened representations of the frontal (a,b) and occipital (c,d) lobes of a human brain.
The region selected for each of these lobes are shown by the colored areas in panels (a,c).  The
sample node positions are shown in (b,d) along with the fractional errors of distances in the flattened
representation.  Scale bars indicate 1 cm distances in the flattened representation.
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amount of error into the unfolding process as
well.  We can measure this by unfolding a
surface with no intrinsic curvature, such as the
bent plane shown in Figure 8a.   The spatial
array of sampling  nodes does not have any
large regions in which the nodes are
compressed (Figure 8b).  The size of the
fractional distance error is greatly reduced,
with large error corresponding to only 0.05,
compared to the more extreme values of 0.4
and 0.2 in Figure 6 and Figure 7.

Human brain
Planar sample node positions derived from

the frontal and occipital lobes of a human
brain are shown in Figure 9.  Similar number
of sample nodes were used, though the area of
the frontal lobe is significantly larger. The
accuracy achieved in these two portions of the
brain is quite different as illustrated by the
dense cluster of dots in the occipital lobe.
The frontal lobe can be flattened with a

(a)

(b)

CS

STS

PO

Ca

STS

Ca PO CS

Frontal

Temporal

Parietal

5 cm

Occipital

(c)

Figure 10.  Flattened representation of an entire hemisphere.  (a)  The locations of the perimeter and
cuts are shown as black lines.  Principal sulci, also labeled on the flat representation, are indicated by
the labels and white arrows.  (b) The flattened representation is shaded according to the local convexity
of the cortical surface. Sulci and gyri are shaded as black and white, respectively.  Several sulci are
labeled and marked as solid white lines. Scale bars measure 5 cm.  Panel (c) and other details as in
Figure 6.
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fractional distance error that mainly is within
10-15 percent.  The occipital lobe error is
mainly within 30 percent.  These error values
are similar to values reported by Drury et al.
and Fischl et al. using their procedures.  The
difference in the size of the errors presumably
reflects differences in the intrinsic curvature
of cortex:  the occipital lobe is more like the
extruded spheres in Figure 6 and the forebrain
more like a crumpled sheet.

Finally, Figure 10 is an image of a
flattened hemisphere.  While our work does
not require us to flatten the entire hemisphere
at once, we include this image to demonstrate
that the procedures described here succeed on
large unfoldings.  In this image, the shading
represents the local curvature of the folded
brain:  dark and light regions tend to fall near
the sulcal fundi and crowns of gyri,
respectively.   The positions of the perimeter,
cuts and several principal sulci are shown in
panel (a).  The flattened representation is
labeled with these same sulci and the
boundaries of the four lobes are marked.  The
picture is quite similar to the representation
obtained by Drury et al. (1996) in which they
applied their methods to data from the visible
human data set.

Recall that the algorithm positions points
representing the gray matter nodes, and the
final representation is created by interpolating
across these unevenly positioned points.  We
do not interpolate curvature beyond a few
millimeters, so that in a few places holes are
apparent.  These occur when the flattening
process stretches a local region more than it
should. In practice, we eliminate holes by
using a different start point or smaller
selection.

Discussion

Curvature
Within the literature on cortical flattening,

Gaussian curvature plays a deservedly
important role. A nice example of the use of

curvature and its application to surface
characterization is in the work of Van Essen
and Drury (1997), who use it to distinguish the
properties of different cortical lobes.
Curvature is also often used in the form of a
graphical aid, as in Figure 10, to label sulci
and gyri in the flattened representation.

This measure has some important
limitations, however, if one is interested in
understanding how difficult it will be to flatten
a surface and preserve metric properties.  For
example, while surfaces with non-zero
Gaussian curvature cannot be flattened
without metric distortion, not all surfaces with
zero Gaussian curvature can be flattened
without distortion.  An example is the soap
film in a saddle-shaped wire frame. Hence,
curvature is not a complete characterization of

(a)

(b)

Figure 11.  Intrinsic curvature does not predict
the metric distortion caused by flattening.
Although the intrinsic curvature of these two
surfaces is the same,  the metric distortions after
flattening will differ.
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how well a surface can be flattened.
Another limitation on the use of Gaussian

curvature is shown in Figure 11.  Two
cylinders are shown that differ only in height.
The Gaussian curvature along the surfaces is
zero except near the base and top where it is
the same for both cylinders.   Yet, the two
surfaces will not have similar distortions when
flattened.  Because the area of the tall cylinder
is much greater, that surface will have larger
metric distortions when flattened.

The locality of the Gaussian curvature
fails to capture some of the problems that will
be observed in the flattening algorithms.  In
addition to local measures, such as Gaussian
curvature, measures of the ratio of surface
area to perimeter capture much of the problem
with unfolding.  On a truly planar surface,
points within a distance, r, sweep out area
(πr2) and define a perimeter of length (2 πr).
Hence, the area to perimeter ratio is r/2.
Deviations from this value indicate that there
will be metric distortions in the flattened
representation.

Related work
The algorithms described here are most

closely related to the contemporary work of
Drury, Van Essen and their colleagues (Drury
et al., 1996 ; Van Essen & Drury, 1997).  The
methods are also related to the work of Dale
and his colleagues (Dale et al., 1999; 1993;
Fischl et al., 1999). This work, in turn, draws
on ideas from the seminal work of Schwartz
(1990) and his colleagues.  There are a
number of very closely related developments
in the graphics literature (Eck et al., 1995;
Floater, 1997; Levy & Mallet, 1998) as well
as the mathematical literature on surface
properties and topological graphs referenced
above.  In this section we mainly discuss the
general principles and the work directly
pertaining to cortical flattening.

Drury et al. (1996) describe two related
algorithms for creating flattened
representations.  In both methods, a wire-

frame reconstruction of the surface is created,
such as the one produced by software
developed in our laboratory (Teo et al., 1997).
In the method most similar to the one
described here, a seed point on the brain is
chosen and placed on the plane.  Then, a rapid
flattening is achieved by the method they call
“accretion of concentric rings.”  They find all
the points connected to the seed node and
place these points on the plane around the
seed node.  Then, they place the next ring
down around that node, and so forth.

The sample rings we create and place on
the plane are similar in concept, though there
are some significant differences.  First, we
place down only a coarse sampling of the
nodes rather than the full complement.
Second, Drury et al. did not comment on the
fact that sometimes rings at equal distance
from a seed node are split into two sections, as
illustrated in Figure 4. This case can be
problematic and we suspect it is the reason
they observe substantial shearing in some
instances when using this method (Drury et
al., 1996, Page 24).  Third, the initial
placement of the nodes contains twists and
folds, and significant resources are applied in
order to eliminate these.  The methods used
here begin with a topologically correct
flattened representation.

Fischl et al. (1999) begin by segmenting
gray and white matter and creating a planar
graph describing the surface between the gray
and white matter using the methods outlined
in Dale et al. (1999). The nodes of the graph
are projected onto a plane, a procedure that
introduces folds.  The flattened representation
is then improved by an iterative process that
minimizes an energy functional containing
two terms. One term corrects for the
topological folds and twists in the surface. The
second term tries to adjust node positions to
match planar distances with those measured
along the cortical surface. Because the initial
planar graph contains many folds, in the early
stage of the flattening algorithm the functional
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that undoes the folds is given a large weight.
As the process continues, the functional that
governs the metric properties is given an
increasing weight.  Hence, the success of the
algorithm depends on the properties of the
energy functional and the minimization
process described in their work.  The methods
described are smooth and contain well-defined
gradients. Even so, the performance of these
algorithms in achieving their objectives is
notoriously difficult to characterize.

Both the groups include substantial
discussions on the use of flattened
representations to develop atlases for co-
registering different functional measurements.
These papers correctly point out that surface-
based atlases have better registration
properties than atlases based on three
dimensional coordinates, such as the
Tailarach-Tournoux scheme [Talairach, 1988
#2009, cf. Figure 1].  We note, however, that
the use of flattened representations does not
solve many of the generic problems with
atlases.  Brain structures differ significantly
and combining data across individuals based
on structural registration does not equate
functional areas in either three-dimensional
brains or their flattened representations.

A fundamental application of connected
segmentations will be to integrate cortical
neighborhoods with statistical analyses.
Analyzing functional data with respect to the
gray matter surface, rather than three-
dimensional space, can improve the signal-to-
noise of the analysis and help identify
functional regions.  Integrating data across
subjects based on functional responses rather
than structural form is a profitable future
direction.

Limitations
Within our laboratory, segmentation

algorithms are the most important bottleneck
for successfully unfolding. Poor unfolding
results are usually caused by small errors in
the segmentation. Pulse sequences that

produce reliable gray/white contrast in MR
images greatly reduce the amount of operator
intervention needed in the segmentation
process.  Checking the topology of the white-
matter segmentation to make sure it contains
no holes or handles, an algorithm developed
by Robert Taylor in our laboratory and that we
distribute with our code, has been important in
helping us to obtain good unfolding results. In
addition, our laboratory continues to use tools
for identifying regions of the flattened map
whose metric properties do not match the
brain distances and then help the user verify
the segmentation in the corresponding part of
the brain.

Measuring distances on a mesh remains a
research problem.  We expect that the
implementation of Dijkstra’s algorithm we use
may be replaced in the next few years as the
mathematics of computing geodesics on
manifolds with less than fully-triangulated
graphs is solved (Kimmel & Kiryati, 1998).

Our unfolding is usually done to
understand the activity in a specific part of the
brain, rather than the entire hemisphere.
Consequently, algorithm speed has not been
an important problem for us, and we have
been able to use a simple, high level
programming language (Matlab) that runs
across platforms. Our current
implementations, however, are not suitable for
regularly flattening many hemispheres, as the
processing time on a 300 MHz Pentium can be
as long as two days.  There are no extreme
memory requirements.  For example, the
entire hemisphere was flattened using a PC
with 256 MB of memory.

Conclusion
Creating flattened representations of the

cortical surface and other biological surfaces
is a useful visualization tool.  In this paper we
have described the challenges in producing
flattened representations and the principles we
have adopted to meet these challenges.  The
implementation details can be seen and further
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evaluated in the software implementation as
the source code for segmenting and flattening
is available on the Internet.

Methods
Flattened representations of the cortical

gray matter are obtained in six basic steps.
First, we identify a region of the cortex we
plan to render in a flattened view.  Within this
region gray matter voxels that fall along the
boundary of the white matter are identified.
These are called first layer points.  Second,
cuts are introduced. Third, a subset of the first
layer points are chosen to serve as sample
points.  Based on these sample points, we
create a triangular mesh that spans all first
layer points. Fourth, the sample points are
assigned positions in the plane using a
procedure that preserves the mesh topology, as
explained above. Fifth, sample point positions
are adjusted within the plane so that distances
along geodesic paths defined on the cortical
surface match the distances through these
same points in the flattened representation.
Sixth, the other gray matter points are
assigned positions on the plane.

Gray matter selection
The anatomical images used in the

examples in this paper were T1-weighted MRI
scans (voxel size=0.9 x 0.9 x 1.2 mm). The
principles of gray matter selection are
described in a separate publication (Teo et al.,
1997).  The current implementation we use
and distribute (mrGray) produces a description
of gray matter locations (nodes) as well as
their connections (edges).  The tool also
includes integrated methods for verifying that
the topology of the white matter surface is
correct, specifically that there are no holes or
handles in the surface.

In our work, we commonly flatten regions
of interest rather than the entire hemisphere.
While it is possible to flatten the entire
hemisphere (see below), flattening a region of
interest produces maps with much higher

precision, an important concern in the work
we do. To initiate the unfolding process cuts
are introduced and perimeter points are
identified.  We commonly choose the region
of interest by selecting a single gray matter
location (start node) in the region of interest
and then specifying a distance we wish to
include from the start node. All the nodes
within that distance from the start node are
selected for the flattened representation.
Perimeter points are identified by their
distance from the start point and whether their
neighbors are selected. It is also possible to
select a start node and a perimeter manually.

The measurement of distance along the
cortical surface is the most fundamental
operation used throughout the code.  To
measure distances we use a modified version
of Dijkstra’s algorithm on the connected
representation (Dijkstra, 1959).  Our
implementation of this algorithm takes into
account distances between individual nodes in
the gray matter, including differences in the
sample spacing in the cardinal directions and
differences in distances for connections made
between diagonally connected nodes.  We
have made our implementation of this
algorithm publicly available for several years,
and it has been independently built and
confirmed (H. Yamamoto, personal
communication).

Mesh construction
Next, a sparse mesh (selected nodes and

edges to connect them) is created that covers
the portion of the cortical surface that will be
flattened.  This mesh generation operation
comprises four steps.

First a set of connected iso-distance
contours are found, with each contour falling
at a user-defined sample spacing from the
previous contour. The last contour is set to be
the points on the perimeter of the unfold area,
the perimeter nodes.  This ensures that we
cover the entire cortical area of interest.
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Second, the nodes falling along the cuts
are removed.  The cuts always extend from a
perimeter node.  The points falling along the
boundary of the cut are added to the perimeter
nodes.

Third, sample nodes are selected along
each of the iso-distance contours.  These are
selected by finding a geodesic between the
start node and a node on the perimeter, that is
an orthogonal geodesic contour.  The locations
where this geodesic intersects each of the
contours is the first sample node for that
contour. The first sample node is the start
point.  We select additional sample nodes on
the remaining contours as follows. For the
second contour, identify nodes within one half
the sample spacing from the contour’s first
sample point  and eliminate these as candidate
sample nodes. Choose the second sample node
as the unmarked point whose distance from
the start point is most similar to the sample
distance.   Second sample nodes on
subsequent contours are chosen to be the
sample spacing away from the first node and
close to the second sample of the previous
contour.  Continue selecting sample nodes for
each contour. If no points matching the
criteria are found, and yet there are unmarked
points on the  contour that are more than a
sample spacing away, the contour must be
split into two disjoint parts as illustrated in
Figure 4a.  In that case, continue choosing
sample nodes on the second part of the
contour.

Fourth, edges connecting the sample nodes
are introduced.  Edges are placed between all
pairs of sample nodes separated by less than
twice the sample spacing.  The distance
requirement is relaxed in the event that a node
does not have at least 3 edges.  Next, we
remove intersecting edges. Edge intersections
are detected by finding the geodesics between
connected nodes and detecting common
points.  The order in which edges are removed
is determined by the requirements that (a)
each node must have at least three edges, and

(b) longer edges are removed first.  After this
step, the mesh covers the region of interest
and has roughly uniform sample node spacing.

Flattening the mesh
Until this stage of the computation, all

operations are performed on the three-
dimensional positions.  The next step is to
assign two-dimensional locations to the
sample nodes.  This assignment begins by
assuming the start node position is (0,0). The
perimeter sample nodes  are assigned
positions based on their distance from the start
node and their spacing along the perimeter.
The perimeter points are first placed on a
circle whose radius matches the distance from
the start node to the perimeter.  Then,
maintaining the angular position, the
perimeter node positions are adjusted
individually so that their planar and cortical
distances from the start node match.

The interior sample nodes are assigned
initial locations on the plane by placing each
node at a position equal to the average
position of its neighbors (the sample nodes
connected by an edge).  When the neighbors
form a convex shape, placing the node at the
average position of the neighbors will not
introduce any edge intersections and the mesh
will continue to be a planar graph (Floater,
1997; Levy & Mallet, 1998; Tutte, 1960).  If
the node’s neighbors are a concave shape, this
is not guaranteed.  But, in our experience over
hundreds of unfolds, the mesh generation
algorithm combined with the initial placement
procedure introduces no edge intersections
among the edges of interior nodes.

The initial placement of the nodes can be
implemented in a single efficient linear
calculation.  The linear equation can be
understood from the following considerations.
Suppose there are n interior sample nodes and
p perimeter points. Let X be the n x 2 matrix
containing the planar positions of the sample
nodes.  Let N be a n x n matrix whose (i,j) th

entry is 1/mi, where mi is the number of edges
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connected to the ith node, or zero if (i,j)  are
not connected.  The p x 2 matrix 0X contains
the two-dimensional locations assigned to the
perimeter points.  Finally, P is an n x p matrix
whose (i,j)th entry is 1/mi when perimeter node
j is connected to sample node i.  Each node is
at the average position of its neighbors when
the following equation is satisfied.

oPXNXX +=
The planar positions are found by  solving

0
1)( PXNIX −−=

Hence, the initial positions, X , are determined
by the edges attached to each node (specified
in matrices N and P) and the initial positions
of the perimeter points (specified in X0).
Placing the nodes and edges down in a method
that preserves the mesh topology, and in a
single step, is a computationally efficient
beginning to the algorithm that could be
applied widely.

Distance matching

The initial placement of the sample nodes
meets the topological requirement we have
imposed:  The interior edges between nodes
do not intersect.  By preserving the graph
planarity, the sample node placements do not
introduce any twists in the surface
representation.   The edges do not comprise a
triangulation. Hence, at this point we replace
the original edges with a new planar
representation using the Delaunay
triangulation of the nodes.  This set of edges
preserves the planar graph and is efficient.
The initial position of the sample nodes and
the edges of the Delaunay triangulation are
shown in Figure 5a.

While the sample node positions preserve
the planar graph, the inter-node distances do
not match the distances along the original
surface.  In the next phase of the algorithm,
the positions of the sample node positions are
adjusted so that their planar and cortical
distances match.  The adjustment is made

subject to the constraint that no edge
intersections are introduced. The adjustments
are made by an iterative procedure  that
minimizes the difference between the cortical
and planar distance between each node and its
neighbors. The penalty function for evaluating
a position change includes the squared error
between the cortical and planar distances and
a very large penalty in case a position causes
two edges to cross.  The positions of the
sample nodes after adjusting to match
distances are shown in Figure 5b.  The picture
shows that the overall density of sample nodes
is more uniform, corresponding better to the
original relatively uniform sampling.

Position the remaining gray matter
points

At this point the major goals of the
flattening algorithm have been achieved.  The
sample nodes are positioned in the plane and
the surface topology is preserved. All that
remains is to position the other gray matter
points within the plane.  This is performed in
two steps. First we assign positions of the gray
matter points adjacent to white matter.  Each
of these points falls within one of the triangles
identified in the planar representation. We find
this triangle and assign a planar location based
on the cortical distance between that gray
matter point and the three vertices of the
triangle.  Second, we assign positions of the
gray matter points that are not adjacent to
white matter.  We assign these points the
position of the closest gray matter point that is
adjacent to the white matter.  In this way, the
thickness of the gray matter is suppressed and
gray matter is represented as a thin sheet.
This is not a requirement, of course, and we
have experimented with representations that
preserve some of the cortical thickness by
using thin representations in which some
points are allowed to float out of the plane.
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