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Beyond Single-Page Web Search Results* 
Ramakrishna Varadarajan, Vagelis Hristidis and Tao Li 

Abstract — Given a user keyword query, current Web search engines return a list of individual web pages ranked by their 
“goodness” with respect to the query. Thus the basic unit for search and retrieval is an individual page, even though information on a 
topic is often spread across multiple pages. This degrades the quality of search results especially for long or uncorrelated (multi-
topic) queries (in which individual keywords rarely occur together in the same document) where a single page is unlikely to satisfy 
the user’s information need. We propose a technique that given a keyword query, on-the-fly generates new pages, called composed 
pages, which contain all query keywords. The composed pages are generated by extracting and stitching together relevant pieces 
from hyperlinked Web pages, and retaining links to the original Web pages. To rank the composed pages we consider both the 
hyperlink structure of the original pages, as well as the associations between the keywords within each page. Furthermore, we 
present and experimentally evaluate heuristic algorithms to efficiently generate the top composed pages. The quality of our method 
is compared to current approaches using user surveys. Finally, we also show how our techniques can be used to perform query-
specific summarization of web pages.   

Index Terms — Internet search, Search process, Web Search 
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1 INTRODUCTION

iven a user keyword query, current Web search en-
gines return a list of pages ranked by their “goodness” 
with respect to the query. However, the information 

for a topic, especially for long or uncorrelated (multi-topic) 
queries (in which individual query keywords occur rela-
tively frequently in the document collection but rarely oc-
cur together in the same document), is often distributed 
among multiple physical pages connected via hyperlinks 
[26]. It is often the case that no single page contains all 
query keywords.  Li et al. [26] make a first step towards this 
problem by returning a tree of hyperlinked pages that col-
lectively contain all query keywords. The limitation of this 
approach is that it operates at the page-level, which ignores 
the specific context where the keywords are found in the 
pages. More importantly it is cumbersome for the user to 
locate the most desirable tree of pages due to the amount of 
data in each page and the large number of page trees. 

We propose a technique that given a keyword query, 
on-the-fly generates new pages, called composed pages, 
which contain all query keywords. A preliminary version 
of this work was presented as a poster paper in SIGIR 2006 
[39]. The composed pages are generated by stitching to-
gether appropriate pieces from hyperlinked Web pages 
(hyperlinks to the original Web pages are also displayed). 

To rank the composed pages we consider both the hyper-
link structure of the original (source) pages, as well as the 
associations between the keywords within each page.  

Our technique has the following key steps: During the 
preprocessing stage, for each web page we create a labeled, 
weighted graph, called the page graph, by splitting the page 
to a set of text fragments (graph nodes) and computing the 
semantic associations between them (graph edges). Then, at 
query time, given a set of keywords, we first find a tree, 
called web spanning tree, of hyperlinked pages that collec-
tively contain all the query keywords. Then we perform 
keyword proximity search on the each page’s page graph to 
discover how the keywords contained in the page are asso-
ciated with each other. For each page in the web spanning 
tree we extract a page spanning tree that contains a subset of 
the query keywords. The page spanning trees of the pages 
of the web spanning tree are appropriately combined into a 
composed page, which is returned to the user. As we will 
explain later, smaller web spanning trees are preferable and 
hence single-page results, as created by current Web search 
engines for AND semantics are ranked higher. 

Note that a key assumption we make in this paper is 
that hyperlinked pages are associated to each other. This is 
a reasonable assumption. Furthermore, each result should 
be composed of pages associated to each other to have a 
cohesive meaning. Hence, we only consider hyperlinked 
pages in building web spanning tree. 

 
Example 1: Figure 1 shows a Web graph extracted from the 
www.fiu.edu Web site. The hyperlinks between pages are depicted 
in the Web graph as edges. The nodes in the graph represent the 
Web pages. Figure 2 shows the page graph of Page 1 in Figure 1. 
As denoted in Figure 1, Page 1 is split into 7 text fragments 
v1…v7, using the newline delimiter, and each one is represented 
by a node in the page graph. The edges denote semantic 
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Figure 1. Sample Web pages from www.fiu.edu.

associations. Table 1 shows the Top-3 search results (composed 
pages) for the query “Graduate Research Scholarships”. We rep-
resent the nodes of a web spanning tree using rectangles and the 
nodes of a page spanning tree using circles. Hyperlinks are solid 
lines, while the semantic links within in a page graph are dotted 
lines. The page spanning trees represent the most “relevant 
pieces” of each page. �  

 
Figure 2. A page graph of Page 1 in Figure 1. 

Table 1. Top-3 search results for query “Graduate Re-
search Scholarships”. 

Rank Score Search Results 

1 12.50 

 

2 101.60 

 

3 209.89 

 

Query-Specific Summarization: The extraction of the most 
relevant pieces of information from a web page using the 
notion of the page spanning tree has another application 
(side product), in addition to being a component in creating 
composed pages. In particular, it is used to perform query-

specific summarization of web pages. The most popular use 
of query-specific summarization today is the snippets dis-
played for each of the page results of Web search engines. 
We show how the query-specific summaries corresponding 
to page spanning trees have better quality than current ap-
proaches.  
 
 
 

 
 
 

Figure 3. Top summary of web page 1 of Figure 1 for 
query “research scholarships”. 

Example 1 (cont’d): For the web page 1 of Figure 1 and the 
keyword query “Research Scholarships”, the top summary v3-v4 
is shown in Figure 3. The top summary is the top spanning tree 
of the page graph of page 1 shown in Figure 2. Nodes v3 and v4 
are associated because they are adjacent in the text (stronger asso-
ciations are assigned when the nodes have common words as ex-
plained below in the text). � 
In summary, this work has the following contributions: 
• We introduce the notion of composed pages to improve 

the quality of Web search. Composed pages are created 
on-the-fly by combining appropriate content from oth-
er pages. 

• We show how the most relevant information is ex-
tracted from a page by viewing a page as a page graph 
and computing a query-specific page spanning tree. 
This has application to query-specific summarization, 
in addition to the generation of composed pages. 

Florida International University, a member of the State Uni-
versity System of Florida, is a fully accredited comprehen-
sive, multi-campus urban research institution located in 
Miami, Florida (more) 

  Open House, Latest Scholarships, Honors College 
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• We propose efficient heuristic algorithms to compute 
the top composed pages as well as query-specific 
summaries. The efficiency of the algorithms is evalu-
ated experimentally. 

• We show using user surveys that the inclusion of com-
posed pages in the search results increases the user sat-
isfaction. Further, we show that using the idea of the 
page spanning tree we produce query-specific summa-
ries that are superior to current approaches. 

• We have developed prototypes of the Composed Pages 
system available at http://dbir.cs.fiu.edu/ComposedPages 
and the summarization system available at 
http://dbir.cs.fiu.edu/summarization. 

The rest of the paper is organized as follows: Section 2 
describes the framework used in our paper; Section 3 de-
scribes how page graphs are built; Section 4 describes the 
idea of query-specific document summarization; Section 5 
introduces the idea of searching the Web using composed 
pages; Section 6 presents the algorithms used in our system; 
Section 7 and 8 present the quality and performance ex-
periments respectively; Section 9 describes the related work 
and finally in Section 10 we present our conclusions. 

2 FRAMEWORK  

2.1 Data Model 
Web graph: Let D={d1,d2,…,dn} be a set of Web pages 
d1,d2,…,dn. Also let size(di) be the length of di in number of 
words. Term frequency tf(d,w) of term (word) w in a Web 
page d is the number of occurrences of w in d. Inverse doc-
ument frequency idf(w,D) is the inverse of the number of 
Web pages containing term w in them.  

The Web graph GW(VW,EW) of a set of Web pages 
d1,d2,…,dn is defined as follows:  

• A node vi∈VW, is created for each Web page di in D. 

• An (undirected) edge e(u,v)∈EW is added between 
nodes u,v∈VW if there is a hyperlink between u and 
v. �  

An example of a web graph is shown in Figure 1.We view 
the Web graph as undirected since an association between 
pages occurs along both directions of a hyperlink.  

Page graph: In contrast to previous works in Web search 
[25,26,31], we go beyond the page granularity. To do so, we 
view each page as a set of text fragments connected 
through semantic associations.  

A key component in our work is the page graph 
Gd(Vd,Ed) of a Web page d which is defined as follows:  

• d is split into a set of non-overlapping text frag-
ments and each fragment is represented by a node 

v∈Vd. A text fragment corresponding to a node v is 
denoted as t(v). 

• An undirected, weighted edge e(u,v)∈Ed is added 
between nodes u,v∈Vd if there is an association 

(further discussed in Section 3) between t(u) and 
t(v) in d. �  

Figure 2 shows the page graph of Page 1 in Figure 1. 
The process of building page graphs is explained in 
Section 3. The page graph is equivalent to the document 
graph in [38].  Notice that there are many ways to define 
the page graph for a Web page. In this work we exploit the 
HTML tags to split the page into text fragments, and edges 
are added when the text fragments are associated through 
common (or related) words as we explain in Section 3. The 
semantic association between the nodes is used to compute 
the edge weights (query-independent) while the relevance 
of a node to the query is used to define the node weight 
(query-dependent). Note that the Web graph now becomes 
a graph of page graphs. 

Search Result: A keyword query Q is a set of keywords 
Q={w1,…,wm}.  Before defining the result of a keyword 
query we need a few more definitions. 

Definition 1 (Minimal Total Web Spanning Tree).  Given a 
Web graph GW(VW,EW), a minimal total Web spanning tree of GW 
with respect to a keyword query Q={w1,…,wm} is a sub-tree T of 
GW that is both: 

• Total: every keyword w∈Q is contained in at least one 
node (page) of T. 

• Minimal: we cannot remove any node from T and still 
have a total sub-tree. � 

 

Figure 4. The Minimal Total Web Spanning Trees of Web 
graph in Figure 1 for query “Graduate Research Scholar-

ships”. 
Figure 4 shows the minimal total spanning trees for the 

query “Graduate Research Scholarships” on the web graph 
of Figure 1. A result of a keyword query Q at the page gra-
nularity is a minimal total Web spanning tree T. We go one 
step further in order to improve the user’s experience and 
locate the specific parts of each Web page in T that are rele-
vant to Q.  For that, we need the following definition. 

Definition 2 (Minimal Total Page Spanning Tree).  Given a 
page graph Gd(Vd,Ed)  for a Web page d and a set of keywords 

Qi⊆Q (Qi=Q for query-specific summarization), a minimal total 
page spanning tree p of Gd is a sub-tree of Gd that is both: 

• Total: every keyword w∈Qi is contained in at least one 
node of p. 

• Minimal: we cannot remove any node from p and still 
have a total sub-tree. � 

Figure 5 shows two minimal page spanning trees for 
Pages 2 and 4 respectively for the query “Graduate Re-
search Scholarships”. In both cases v2 is a Steiner node, i.e., 
it does not contain any query keyword in it, but is helpful 
in forming a minimal total spanning tree for the pages as it 
has semantic links to the nodes that contain the keywords. 

There is a subtle difference in the page spanning tree 
computation for our two different applications - searching 
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using composed pages and query-specific summarization. 
For query-specific summarization of a web page we com-
pute the page spanning tree that contains all the keywords 
in Q. For the composed pages application, for single-page 
results we compute the page spanning tree for Q, while for 
multi-page results we compute them for subsets of Q (see 
Definition 3). Note that for Steiner nodes, Qi is empty. In 
this case p is an empty tree, which we represent by just dis-
playing the title of the page in our system. 

 
Figure 5.  The Minimal Total Page Spanning Trees of 

Pages 2 and 4 in Figure 1 for query “Graduate Research 
Scholarships”. 

A minimal total Web spanning tree T is “refined” by 
finding a minimal total page spanning tree p for each of the 

Web pages d∈T as formally explained in Definition 3. Hen-
ceforth we omit the words “minimal total” for brevity if it is 
clear from the context when referring to minimal total Web 
spanning trees or page spanning trees. The size of a Web or 
page spanning tree is the number of edges it contains. 

Definition 3 (Search Result). Given a Web graph GW(VW,EW), 
page graphs for each Web page in GW, and keyword query 
Q={w1,…,wm}, a search result R is a minimal total Web spanning 
tree T with nodes (pages) d1,..,dz, along with a minimal total page 
spanning tree for each di with respect to a subset Qi of Q. Each 
page di is assigned a subset Qi of Q (di must contain all keywords 
in Qi although it may contain more keywords of Q than Qi) such 

that Qi ∩ Qj =∅ for every i≠j, and Q1∪…∪Qz=Q. � 

For example, Table 1 shows the Top-3 search results for 
the query “Graduate Research Scholarships”. The Web 
spanning tree 3—1 gives rise to two search results. Page 3 
contains keywords “graduate” and “research” and Page 1 
contains “research” and “scholarships”, that is, keyword 
“research” appears in both pages. One search result is com-
puted with subsets Q1 = {graduate, research} for Page 3 and 
Q2 = {scholarships} for Page 1, while the other with Q1 = 
{graduate} for Page 3 and Q2 = {research, scholarships} for 
Page 1. We only return the best (see Section 5.1 for ranking) 
search result for each Web spanning tree to the user as 
shown in Table 1. 

Problem definitions: We are now ready to formally define 
the two problems addressed in this work. The scoring of 
search results and summaries trees is presented in Sections 
5.1 and 3.1 respectively. Smaller scores correspond to high-
er ranking.   

Problem 1 (Top-k Search Results). Given a Web graph GW, 
the page graphs for all pages in GW, and a keyword query Q, find 
the k search results R with minimum Score(R). � 

Problem 2 (Query-Specific Summarization). Given a docu-

ment d∈D and its page graph Gd, and a keyword query Q, find 
the best summary, i.e., the minimal total spanning tree with min-
imum score. � 

Notice that typically a single summary per page is re-

quired and hence Problem 2 is a top-1 problem. Notice that 
the totality property implies that we use conjunctive query 
semantics (AND). Applying OR semantics to Problem 2 is 
straightforward, as we just replace Q by Q′, where Q′ is the 
set of query keywords contained in the page. Applying OR 
semantics to Problem 1 is unintuitive since the primary 
purpose of the composed pages approach is to produce 
complete (total) answers to the user. 

3 BUILDING PAGE GRAPHS 
The page graph Gd(Vd,Ed) of a page d∈D is constructed as 
follows. First we parse d and split it into text fragments us-
ing parsing delimiters (e.g., <p>, <br> tags).  Each text 
fragment becomes a node in the page graph. A weighted 
undirected edge is added to the page graph between two 
nodes if they either correspond to adjacent text fragments 
in the text or they are semantically associated. The weight 
of an edge denotes the association degree of the association.  

There are many possible ways to define the association 
degree between two text fragments. In this work we con-
sider two fragments to be associated if they share common 
words (excluding stop words) and the degree of association 
is calculated by an adaptation of traditional IR term weight-
ing formulas [35], as described below. We also consider a 
thesaurus to enhance the word matching capability of the 
system. In future versions of our system we will consider 
using WordNet and Latent Semantic Indexing (LSI) tech-
niques to improve the quality of the edge weights. To avoid 
dealing with a highly interconnected graph, which would 
lead to slower execution times and higher maintenance 
cost, we only add edges with weights above a threshold. 
Also notice that the edge weights are query-independent, 
so they can be pre-computed. Q is only used in assigning 
weights to the nodes of Gd. 

The following input parameters are required during 
the pre-computation stage to construct the page graph: 
1. Threshold for edge weights. Only edges with weights not 
below threshold will be created in the page graph. The 
choice of the threshold is a tradeoff between perform-
ance and quality, since a zero threshold would build a 
dense graph which would increase the processing time, 
while a higher threshold would decrease the quality of 
results by not including enough edges. 

2. Parsing Delimiters. Parsing delimiters are used to split 
the Web page into text fragments. Typical choices are 
the <p> (paragraph) tag (each text fragment corre-
sponds to a paragraph) or the <br> (each text fragment 
is a sentence). Other tags that could be surrounding a 
possible text fragment are the <table> tag, <ul>, <ol> 
tags and so on. For all these tags the text between the 
opening and closing counterparts constitute a text 
fragment. In this way we found a set of tags that when 
used as delimiters lead to paragraphs that are typically 
short and leads to more compact page graphs. For 
plain text documents, typical choices are newline char-
acters (each text fragment corresponds to a paragraph) 
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or periods (each text fragment corresponds to a sen-
tence). 

3. Maximum Text Fragment Size. This is used in cases 
where a fragment is too long which would lead to large 
nodes (text fragments) and hence large summaries. Us-
ers typically desire concise and short summaries. 

After parsing the page and creating the graph nodes 
(text fragments), for each pair of nodes u,v we compute the 
association degree between them, that is, the score (weight) 
EScore(e) of the edge e(u,v). If EScore(e)≥threshold, then e is 
added to Ed. The score of edge e(u,v) where nodes u, v have 
text fragments t(u), t(v) respectively is:  

( )
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where tf(d,w) is the number of occurrences of w in d, 
idf(w,D) is the inverse of the number of pages containing w, 
and size(d) is the size of the page (in number of words). 
That is, for every word w appearing in both text fragments 
we add a quantity proportional to the tf⋅idf score of w. No-
tice that stop words are ignored. Furthermore, we use the-
saurus and stemmer (we rely on Oracle interMedia [30] as 
explained in Section 8) to match words that are related. The 
sum is divided by the sum of the lengths of the text frag-
ments in the same way as the document length (dl) is used 
in traditional IR formulas.  
 
Edges between adjacent fragments: We consider adjacent 
fragment edges as a special case because two adjacent 
fragments are semantically related because of their close 
proximity.  Furthermore, linking the adjacent nodes en-
sures the connectivity of the page graph. We use the follow-
ing formula, which ensures that there is always an edge 
between nodes with adjacent text fragments: 

EScore(e)=max(EScore(e), threshold)           (2) 

The calculation of the edge weights concludes the 
query-independent part of the page graph creation. Next, 
when a query Q arrives, the nodes in Vd are assigned query-
dependent weights according to their relevance to Q. In 
particular, we assign to each node v corresponding to a text 
fragment t(v) node score NScore(v) defined by the Okapi 
formula [35] (Equation 3).  In order to accelerate this step of 
assigning node scores we build a full-text index on the set 
D of pages. The details of this index are out of the scope of 
this paper. 
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where tf is the term’s frequency in document (page), 
qtf is the term’s frequency in query, N is the total 
number of documents in the collection, df is the num-
ber of documents that contain the term, dl is the doc-
ument length (in words), avdl is the average docu-
ment length and k1 (between 1.0–2.0), b (usually 0.75), 

 
(3) 

and k3 (between 0–1000) are constants. 

3.1 Ranking of Page Spanning Trees  
In this section we present our ranking framework for page 
spanning trees. Recall that the top page spanning tree is the 
query-specific summary for Problem 2 (Section 2.1). Given 
the page graph Gd of page d and a query Q, a page span-
ning tree p is assigned a score Score(p) by combining the 

scores of the nodes v∈p and the edges e∈p. 

∑
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where a and b are constants discussed below. 
EScore(e) is the score of edge e using Equation 1, NScore(v) is 
the score of node v using Equation 3. 
Intuitively, if p is larger (has more edges) then its score 

should degrade (increase) since larger trees denote looser 
semantic connections [2,7,21,22]. This is the reason we take 
the sum of the inverse of the edge scores in Equation 4. Fur-
thermore, if more nodes of p are relevant to Q, the score 
should be improved (decreased). Hence, we take the in-
verse of the sum of the node scores. 
Constants a and b are used to calibrate the importance of 

the size of the summary (in number of edges) versus the 
amount of relevant information contained. In particular, 
higher a values boost the score of smaller and tightly con-
nected summaries, whereas higher b values benefit summa-
ries with more relevant content (i.e., containing nodes with 
high score with respect to the query). Notice that a and b 
can also be viewed as adjusting parameters for the query-
independent and dependent parts of the scoring function 
respectively.  We use a=1 and b=0.5 in our system, which 
we have found to produce high-quality answers. 

4 QUERY-SPECIFIC SUMMARIZATION  
This section tackles Problem 2 of Section 2.1. Given a query 
Q and a page graph Gd for a page d, the query-specific 
summary is the page spanning tree p of the Gd with mini-
mum Score(p), according to Equation 4.  

Example 2. Figure 7 shows the page graph for the page of Figure 
6. The page is first split into text fragments v0…v16, which cor-
respond to its paragraphs (the newline delimiter was used). No-
tice that the edge between nodes v8 and v7 has the highest weight 
because there are many infrequent (and hence with high idf value) 
words that are common between them like “Donoghue” and 
“BrainGate”. � 

Table 2 shows the top-ranked spanning trees for the 
page graph of Figure 7 for the query “Brain chip research”. 
The values shown above the nodes in Table 2 indicate the 
node scores with respect to the query, computed by Equa-
tion 3. The top result (whose textual representation is 
shown in Figure 8) is the best summary for this query.  In-
tuitively, this result is the best because it contains the 
minimum possible number of nodes and the edge that con-
nects the two nodes is strong. Also observe that Result #4 is 
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ranked lower than Result #3 even though it has fewer 
nodes.  The reason is that the nodes of Result #4 are con-
nected through very commonly occurring words like 
“computer” and “brain” whereas in Result #3 they are con-
nected through infrequent words like “Friehs”. 

 
Figure 6. Sample news page from www.cnn.com.  

5 SEARCH USING COMPOSED PAGES 
This section tackles Problem 1 of Section 2.1. In Section 5.1 
we explain how a search result (Definition 3) is ranked, 
while Section 5.2 discusses how a composed page is con-
structed for a search result. 

5.1 Ranking search results 
Recall that a search result R is a Web spanning tree T where 
each page d in T is represented by its page spanning tree p. 
Clearly there is no optimal ranking function since it is pos-
sible to come up with different ranking functions for differ-
ent domains or specific queries. In this work we adopt 
principles well-accepted in previous works on ranking Web 
pages [25,26,31] and trees of data [2,7,14,17,21,38]. 

The first ranking principle we adopt [26] is that search re-
sults involving fewer pages are ranked higher. Intuitively, 
if a search result is larger (has more edges) then its score 
should degrade (increase) since larger trees denote looser 
semantic connections. Hence, search results are primarily 
ranked by the (inverse of the) size of their Web spanning 
tree. Recall that by Definition 3, all search results contain all 
query keywords. 

Figure 7. Page Graph of the sample page in Figure 6. 

Table 2. Top Summaries for query “Brain Chip Research”. 

Rank Score Summary 

 
1 

 
67.74 

 

 
2 

 
84.77 

 

 
3 

 
87.64 

 

 
4 

 
103.77 

 

 
5 

 
167.41 

 
 
 
 

 

 

Figure 8. Top Summary for document of Figure 6 for 
query “Brain Chip Research”. 

Within search results with the same size of Web span-
ning tree, we rank according to the scores of the involved 
page spanning trees, computed by Equation 4. Note that 
the first ranking principle also applies in ranking individual 
page spanning trees as expressed in Equation 4, that is, 
page spanning trees with smaller size are ranked higher. 

What is left, is to define how the scores of the constitut-
ing page spanning trees computed by Equation 4, are com-
bined to compute the overall score of a search result. Again, 
we do not claim that we have the optimal combining func-
tion, but we rely on previous work to define the next 

Brain chip offers hope for paralyzed.  

   Donoghue’s initial research published in the sci-
ence journal Nature in 2002 consisted of attaching an 
implant to a monkey’s brain that enabled it to play a 
simple pinball computer game remotely.  
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Figure 9. Composed Page for Search Result #1 for query “Graduate Research Scholarships”.  
principle.  The second ranking principle is that the scores of 
the page spanning trees are combined using a monotone 
combining function to compute the score of the search re-
sult. Notice that we already used another variant of this 
principle in Equation 4, where the scores of the nodes and 
edges are combined using a monotone function. 
To incorporate the global importance of the pages used 

in constructing a search result, we use their PageRank [31] 
values. Equation 5 computes the score of a search result R 
given the scores of its page spanning trees p, where we 
chose summation as our monotone combining function. 

∑
∈

=
Rp

pPR

pScore
RScore

)(

)(
)(  (5) 

where PR(p) is the PageRank score of page d that contains 
the page spanning tree p.  

5.2 Composed Pages 
A composed page is a dynamic page created on-the-fly by 
stitching together pieces from other pages. Given a query 
Q, a composed page is a representation of a search result, as 
defined in Definition 3, in a Web page format. The score of 
a composed page is the score of the corresponding search 
result defined by Equation 5. 

The key requirements in constructing a composed page 
are the following: First, display the tree-structured (more 
specifically tree of trees) search result in a page format. Sec-
ond, allow users to easily navigate to the original pages that 
were used to construct the composed page. Figure 9 shows 
the composed page constructed for the Search Result #1 of 
Table 1. A composed page for a search result is constructed 
by displaying links to all pages in its Web spanning tree 
along with the text fragments of the page spanning trees. 
The page spanning trees are displayed in an unordered list 
format that depicts their structure. A sub-bulleted list de-
notes the parent-child relationship in the page spanning 
tree of text fragments.  

6 ALGORITHMS 
In this section we present various algorithms used in our 
system. Note that the algorithms used in the query-specific 
summarization problem are also used as a component of 
the composed pages problem. The pre-computation re-
quirements are also the same. Section 6.1 presents the algo-
rithm for preprocessing the Web pages and creating a data-
base of page graphs. Section 6.2 presents algorithms to solve 
the query specific summarization problem (Problem 2), 
which are adapted in Section 6.3 to solve the top-k search 
results problem (Problem 1). 

6.1  Preprocessing Algorithm 
Figure 10 describes the preprocessing algorithm. Before any 
query arrives we pre-compute and store the following: 
• The page graph for each page. In particular, we parse the 

HTML documents based on the tags, as described in 
Section 3 and compute the edge weights. The parame-
ters described in Section 3 are taken as input and page 
graphs are built accordingly. 

• PageRank values of each page by executing the PageR-
ank algorithm [31]. 

• A full-text index to efficiently locate the pages and spe-
cifically the text fragments that contain the keywords 
and calculate their query-specific score.  

• In order to boost the performance of the algorithms, the 
all-pairs shortest paths between the nodes of the page 
graph Gd of every page d. Note that the inverse of the 
edge weights is used since larger edge weights denote 
tighter association in our setting. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Preprocessing Algorithm.  

6.2  Compute Top-1 Page Spanning Trees (Query-     
Specific Summaries) 

For both Problems 1 or 2, we need to solve a variant of the 

Preprocess (Web Graph Gw, Parsing Delimiters P, Threshold τ, 

Maximum Fragment size sz) 

1.  For each web page (node) d in Gw do { 

 /* create and store page graph Gd for d*/ 

2.  Parse d and split it into text fragments 

with maximum size sz  using the delimit-

ers in P; 

3.  Create a node for each text fragment and 

add it to the page graph, Gd of d; 

4.    For every pair of nodes in Gd find if 

they are semantically related by calcu-

lating the edge weight using Equation 1 

and add it to Gd if the edge weight ≥ τ; 

5. For every pair of adjacent nodes, build 

an edge e with weight equivalent to 

max( Escore ( e) , τ) according to Equation 

2;/*in close proximity as explained*/ 

6.      Find All-pairs shortest path using Floyd 

Warshall’s algorithm using the inverse 

of each edge’s weight;} 

7. Compute and store the PageRank values of all  

pages (nodes) in Gw; /* compute PageRank val-

ues;  build full-text index*/ 

8. For each keyword w locate and store all pages       

   in D that contain w; /*Stemming is used in    

   this step. Stop words are ignored*/  
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Group Steiner Tree problem, which is referred to as key-
word proximity search problem [7,14] and is defined as 
follows:  
Given a weighted data graph G(V, E), a keyword query Q which 
is a set of keywords, and an integer k, find the k minimum-weight 
sub-trees of G such that every keyword in Q is contained in at 
least one vertex of the sub-tree, and we cannot remove any node 
from it and still have a tree.  
When k = 1, the keyword proximity search problem has 

been shown to be equivalent to the Group Steiner problem, 
which is NP-complete. The keyword proximity search 
problem is slightly more complex since the groups of nodes 
are not disjoint, in contrast to the Group Steiner Problem, 
which is defined as follows: 
Given an undirected, connected, and weighted graph G=(V, E); 
and given a family R={R1,….Rk} of disjoint groups of vertices, 
where Ri is a subset of V, find a minimum-cost tree T that con-
tains at least one vertex from each group Ri. Since the weights of 
the graph are non-negative, the solution is a tree-structure. 
This section presents two algorithms adapted from 

BANKS [7] to compute the top query-specific summary: the 
enumeration and the expanding search algorithms. The 
algorithms return a top-1 summary for a Web page d, given 
its page graph Gd and a query Q. The reason we employ 
top-1 summary algorithms is that typically the user only 
requests a single summary for a document, as in the case of 
snippets in Web search engine results. 
 
Top-1 Enumeration Algorithm: This algorithm, which is 
abbreviated as Top-1-MTPST-Enumeration (Top-1-Minimal-
TotalPageSpanningTree-Enumeration), is shown in Figure 
11. First, we find all combinations of nodes in Gd that are 
minimal (no node is redundant) and total (collectively con-
tain all keywords in Q). Then, for each  combination we 
create a complete graph Gc (called closure graph) that con-
tains all nodes in the combination and all-pairs of edges 
between them with weight equal to their pre-computed 
shortest-path distance. We then calculate all possible span-
ning trees in Gc, and compute their scores using Equation 4 
and so on (see Figure 11 for more details). This algorithm 
accepts a Quality parameter ω. Higher values of ω yield 
higher quality results. Intuitively this parameter decides the 
number of different summaries that are considered before 
we pick the best one, given that this is an NP-complete 
problem. 
Example 2 (cont’d). Consider the page graph in Figure 7 and 
the query “Brain chip research”. The nodes that contain the key-
words are v0, v1, v3, v4, v10, v11, and v15. We then find all 
minimal and total node combinations, which are {v0, v10}, {v15, 
v0}, {v0, v3}, {v4, v0}, and so on. For each combination we create 
a closure graph. For example, the closure graph for the second 
combination is v15~v0 with edge weight 88.74 (which is the 
length of the shortest path from v15 to v0). We then find all pos-
sible spanning trees of this graph, which is just v15~v0, for the 
above closure graph. Then, we replace the edge between v15 and 
v0 with the shortest path between them, which is 
v15~v14~v1~v0. This tree is not minimal and hence we trim it to 
get the minimal result v15~v14~v1 and output this result along 
with its score. �  
 

Figure 11.  Top-1 Enumeration Algorithm. 
 
Top-1 Expanding Search Algorithm: The basic idea is that 
an expanding area is created for each keyword node (node 
that contains a query keyword) of Gd and we start from the 
nodes that contain the query keywords and progressively 
expand them according to a shortest-paths algorithm until 
we find all minimal total spanning trees. In particular, the 
algorithm (Figure 12) finds (using the pre-computed full-
text index) all the nodes that match some keywords in the 
query and starts expanding them incrementally. We call the 
sub-graph created from each keyword node v, expanding 
area of v. At each iteration, we expand each expanding area 
in parallel by adding all adjacent edges (later we discuss 
heuristics of expansion) to the expanding area of the previ-
ous iteration. A result (summary) is generated when a set of 
expanding areas meet at a common point (node) and form a 
minimal total page spanning tree for Q.  
We use the precomputed all-pairs shortest paths data to 

efficiently grow the expanding area. That is, we only con-
sider the edges that are contained in a shortest path from 
the current node v to any other node u that contains addi-
tional query keywords than v. When two or more expand-
ing areas meet we check for possible new summaries. If a 
summary is found, it is trimmed to become minimal and its 
score is calculated using Equation 4.  
Example 2 (cont’d). For the page graph in Figure 7 and the 
query “Brain chip research”, we grow the expanding area of v0 to 
v0~v10, which is the first precomputed shortest path of source v0 
and check for possible summaries. v0~v10 is total as well as mi-
nimal and hence we add it to the set of results. We continue 
growing each expanding area using its precomputed shortest 
paths. Then we grow v1 to v1~v2, v3 to v3~v2, v4 to v4~v3, v10 

Top-1-MTPST-Enumeration (Page Graph Gd, Query Q, 

Quality parameter ω) 

1. Results  ←∅; /*stores summaries*/  

2. Find all nodes in Gd that contain some keyword      

of Q; /*use full-text index*/ 

3. Find all minimal combinations of nodes that 

   collectively contain all keywords in Q;    

4. For each minimal node combination C do { 

5.   Create closure graph  Gc that contains only           

 the nodes in C;  

6.   Find all possible spanning trees S of Gc; 

7.   Calculate the score of each spanning tree 

in S using Equation 4 by using shortest 

path weights between any two nodes;  

8.    Pick the spanning tree p with the minimum    

 score; 

9.     Replace the edges u~v  in p with their 

 precomputed shortest paths u~u1~…~uk~v;  /* 

 i.e., we are adding the Steiner nodes.*/ 

10.    Trim p to make it a minimal total span

 ning tree; 

11.   Recalculate the score of p using Equation 

4 and add p to Results ; 

12.  ω--;  

13.  If( ω==0) Return the top ranked summary in 

 Results ; } 
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to v10~v9, v11 to v11~v10 and once we expand v11 we have 
another summary v11~v10 that is total and minimal. � 

Figure 12. Top-1 Expanding Search Algorithm. 
 
6.3   Compute Top-k Search Results 
This algorithm is an adaptation of the Top-1 expanding 

search algorithm of Section 6.2. It also uses the Top-1-
MTPST-ExpandingSearch method as a subroutine to com-
pute the page spanning trees of the pages in a Web span-
ning tree. We adapt expanding search and not the naïve 
enumeration algorithm since the former is shown to per-
form better in Section 8. The key differences from the algo-
rithm of Figure 12 are the following. First, Heuristic-Top-k-
Expanding-Search (Figure 13) operates on Web graphs in-
stead of page graphs, and hence produces web spanning 
trees instead of page spanning trees. Second, we introduce 
the following heuristic based on Equation 5, which is our 
ranking function. In particular, we first expand towards 
pages d with highest HeuristicWeight value as defined by: 

)(*)()( dIRScoredPRdeightHeuristicW =         (6) 

where d is a Web page, PR its PageRank value, and IR-
Score(d) its Information Retrieval score for Q. The PR(d) 
component of Equation 6 is intuitive since it also appears in 
the ranking equation (Equation 5). The IRScore(d) compo-
nent is a heuristic estimate of the Score(p) component of 
Equation 5, where p is the page spanning tree for page d. 
The intuition is that a page with high IR score for Q is also 
expected to have page spanning trees with high score for Q. 
We use the full-text indexer to compute IRScore(d). Finally, 
notice that Heuristic-Top-k-Expanding-Search algorithm has 
two steps: first it computes the Web spanning trees, and for 
each one of them it computes the top search results by 
computing the corresponding page spanning trees for its 
pages (getTopSearchResult method). The following are the 
key steps of the algorithm involved in computing the top-k 

search results for a query Q.  
• Compute a minimal total Web spanning tree, WST 

given the web graph Gw and query Q. 
• Then compute the best search result for WST, given 

the page graphs of each page in WST and the query Q 
by considering all possible combinations of keyword 
assignments to the pages of WST, according to the 
constraints of Definition 3. 

The above steps are repeated until k search results are com-
puted. The getTopSearchResult method takes as input a web 
spanning tree and the page graphs of the constituent pages 
and returns the best search result after evaluating all possi-
ble search results. It uses the Top-1-MTPST-ExpandingSearch 
method to compute the top page spanning trees corre-
sponding to the query.  

Table 3. Real & Synthetic Datasets  

Name #nodes  
(Web pages) 

#edges  
(Hyperlinks) 

Size (MB) 

FIU1 25,108 137,929 4564 

FIU2 6,054 45,405 115 

7 QUALITY EXPERIMENTS 
To evaluate the quality of the results of our approach for 
Problems 1 and 2, we conducted three surveys, one for 
Problem 1 and two for Problem 2. The subjects of the sur-
vey are twenty students (of all levels and various majors) at 
Florida International University (FIU), who were not in-
volved in the project. In these surveys the users were asked 
to evaluate the results based on their quality. Sections 7.1 
and 7.2 present the results for Problems 1 and 2 respec-
tively. 
Datasets: We use two real datasets (Table 3). FIU1 is a hy-
perlinked set of 25,108 Web pages (nodes) crawled from the 
fiu.edu domain, connected through 137,929 hyperlinks 
(edges) used for performance evaluation. FIU2 is a subset of 
the web pages available in fiu.edu domain used for quality 
evaluation, which offers faster response times and more 
focused results that are easier to compare. 

7.1   Composed Pages 
We used FIU2 for our user surveys. The participants were 
asked to evaluate the quality of the search results with re-
spect to ten queries. We chose both long and medium sized 
queries. For each query, users were asked to rate their satis- 
faction for the Top-5 search results produced from the Heu- 
ristic Top-k Expanding Search algorithm of Figure 13, and 
for the results produced by Google. We chose the first 5 
results from Google that are included in the subset of 
crawled FIU web pages. The Google query was constrained 
to pages using the “site: fiu.edu” condition. Each partici-
pant was asked to assign a score between 1 and 5 to each 
alternative query answer, where 5 denote the highest user 
satisfaction. The results of the survey prove the superiority 
of our approach, as shown in Table 4. 

7.2   Query-Specific Summarization 
To evaluate the quality of our query-specific summaries we 
created two user surveys on a DUC and a Web dataset as 
explained below. The size of a result was also taken into

Top-1-MTPST-ExpandingSearch(Page graph Gd, Query 

Q, Quality parameter ω) 

1. Results  ←∅;  /*stores summaries*/  

2. Find all nodes N={N1,…,N m}  that contain the 

keywords in Q and create expanding areas for 

each; /* Ni  has the nodes that contain wi */  

3. Repeat until each expanding area spans the    

entire graph G { 

4.   For each node v  in N do { 

5.   Add to the expanding area of v  the mini-

mum-score adjacent edge from the (pre-

computed) shortest paths starting at v  

and ending at a node in N not containing 

the same keywords as v;             

6.    Check for new results (summaries); 

 /*i.e., trees that contain a node from 

 each of N1,…,N m */ 

7.    Trim summaries to make them minimal; 

8. Calculate the score of each summary p 

using Equation 4 and store in Results ; 

9.  ω--;  

10. If( ω==0) Return the top ranked summary 

in Results ;}}  
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Figure 13.  The Heuristic Top-k Expanding Search Algorithm. 

Table 4. Average Top-5 search result ratings for 10 queries. 

Keyword Queries 
 

Google 
Search 

Heuristic  
Expanding 

Search  
Keyword Queries 

 
Google 
Search  

Heuristic  
Expanding 

Search  

Undergraduate Housing safety 2.06 3.41 Undergraduate Summer athletics accomplishments 2.25 4.5 

Graduate financial aid regulations 2.41 3.59 Physics alumni achievements 3.25 3.00 

Computer Science Internship opportunities 2.88 3.65 Electrical transfer student eligibility 2.66 4.66 

Campus Safety requirement regulations 2.24 3.35 Freshman internship opportunities 1.66 4.66 

Biomedical Research fellowship eligibility 1.24 3.35 Mechanical Graduate admission policies 1.66 4.66 

Average Rating 2.16 3.47 Average Rating 2.29 4.29 

consideration by the participants – a longer result carries 
more information but is less desirable. Each participant was 
asked to compare the summaries and rank them, assigning 
a score of 1 to 5, according to their quality for the corre- 
sponding query. A rank of 5 (1) represents a summary that 
is most (least) descriptive. 

 Comparison with DUC dataset  

The dataset used in this survey consists of twenty docu-
ments and four queries taken from the DUC 2005 dataset 
[10] as shown in Table 6. We compare our summaries with 

DUC Peer summaries for quality. DUC peers are human 
and automatic summaries used in quality evaluation. We 
compared our summaries against the DUC peers with 
highest linguistic quality. Unfortunately, most of the sum-
maries in the DUC datasets are query-independent and the 
few query-dependent ones are multi-document. Hence, in 
order to compare our work to that of DUC we used the fol-
lowing method to extract single-document summaries from 
query-dependent multi-document summaries for a set of 
twenty documents over four topics. The sentences that have 

Heuristic-Top-k-Expanding-Search(Web graph Gw, Page graphs PG ={Gd1, G d2 … Gdn},Keyword query Q = {w 1,…,w m} )  

1.   Results  � 0; /* result count */ 

2.   Find all keyword nodes KN in GW using the full text index; /*nodes that match some  keyword in Q*/ 

3.    Let Zj  be the set of nodes of GW that contain wj ; 

4.   Let L j  be the set of expanding areas corresponding to the  root nodes in Zj ;  

5.   Let buffer ( i ) be an array ordered by score to buffer search res ults containing i  pages; 

6.   For each node(page) d contained in Z1∩Z2∩…∩Zm do {/*single-page search results*/ 

7.      TSR � getTopSearchResult ( d,{ Gd}, Q); 

8. Insert TSR into buffer(1);/* Insert TSR into the ordered buffer  of single page search results */ 

9. Results ++;}  

10.   While ( Results < k ) { 

11.     For j  in 1.. .m  do { 

12.     For each expanding area L in L j  do { 

13.       Expand the expanding area L, with a node v  having the maximum HeuristicWeight ; /* Equation 6*/ 

14.       Join v  to all previously expanded nodes u generated by the expanding areas Ls, s≠j ; 

          /* By “join” we mean find all instances o f v  as an end node in the already expanded nodes. */ 

15.       For each web spanning tree WST generated by the join { 

16.      Trim useless leaves to make it minimal; 

17.      TSR � getTopSearchResult ( WST,{ Gd1, G d2… Gdz},  Q ); 

18.      Insert TSR in to buffer(length( TSR)); / * length(TSR) equals number of pages in TSR */ 

19.      Results ++; If( Results = k){ Output results in buffer  and return; }}}}}  

MODULE: getTopSearchResult(Web spanning tree WST, Page graphs WPG = {Gd1, G d2 … Gdz} of WST, Keyword query 

Q = {w 1,…,w m} )  

1.   SearchResults  ←∅; /*stores search results*/ 

2.   Find the set of possible partitions PQ of Q as per Definition 3; 

3.   For each partition { Q1,…,Qz} of the keywords in PQ do{ 

4.     For each page d i  in WST do { 

5.  PSPi �φ; 
6.  If(Q i ≠φ) {  
7. PSP i  � Top-1-MTPST-ExpandingSearch ( Gdi ,Q i , ω); }}  /* Qi  is the subset of Q assigned to page 

d i , ω is the quality factor*/  

8. Create a search result R with each PSPi  and WST;/*if PSPi  = φ we use the title of page d i   

(this corresponds to the Steiner node which has no keywords in it) */  

9.  Compute Score ( R) using Equation 5 and add R to SearchResults ;} 

10.  Return the top ranked search result in SearchResults ; 
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Table 5. Average summary ratings for documents. 

Keyword Queries 

Google Desktop Summary MSN Desktop Summary Top-1 Expanding Summary Documents 

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

D1 2.33 2.00 3.00 1.67 2.00 2.33 2.00 0.67 1.67 3.00 4.87 4.33 4.93 4.67 4.00 

D2 3.67 3.33 2.67 2.67 1.67 3.67 3.00 3.00 3.00 1.00 3.67 3.33 4.00 4.00 3.67 

D3 1.60 1.60 2.00 1.60 2.00 1.60 1.00 1.80 2.20 1.20 4.00 4.20 4.00 3.60 3.40 

D4 1.00 1.33 0.66 1.33 2.33 2.66 2.00 1.33 1.66 1.33 3.66 3.66 4.00 4.00 3.33 

D5 2.50 3.00 2.50 1.00 3.00 1.50 1.50 1.50 2.00 3.50 4.00 3.50 4.00 4.00 3.50 

D6 1.00 1.50 1.50 2.50 1.00 2.00 2.50 1.50 3.50 2.00 4.00 4.50 4.00 2.50 4.00 

D7 3.00 1.00 3.00 1.00 1.00 1.50 2.50 1.50 2.50 2.00 3.00 4.00 3.00 4.50 4.50 

Average Rating 1.97 2.00 3.89 

Table 6. Average summary ratings for DUC topics. 

Query 1 (International Or-
ganized Crime) DUC Topic 

ID: d301i 

Query 2 (Women in Parlia-
ments) 

DUC Topic ID: d321f 

Query 3 (Drugs Mental Illness) 
DUC Topic ID: d383j 

Query 4 (Stolen Art Recovered) 
DUC Topic ID: d422c 

 
Doc. ID 

DUC 
Peer 

Top-1 
Expanding 

Doc. ID 
 

DUC 
Peer 

Top-1 
Expanding 

Doc. ID 
 

DUC 
Peer 

Top-1 
Expanding 

Doc. ID 
DUC 
Peer 

Top-1 
Expanding 

FT941-3237 2.33 4.66 FT921-7786 4.00 2.50 FT933-4868 2.00 4.33 LA051889-0110 4.00 3.00 

FT944-8297 2.50 3.33 FT922-190 2.00 4.00 FT942-16465 1.00 5.00 FT911-5359 2.00 3.00 

FT931-3563 2.83 3.00 FT921-937 2.00 4.33 LA090389-0060 1.66 4.33 LA070990-0048 2.33 4.33 

FT943-16477 4.00 4.17 FT922-13353 2.83 4.17 FT922-715 1.00 4.33 LA032090-0091 3.00 3.66 

FT943-16238 3.67 3.67 FT921-74 2.33 3.67 LA111290-0137 1.66 4.33 FT923-1946 4.33 3.00 

Average 3.06 3.77 Average 2.63 3.73 Average 1.46 4.46 Average 3.13 3.40 

been extracted from a document d to construct the multi 
document summary are viewed as d’s single-document 
summary for the query/topic. Notice that the DUC sum-
maries are created by extracting whole sentences from 
documents.  
The results of the survey prove the superiority of our 

approach, as shown in Table 6. Our method of combining 
extracted sentences using semantic connections in the form 
of Steiner trees leads to higher user satisfaction than the 
traditional sentence extraction methods. In particular, the 
Steiner sentences in summaries provide coherency in the 
aggregation of the keyword-containing-sentences.  

Comparison with Google and MSN Desktop 

The dataset used in this survey consists of seven news 
documents taken from the technology section of cnn.com. 
The participants were asked to evaluate the quality of the 
summaries of the seven documents with respect to five 
queries each (35 queries in total). We chose queries where 
keywords appear both close and far from each other. For 
each query-document pair, three summaries are displayed 
corresponding to (a) the result of the Top-1 expanding 
search algorithm, (b) Google Desktop’s summary, and (c) 
MSN Desktop’s summary. Summaries (b) and (c) were cre-
ated by indexing the two documents in our desktop and 
then submitting the five queries to the Desktop engines. 
The summaries are the snippets output for these docu-

ments. In order to compare apples to apples, we chose que-
ries for which the length of the summaries produced by all 
three methods are similar, since clearly it is not fair to com-

pare summaries of different lengths as some people favor 
conciseness while others the amount of information.  
In this survey we set constant a to 1 and b to 0.5 in Equa-

tion 4, which we found to produce higher-quality summa-
ries. Notice that by increasing the value of constant a, we 
favor short results, while by increasing constant b we favor 
longer and more informative results. Hence, by setting a to 
1 and b to 0.5 we favor shorter summaries, which have 
similar size to the ones produced by Google and MSN 
Desktop. This makes their comparison fairer.  

Table 7. Queries used for documents. 

Query # Document D1 Document D2 

1 Microsoft worm protection  IT Research awards 

2   Anti-virus protection Algorithms development Research 

3  Recovering worm deleted  files   Software projects 

4  Worm affected agencies   Large research grants 

5  Deleted computer software   Computer network security project 

The results of the survey, which show the superiority of 
our approach, are presented in Table 5, while the queries 
are shown in Table 7 (only 10 queries are shown while the 
remaining 25 are omitted due to space constraints). Notice 
that Google and MSN Desktop systems do not always in-
clude all keywords in the summary when they are more 
than two and have big distances between them. In contrast, 
our approach always finds a meaningful way to connect 
them. 
 
8   PERFORMANCE EXPERIMENTS 
We evaluate the performance of the algorithms presented 
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in Section 6. Section 8.1 shows our results for Problem 2 
while Section 8.2, for Problem 1. We used a Linux machine 
with Power 4+1.7GHz processor and 3.7 GB of RAM. The 
algorithms were implemented in Java. To build the full-text 
index we used Oracle interMedia [30] and stored the docu-
ments in the database. JDBC was used to connect to the 
database system. We used the pre-computation technique 
described in Section 6.1. We used FIU1 (described in Sec-
tion 7) for performance evaluation as FIU2 is a very small 
dataset for this purpose. 

8.1 Query-Specific Summarization 
First, we compare the performance of the two algo-

rithms of Section 6.2 for summarizing keyword queries of 
various lengths. The execution time consists of two parts: 
(a) the computation of the scores of the nodes of the page 
graph (remember that this is query-specific and cannot be 
pre-computed), and (b) the generation of the top summa-
ries (minimal total page spanning trees) in the page graph. 
The first part is handled by Oracle interMedia [30] and the 
average time for a single page for various-length queries is 
shown in Table 8. The second part of the execution is han-
dled separately by the two algorithms and the results are 
shown in Figure 14.  In particular, Figure 14 compares the 
performance of the Top-1 Enumeration and Top-1 Expand-
ing search algorithms. 

Table 8. Average times to calculate node weights. 

Number of keywords 2 3 4 5 

Time (msec) 5.31 9.37 11.50 17.33 
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Figure 14.  Processing time of Top-1 Algorithms. 

We observe that the expanding search algorithms are 
faster than the enumeration ones, especially for long que-
ries. Notice that we do not compare the performance of our 
algorithms to BANKS, since our Top-1 algorithms are adap-
tations of the BANKS algorithms to our problem. In par-
ticular, we use the pre-computed all-pairs shortest paths 
data to efficiently grow the expanding area in the Top-1 
Expanding search algorithm and efficiently construct the 
page spanning tree from the spanning trees of the closure 
graph in the Top-1 Enumeration algorithm. 

Finally, we measure the accuracy of the Top-1 algo-
rithms. In order to have a yardstick to compare the Top-1 
algorithm results, we first perform an exhaustive search to 
find all summaries along with their optimal scores.   In par-
ticular, we measure (Table 9) the average rank of the sum-
mary of the Top-1 algorithms in the optimal list of summa-
ries. We observe that the Top-1 expanding algorithm better 

approximates the Top summary in the optimal list of sum-
maries when compared to the Top-1 enumeration algo-
rithm as can be seen in Table 9. 
Table 9. Average ranks of Top-1 Algorithms with respect 

to the Optimal list of summaries. 

Number of keywords 2 3 4 5 

Top-1 Enumeration 1.4 1.8 2.1 2.78 

Top-1 Expanding Search 1.1 1.3 1.4 1.8 

8.2   Searching Using Composed Pages 
First, we measure the quality of the Heuristic-Top-k-

Expanding-Search algorithm as follows. In order to have a 
yardstick to compare our results, we first perform an ex-
haustive search to find all search results along with their 
optimal scores. Then, we measure the quality of the heuris-
tic top-k algorithm by comparing its top-k search results 
produced with the optimal top-k search results. We com-
pare 2 top-k lists by using Spearman’s rho metric as men-
tioned in Equation 7 below: 

2/1

1

2

2121 )()(),( 






 −= ∑
=

K

i

ii σσσσρ                (7) 

where ρ is the Spearman’s rho metric, σ1 and σ2 are 2 top-k 
lists and σ1(i) and σ2(i) are the ranks of ith search result in 
each of the top-k lists. Figure 16 shows the average quality 
of the results (over 50 queries) of our heuristic search and 
the Non-Heuristic expanding search (where a random page 
is chosen for expansion at every step) compared to the op-
timal exhaustive search. Figure 16(a) shows the quality of 
the Heuristic and Non-Heuristic Top-k for fixed m=2 (2 
keyword queries) and varying number k of requested re-
sults. Figure 16(b) shows the quality for fixed number k=25 
of requested results and varying the query length.  As can 
be seen in Figure 16, expansion based on the Heuristic-
Weight (Equation 6) yields better Top-k results. 

Next, we compare the execution time of the algorithms 
which consists of two parts: (a) the computation of the web 
spanning trees in the Web graph, and (b) the generation of 
the top-k search results. Figure 15 shows the execution time 
of the different algorithms for computing Top-k search re-
sults (Definition 3). As before, we measure the performance 
with changing k and fixed m=2 (Figure 15(a)) and changing 
m with fixed k=25 (Figure 15(b)). Notice that, Figure 15 
shows the total execution time of the Heuristic-Top-k-
Expanding-Search algorithm and its Non-Heuristic and Op-
timal counterparts. The Heuristic algorithm has a longer 
execution time when compared to the Non-Heuristic algo-
rithm because during each expansion step it has to select 
among the available neighbors, the one with the highest 
HeuristicWeight (Equation 6) while the Non-Heuristic algo-
rithm selects a random page for expansion.  

9 RELATED WORK 
Document Summarization: A large corpus of work has 
focused on generating query-independent summaries 
[3,5,6,15]. The OCELOT system [6] provides the summary 
of a web page by selecting and arranging the most (query-
independent) “important” words of the page. Amitay and   
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Figure 15. Execution time for Top-k Search Results. 
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          (a)  Spearman’s rho vs. Top-k (with m = 2)                                 (b)  Spearman’s rho vs. Query size (with k = 25) 
Figure 16. Quality of Algorithms. 

Paris [3] propose a new fully automatic pseudo-
summarization technique for Web pages, where the anchor 
text of hyperlinked pages is used to construct summaries. 
[5] uses lexical chains for text summarization. 
The majority of systems participating in the past Docu-

ment Understanding Conference [10] (a large scale summa-
rization evaluation effort sponsored by the United States 
government), and the Text Summarization Challenge [13] 
are extraction based. Extraction-based automatic text sum-
marization systems extract parts of original documents and 
output the results as summaries [9,11,15,19]. Other systems 
based on information extraction [32] and discourse analysis 
[27] also exist but they are not yet usable for general-
domain summarization. However these works do not ex-
ploit the inherent structure of the document and mostly 
focus on query-independent summaries. In this work (as in 
[38]) we also show the semantic connections between the 
extracted fragments, which improve the quality as shown 
in Section 7.2. 

White et al. [40], Tombros and Sanderson [37] and 
Goldstein et al. [15] create query-dependent summaries 
using a sentence extraction model in which the documents 
(web pages) are broken up into their component sentences 
and scored according to factors such as their position. A 
number of the highest-scoring sentences are then chosen as 
the summary. [1,18,34] select the best passage of a docu-
ment as its summary. However, these works ignore possi-
ble semantic connections between the sentences or the pos-
sibility that linking a relevant set of text fragments will 
provide a better summary. Radev et al. [33] provide a tech-
nique for multi-document summarization used to cluster 

the results of a web keyword query. [12,28] provide a tech-
nique to rank sentences based on their similarity with other 
sentences across multiple documents and then provide a  
summary with the top ranked sentences. However, their 
methods are query-independent in contrast to our work.  

The idea of splitting a Web page to fragments has been 
used by Cai et al. [8] and Song et al. [36], where they extract 
query-independent rankings for the fragments, for the pur-
pose of improving the performance of web search. Cai et al. 
[8] partition a web page into blocks using the vision-based 
page segmentation algorithm. Song et al. [36] provide learn-
ing algorithms for block importance.  
Finally, all major Web search engines generate query-

specific snippets of the returned results. Although their 
algorithms are not published, we observed that they simply 
extract some of the query keywords and their surrounding 
words. Recently, some of these companies made available 
tools to provide the same search and snippet functionality 
on a user’s desktop [16,29].  

Keyword search in data graphs: For both Problems 1 and 2, 
when the page graphs are already created and a query ar-
rives, the system searches the page graphs (also the web 
graph) for sub-trees that contain all (or a subset of) query 
keywords. This problem has been studied by the database 
and graph-algorithms communities. In particular, recent 
work [2,7,14,17,20,21,23,24] has addressed the problem of 
free-form keyword search on structured and semi-
structured data. Li et al. [26] tackle the problem of prox-
imity search on the Web, which is viewed as a graph of hy-
perlinked pages.  
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10. CONCLUSIONS 
In this paper, we describe a technique to improve the qual-
ity of web search results by on-the-fly creating and ranking 
composed pages. This technique is particularly successful 
for long or multi-topic queries where single-page results 
are unlikely to satisfy the user’s information need. We also 
describe a technique for query-specific web page summari-
zation, which, in addition to having its own merit, is used 
for computing the top-k composed pages. We have pre-
sented and evaluated efficient algorithms for both prob-
lems. We also conducted user surveys to measure user sat-
isfaction. 
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