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Several mathematical ideas have been investigated for Quantitative Information Flow.

Information theory, probability, guessability are the main ideas in most proposals. They

aim to quantify how much information is leaked, how likely is to guess the secret and

how long does it take to guess the secret respectively. In this work we investigate the

relationship between these ideas in the context of the quantitative analysis of

deterministic systems. We propose the Lattice of Information as a valuable foundation

for these approaches; not only it provides an elegant algebraic framework for the ideas,

but also to investigate their relationship. In particular we will use this lattice to prove

some results establishing order relation correspondences between the different

quantitative approaches. The implications of these results w.r.t. recent work in the

community is also investigated. While this work concentrates on the foundational

importance of the Lattice of Information its practical relevance has been recently proven,

notably with the quantitative analysis of Linux kernel vulnerabilities. Overall we believe

these works set the case for establishing the Lattice of Information as one of the main

reference structure for Quantitative Information Flow.

1. Introduction

Quantitative security analysis should be able to address confidentiality comparison ques-

tions like: “given programs P and P ′ which one is more of a threat?” These comparison

problems is related to the other fundamental question that a quantitative security anal-

ysis should be able to address: “how much of a threat is program P?”

Quantitative analyses are based on some measure, usually a real number. This number

may answer the comparison problems by reducing it to a numerical comparison and the

second question by considering the magnitude of the number in relation to the size of

the secret. In many of these measures the number 0 has been shown to characterise

completely secure programs.

In recent years a number of ideas have emerged as reasonable measures for Quantita-

tive Information Flow (abbreviated as QIF): Information Theory, probabilistic measures

and guessability (Clark et al. 2007; Köpf and Basin 2007; Smith 2009). Further alterna-
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tives based on beliefs (Clarkson et al. 2009) have also been proposed. The information

theoretical concepts of entropy, conditional entropy and mutual information have been

used to answer questions like “how much information can an attacker gain from observing

the system?” whereas probabilities can be used to answer questions like “how likely is

that the attacker may guess the secret in n tries after observing the system?” and ”what

is the average number of guesses needed to guess the secret after the observations?”

There seems to be an intuitive connection between these questions, but the connection

is not trivial; in fact some deep differences have been noticed in these approaches (Smith

2009). In the context of QIF the differences seems to relate mainly to the variety of

attackers models and of what the scope of modelling should be.

In this work we relate the confidentiality comparison questions in probabilistic, guess-

ability and information theoretical approaches for deterministic systems. We will do this

by studying their relation to an algebraic structure: the Lattice of Information (abbrevi-

ated as LoI).

The Lattice of Information (Landauer and Redmond 1993) is the lattice of all equiv-

alence relations on a set; by identifying observations over a system as the equivalence

relation equating all (secret) states that cannot be distinguished by those observations

we see LoI as the mathematical model for all observations generated by all possible

deterministic systems over a set of (secret) states.

This allows for an elegant analysis decomposition of QIF into two steps, the first being

an algebraic interpretation, the second being a numerical evaluation:

1 interpret the attacker view of the system as an equivalence relation identifying the

states indistinguishable by the attacker through the observations,

2 measure the above equivalence relation. This measure should provide an indication

of the leakage of confidential information (or vulnerability) of the system.

The usefulness of these equivalence relations has been demonstrated in several recent

works (Clark et al. 2005; Malacaria 2007; Köpf and Basin 2007; Giacobazzi and Mastroeni

2004; Morgan 2009); we aim here to prove some results about their algebraic structure.

Given two systems S, S′ and the associated equivalence relations 'S ,'S′ we will show the

following equivalences:

1 'S′ refines 'S ,

2 the entropy of S is always less than the entropy of S′,

3 the expected probability of guessing the secret in n tries according to 'S is always less than

the expected probability of guessing the secret in n tries according to 'S′ ,

4 the expected numbers of guesses needed to guess the secret according to 'S′ is always less

than the expected numbers of guesses needed to guess the secret according to 'S .

Moreover these results are shown to be consistent with classical definitions of Quantita-

tive Information Flow based on the adversary gain through observations i.e. the difference

in threat before and after observations are made (Yasuoka and Terauchi 2010a). In other

terms, given two programs P, P ′ to determine whether P ′ refines P (as observational

equivalence relations) is the same as to determine whether is always the case that it is

more likely to guess the secret using P ′ instead of P . This is also the same as to determine

whether the entropy of P is always less than the entropy of P ′.



Algebraic Foundations for Quantitative Information Flow 3

These results hence provide a clear connection between the algebraic, probabilistic and

information theoretical view of leakage in the context of deterministic programs.

The work also contributes to the foundations of Quantitative Information Flow, in par-

ticular to the important work by G. Smith (Smith 2009), where the difference between

the “one guess” model and the information theoretical one were insightfully debated.

What Smith noticed was that there exist programs such that, assuming a uniform dis-

tribution of the secret, their information theoretical measure is approximately the same

but whose vulnerability to a one guess attack is very different. The argument relies on

a specific, in this case uniform, distribution. What the above results show is that if we

argue about the relative vulnerability to n tries attack of two programs and the argument

is not dependent on a specific distribution then their relative vulnerability is determined

by their LoI order or equivalently by their entropy order.

While most works on QIF rightly concentrate on fixed distributions, mainly the uniform

one, this work concentrates instead on the leakage properties inherent to the source code,

i.e. the ones that hold for all possible distributions. The two views complement each other.

The LoI interpretation of programs is not just a pure academic exercise; in fact it

has informed works integrating QIF with verification techniques (Köpf and Basin 2007;

Backes et al. 2009; Heusser and Malacaria 2010) where model checkers and sat-solvers

are used to build the equivalence 'S associated to a program. More recently these ideas

have inspired the quantitative analysis of leakage of Linux kernel functions (Heusser and

Malacaria 2010). These works make use of a basic relation between LoI and Information

Theory, i.e. the fact that log(| 'S |) is the channel capacity of the system S, i.e. the

maximum amount that S can leak.

1.1. Plan of the paper

After basics on LoI and Information Theory in Section 2, Section 3 will investigate the

relationship between the refinement ordering in LoI, expected probability of guessing,

expected number of guesses and entropy. Section 4 will relate the results from Section 3

to definitions of leakage from the literature and will prove ordering equivalence results

between these different notions of leakage. Section 5 will illustrate the use of l.u.b.s in

LoI in modelling issues related to multiple runs attacks and interpreting self-composition.

Finally Section 6 will illustrate the use of chains in LoI to analyse looping programs and

will provide a short overview of the Linux kernel analysis.

2. Basics

2.1. Observations and the lattice of information

We see observations over a system as some partial information on the systems’ states,

in that an observation reveals some information about the (high) states of the system.

Some systems may allow for observations revealing no information (all states are possible

according to that system’s observations) while other systems may allow for observations

revealing complete information on the states of the system.
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We make an important determinacy assumption, i.e. that a system’s observations form

a partition on the set of all possible states: a block in this partition is the set of states

that are indistinguishable by that observation. This assumption is satisfied for example in

the setting of deterministic languages when we take as observations the program outputs

because the inverse image of a function form a partition on the domain of the function.

In this work we will use the terms partition or equivalence relation interchangeably. An

equivalence relation can always be seen as the partition whose blocks are the equivalence

classes and a partition can always be seen as the equivalence relation defined by two

objects are related iff they are in the same block.

2.2. Partitions and equivalence relations as lattice points

Given a finite set Σ the set of all possible equivalence relations over Σ is a complete lattice

(Landauer and Redmond 1993): the Lattice of Information (abbreviated as LoI). Order

on equivalence relations is the refinement order.

Formally let us define the set LoI as the set of all possible equivalence relations on a

set Σ: we will often refer to elements of Σ as atoms. For the purposes of this work we

will restrict ourselves to consider finite sets of atoms.

Given ≈,∼ ∈ LoI and σ1, σ2 ∈ Σ, the ordering of LoI is defined as

≈ v ∼ ↔ ∀σ1, σ2 (σ1 ∼ σ2 ⇒ σ1 ≈ σ2) (1)

This is a refinement order: classes in ∼ refine (split) classes in ≈. Thus, higher elements

in the lattice can distinguish more while lower elements in the lattice can distinguish less

states. It easily follows from (1) that LoI is a complete lattice.

Alternatively the lattice operations join t and meet u are defined as the intersection

of relations and the transitive closure of the union of relations respectively.

In terms of partitions, a partition is above another if it is more informative, i.e. each

block in the higher partition is included in a block in the partition below.

Here is an example of how these equivalence relations can be used in an information

flow setting. Let us assume the set of states Σ consists of a tuple 〈l, h〉 where l is an

observable, usually called low, variable and h is a confidential variable, usually called

high. One possible observer can be described by the equivalence relation

〈l1, h1〉 ≈ 〈l2, h2〉 ↔ l1 = l2

That is the observer can only distinguish two states whenever they disagree on the low

variable part. Clearly, a more powerful attacker is the one who can distinguish any two

states from one another, or

〈l1, h1〉 ∼ 〈l2, h2〉 ↔ l1 = l2 ∧ h1 = h2

The ∼-observer gains more information than the ≈-observer by comparing states, there-

fore ≈ v ∼.
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2.3. Lattice of information as a lattice of random variables

A discrete random variable (noted r.v.) is often defined as a map X : D → R, where D

is a countable set with a probability distribution and the set of reals R is the range of X.

For each element d ∈ D, its probability will be denoted µ(d). For every element x ∈ R
we write µ(X = x) (or often in short µ(x)) to mean the probability that X takes on the

value x, i.e. µ(x)
def
=

∑
d∈X−1(x) µ(d). In other words, what we observe by X = x is that

the input to X in D belongs to the set X−1(x). From that perspective, X partitions the

space D into sets which are indistinguishable to an observer who sees the value that X

takes on, and blocks in the partition are the possible outcomes for the random variable.

For the purposes of this work the precise values X can assume do not play any role, it

is only X−1 we are interested into, hence once the set of atoms of LoI are equipped with

a probability distribution then we will identify elements of LoI as random variables.

Given two r.v. X,Y in LoI we define the joint random variable (X,Y ) as their least

upper bound in LoI i.e. X t Y . It is easy to verify that X t Y is the partition obtained

by all possible intersections of blocks of X with blocks of Y .

2.4. Basic concepts of Information Theory

This Section contains a very short review of some basic definitions of Information Theory:

a standard textbook is Cover and Thomas (Cover and Thomas 1991). Given a discrete

probability space with probabilities (µ(xi))i∈N Shannon’s entropy is defined as

−
∑
i∈N

µ(xi) logµ(xi) (2)

It is usually said that this number measures the average information content of the set

of events: if there is an event with probability 1 then the entropy will be 0 and if the

distribution is uniform i.e. no event is more likely than any other the entropy is maximal,

i.e. log |N |. In the literature the terms information content and uncertainty in this context

are often used interchangeably.

The entropy of a r.v. X is just the entropy of its probability distribution i.e.

−
∑
x∈X

µ(X = x) logµ(X = x)

Given two random variables X and Y , the joint entropy H(X,Y ) measures the uncer-

tainty of the joint r.v. (X,Y ). It is defined as

−
∑

x∈X,y∈Y
µ(X = x, Y = y) logµ(X = x, Y = y)

Conditional entropy H(X|Y ) measures the uncertainty about X given knowledge of

Y . It is defined as H(X,Y )−H(Y ). The higher H(X|Y ) is, the lower is the correlation

between X and Y . It is easy to see that if X is a function of Y , then H(X|Y ) = 0 (there is

no uncertainty on X knowing Y if X is a function of Y ) and if X and Y are independent

then H(X|Y ) = H(X) (knowledge of Y doesn’t change the uncertainty on X if they are

independent) .
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Mutual information I(X;Y ) is a measure of how much information X and Y share. It

can be defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

Thus the information shared between X and Y is the information of X (resp. Y ) from

which the information about X given Y has been deduced. This quantity measures the

correlation between X and Y . For example X and Y are independent iff I(X;Y ) = 0.

Mutual information is a measure of binary interaction. Mutual and conditional mutual

information, a form of ternary interaction will be used to quantify leakage. Conditional

mutual information measures the correlation between two random variables conditioned

on a third random variable; it is defined as:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = H(Y |Z)−H(Y |X,Z)

2.5. Measures on the lattice of information

Suppose we want attempt to quantify the amount of information provided by a point in

the lattice of information.

We could for example associate to a partition P the map |P | = “number of blocks in P”;

this idea can be traced back to (Lowe 2002). This map would be 1 for the least informative

partition, its maximal value would be the number of atoms and would be reached by the

top partition. It is also true that A v B implies |A| ≤ |B| so the measure reflects the

order of the lattice. An important property of “additivity” for measures is the inclusion-

exclusion principle: this principle says that things should not be counted twice. In terms

of sets, the inclusion-exclusion principle says that the number of elements in a union of

sets is the sum of the number of elements of the two sets minus the number of elements in

the intersection. The inclusion-exclusion principle is universal e.g. in propositional logic

the truth value of A∨B is given by the truth value of A plus the truth value of B minus

the truth value of A ∧B.

In the case of the number of blocks the inclusion-exclusion principle is:

|A tB| = |A|+ |B| − |A uB|

Unfortunately this property does not hold. As example, by taking

A = {{1, 2}{3, 4}}, B = {{1, 3}{2, 4}}

as two partitions, then their join and meet will be

A tB = {{1}{2}{3}{4}}, A uB = {{1, 3, 2, 4}}.

hence |A tB| = 4 6= 3 = |A|+ |B| − |A uB|.
Another problem with the map | | is that when we consider LoI as a lattice of random

variables the above measure may end up being too crude; in fact, all probabilities are

disregarded† by | |. To address these problems more abstract lattice theoretic notions

have been introduced in the literature (Birkhoff 1948).

† Sections 4.5 will however relate | | to Information Theory and channel capacity.



Algebraic Foundations for Quantitative Information Flow 7

A valuation on LoI is a real valued map ν : LoI→ R, that satisfies the following

properties:

ν(X t Y ) = ν(X) + ν(Y )− ν(X u Y ) (3)

X v Y implies ν(X) ≤ ν(Y ) (4)

A join-semivaluation is a weak valuation, i.e. a real valued map satisfying

ν(X t Y ) ≤ ν(X) + ν(Y )− ν(X u Y ) (5)

X v Y implies ν(X) ≤ ν(Y ) (6)

for every element X and Y in a lattice (Birkhoff 1948). The property (4) is order-

preserving: a higher element in the lattice has a larger valuation than elements below

itself. The first property (5) is a weakened inclusion-exclusion principle.

Proposition 1. Entropy is a join-semivaluation on LoI by defining

ν(X t Y ) = H(X,Y ). (7)

The result is proved in (Nakamura 1970).

2.6. Note: Entropy as the best measure on LoI

An important result proved in (Nakamura 1970) gives a particular importance to Shannon

entropy as a measure on LoI. Nakamura showed that the only probability-based join

semivaluation on the lattice of information is Shannon’s entropy. It is easy to show that

a valuation itself is not definable on this lattice, thus Shannon’s entropy is the best

approximation to a probability-based valuation on this lattice.

Nakamura starts by considering a family of function (fn)n∈N such that fn is defined

on a set of n probabilities p1, . . . , pn and satisfies:

1 fn is continuous
2 fn is permutation invariant, i.e. fn(p1, . . . , pn) = fn(pπ(1), . . . , pπ(n)) for any permu-

tation π
3 fn+1(p1, . . . , pn, 0) = fn(p1, . . . , pn)

Such a family (fn)n∈N induces a function F on partitions with n blocksX = {X1, . . . , Xn}
with block Xi having probability pi:

F (X) = fn(p1, . . . , pn)

Suppose now that

1 F is a join-semivaluation on all lattices of partitions
2 If two partitions X,Y are independent (in probability theory sense) then

F (X t Y ) = F (X) + F (Y )

Nakamura’s result is then that such a function F is, up to a constant, Shannon’s

entropy function, i.e.

F (X) = fn(p1, . . . , pn) = −c
∑

1≤i≤n

pi log(pi)
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3. Lattice of Information, expected probability of guessing, expected

number of guesses and Entropy

This Section will investigate the relationship in LoI between the refinement ordering,

expected probability of guessing, expected number of guesses and entropy.

3.1. Expected probability of guessing

We define, given an equivalence relation, the average probability of guessing the secret

in n tries. This notion generalizes Smith’s conditional Bayes vulnerability (Smith 2009).

Given a set X where each element has associated a probability (w.l.g. we assume the

probabilities being ordered decreasingly i.e. µ(xi) ≥ µ(xi+1)) define the probability of

guessing the secret in n tries as

gn,µ(X) =
∑

1≤i≤m

µ(xi)

where m = min(|X|, n). Given a partition X and a distribution µ the probability of

guessing the secret in n tries is

Gn,µ(X) =
∑
Xi∈X

gn,µ(Xi)

As an example consider the partition

{{x1, . . . , x4}{x5, x6}}

where the first four atoms have probability 1
16 each and x5, x6 have probability 3

8 each.

Then the average probability of guessing the secret in 2 tries is 1
8 + 3

4 = 7
8 ; indeed after

the observations and two tries the probability of non guessing the secret is 1
8 correspond-

ing to not having exhausted all possibilities from the first block.

Notice that the above definition is the same as having a probability distribution on

each block, computing the probability of guessing the secret in each block and then taking

the weighted average:

Gn,µ(X) =
∑
Xi∈X

gn,µ(Xi) =
∑
Xi∈X

µ(Xi)
∑

1≤j≤n,xj∈Xi

µ(xj)

µ(Xi)

When clear from the context we will omit the subscript µ from G and g.

Proposition 2.

X v Y ⇔ ∀µ, n. Gn,µ(X) ≤ Gn,µ(Y )

Proof. Step 1:

X v Y ⇒ ∀µ, n. Gn,µ(X) ≤ Gn,µ(Y )

w.l.g. it will be enough to consider a block Xi in X splitting into two blocks Yi, Yj in Y ;

we then need to prove that

gn(Xi) ≤ gn(Yi) + gn(Yj)
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We can write gn(Xi) =
∑
i≤I µ(xi)+

∑
j≤J µ(xj) where the xi ∈ Yi, xj ∈ Yj , I = |Yi|, J =

|Yj | . We can then write gn(Yi) as
∑
i≤I µ(xi)+ci where ci ≥ 0 is the sum of the elements

in the sum gn(Yi) which are not in the sum gn(Xi) and similarly gn(Yj) can be written

as
∑
j≤J µ(xj) + cj .

We have hence

gn(Yi) + gn(Yj) =∑
i≤I

µ(xi) + ci +
∑
j≤J

µ(xj) + cj ≥

∑
i≤I

µ(xi) +
∑
j≤J

µ(xj) =

gn(Xi)

Step 2:

(∀µ, n. Gn(X) ≤ Gn(Y ))⇒ X v Y
Suppose X 6v Y , w.l.g. we can then find a block Yi ∈ Y included in two (or more) blocks

in X; take then a distribution 0 everywhere apart from the elements in Yi and apply

the previous reasoning (the inclusion here can be seen as a splitting because of the 0

probabilities), i.e. for Xi, Xj splitting Yi, gn(Yi) < gn(Xi) + gn(Xj) (e.g. for n = 1),

hence for this distribution Gn(X) 6≤ Gn(Y )

As an example consider the partitions

X = {{1, 2}{3, 4}}, Y = {{1, 3}{2, 4}}

X and Y are not order related because no block in X is refined by a block in Y

and vice-versa; hence following the Proposition we can find distributions and number of

guesses ordering them in any order: for G(Y ) < G(X) choose n = 1 and the distribution

s.t. µ(1) = µ(3) = 1
2 and is 0 elsewhere. Then

G1(Y ) = g1({1, 3}) =
1

2
<

1

2
+

1

2
= g1({1, 2}) + g1({3, 4}) = G1(X)

Likewise for G(X) < G(Y ) choose the distribution s.t. µ(1) = µ(2) = 1
2 and is 0

elsewhere.

Corollary 1.

X v Y ⇔ ∀µ G1,µ(X) ≤ G1,µ(Y )

3.2. Expected number of guesses

The expected probability of guessing should be related to the expected number of guesses.

Given a set X where each element has associated a probability ( we again assume the

probabilities being ordered decreasingly) define the expected number of guesses as

ngµ(X) =
∑

1≤i≤n

iµ(xi)
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Given a partition X and a distribution µ the expected number of guesses is (we abuse

the notation):

NGµ(X) =
∑
Xi∈X

ngµ(Xi)

Intuitively the more is known of the secret the less guesses are needed, hence we should

expect the NG order to reverse the LoI order; consider for example the set {a, b, c, d}
with probabilities 1

2 ,
1
4 ,

1
8 ,

1
8 respectively; we have then

NG({{a, b, c, d}}) =
15

8
>

10

8
= NG({{a, d}{b, c}})

We can now show that LoI order is the dual of the NG order:

Proposition 3.

X v Y ⇔ ∀µ, NGµ(Y ) ≤ NGµ(X)

Proof.

X v Y ⇒ ∀µ, NGµ(Y ) ≤ NGµ(X)

w.l.g. it will be enough to consider a block Xi in X splitting into two blocks Yi, Yj in

Y ; consider any element x ∈ Xi; this element will appear as a term jµ(x) in the sum

ngµ(Xi). As the elements of Xi are split in the two sets Yi, Yj then the same x will appear

in ng(Yi) or in ng(Yj): in any case it will appear as a term j′µ(x) where j′ ≤ j because

Xi is split in the two sets Yi, Yj so the relative order of x in Yi or Yj has to be less than

the relative order of x in Xi. Hence ∀µ, NGµ(Y ) ≤ NGµ(X).

X v Y ⇐ ∀µ, NGµ(Y ) ≤ NGµ(X)

Suppose X 6v Y , w.l.g. we can then find a block Yi ∈ Y included into two (or more)

blocks in X. Take then the distribution uniform on the elements in Yi and 0 everywhere

else and apply the above reasoning: i.e. for Xi, Xj splitting Yi any element y ∈ Yi (can

be made to) appear in an earlier position in Xi or Xj , hence ng(Yi) > ng(Xi) + ng(Xj),

and so NG(Y ) 6≤ NG(X)

3.3. Entropy and LoI

We now consider entropy; again we can relate entropy to the order in LoI. Two partitions

are order related if and only if they are entropy related (in the same direction) for all

possible distributions

Proposition 4.

X v Y ⇔ ∀µ, Hµ(X) ≤ Hµ(Y )

Proof. Step 1:

X v Y ⇒ ∀µ, Hµ(X) ≤ Hµ(Y )

This is a well known property of entropy (Cover and Thomas 1991): grouping probabilities

reduces entropy and it is a consequence of the Jensen inequality.
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Step 2:

X v Y ⇐ ∀µ, Hµ(X) ≤ Hµ(Y )

Suppose X 6v Y , w.l.g. we can then find a block Yi ∈ Y included in two (or more) blocks

in X (say X1 . . . Xn); We then take a distribution 0 everywhere apart from the elements

in Yi; notice that for such a distribution µ(Yi) = 1 whereas in X there are two or more

blocks with non zero probability: we have hence

H(X) = −
∑

1≤i≤n

µ(Xi) log(µ(Xi)) > 0 = −µ(Yi) log(µ(Yi)) = H(Y )

Note: the directions (⇐) of the proofs in these sections used distributions 0 everywhere

apart some blocks. The arguments work if we were replacing 0 with very small probabil-

ities. Consider for example A = {{a, b}{c, d}{e}}, B = {{a, d}{b, c, e}}. It is easy to see

that if all atoms have equal probability 1
5 then B < A using G,H and A < B using NG.

On the other hand using probabilities a = 0.1, b = 0.1, c = 0.39, d = 0.4, e = 0.01 then the

opposite holds: H(A) = 0.7994 < 1 = H(B), G1(A) = 0.51 < 0.79 = G1(B), NG(A) =

1.49 > 1.22 = NG(B).

3.4. Shannon’s order of information

A lattice of random variables was introduced in a little known note by Shannon (Shannon

1953). His motivations was to characterise information, not just measuring it. As an

example consider the processes “flipping a fair coin” and “presidential election between

two candidates with equal chances”: these two processes may well have the same entropy,

but it is not the case that knowing one of the two gives information about the other one,

so H(X|Y ) > 0 for X,Y being one of “flipping a coin” or “presidential election”.

Given random variables X,Y Shannon’s order is defined by:

X ≤d Y ⇔ H(X|Y ) = 0

The intuition here is that Y provides complete information about X, i.e. X is an

abstraction of Y (some information is forgotten).

Shannon also defined the related distance function:

d(X,Y ) = H(X|Y ) +H(Y |X)

The function d and the relation ≤d are related as follows:

d(X,Y ) = 0⇔ X ≤d Y ∧ Y ≤d X

In fact suppose d(X,Y ) = 0; then H(X|Y ) + H(Y |X) = 0 so as conditional entropy

is non negative X ≤d Y ∧ Y ≤d X. On the other hand X ≤d Y ∧ Y ≤d X implies

H(X|Y ) = 0, H(Y |X) = 0 so d(X,Y ) = 0.

The equivalence classes of the order ≤d, i.e. points s.t. X ≤d Y ∧ Y ≤d X or equiva-

lently the sets of points of distance 0, are the information theoretical characterization of
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information: all items in a class can be seen as objects having the same information, not

just sharing the same measure.

Shannon’s order and LoI order are the same:

Proposition 5.

X v Y ⇔ ∀µ. X ≤d Y

Proof. Direction X v Y ⇒ ∀µ.X ≤d Y :

By definition of join in a lattice

X v Y ⇔ X t Y = Y

hence for X v Y we have

H(X,Y ) = H(X t Y ) = H(Y )

and so

H(X|Y ) = H(X,Y )−H(Y ) = H(Y )−H(Y ) = 0

which proves ∀µ. X ≤d Y
For the other direction assuming X 6v Y then X @ X tY so we can find a distribution

s.t. H(X t Y ) > H(X) and so

H(Y |X) = H(X t Y )−H(X) > H(X)−H(X) = 0

and we conclude X 6≤d Y

Shannon also noticed that d defines a pseudometric and so the quotient space by the

equivalence classes of points of distance 0 is a metric space.

4. Measuring leakage of programs

We now connect LoI and leakage of confidential information in programs.

4.1. LoI interpretation of programs and basic properties

Unless otherwise specified the term program will designate a program in a programming

language whose denotational semantics is an input-output map: a simple example is the

while programming language (Winskel 1993), that is a simple imperative language with

assignments, sequencing, conditionals and loops. Syntax and semantics for the language

are standard. The expressions of the language are arithmetic expression, with constants

0, 1, . . . and boolean expressions with constants tt, ff. We will assume for the time being

that the low variables are initialized in the code; we will discuss this assumption in

Section 5.

4.1.1. Observations over programs Observations over a program P form an equivalence

relation on the states of P . A particular equivalence class will be called an observable.

Hence an observable is a set of states indistinguishable by an attacker making that

observation.
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This is a wide encompassing definition and general observational models e.g. equiva-

lence relations on program traces have been studied (Malacaria and Chen 2008).

In this work we will concentrate on a specific class of observations: the output obser-

vations (Clark et al. 2002; Malacaria 2007). For these observations the random variable

associated to a program P is the equivalence relation on any two states σ, σ′ from the

universe of states Σ defined by

σ ' σ′ ⇐⇒ [[P ]](σ) = [[P ]](σ′) (8)

where [[P ]] represents the denotational semantics of P . Hence the equivalence relation

amounts to “having the same observable output”. We denote the interpretation of a

program P in LoI as defined by the equivalence relation (8) by LoI(P ).

The equivalence relation LoI(P ) is hence nothing else than the set-theoretical kernel

of the denotational semantic of P . Assuming that the set of confidential inputs h is

equipped with a probability distribution µ we can see LoIµ(P ) as a random variable. We

will write simply LoI(P ) unless we need to specify a specific distribution µ.

Note: as LoI(−) is the set theoretical kernel of the denotational semantics of pro-

grams then the lattice of information interpretation is maximally expressive wrt output

observations, i.e. it contains all information included in the denotational semantics of the

program.

As a concrete example, let P be the program

if (h==0) then x=0; else x=1;

where the variable h ranges over {0, 1, 2, 3}.
The partition LoI(P ) associated to the above program is then

LoI(P ) = { {0}︸︷︷︸
x=0

{1, 2, 3}︸ ︷︷ ︸
x=1

}

LoI(P ) effectively partitions the domain of the variable h, where each disjoint subset

represents an output. The partition reflects the idea of what an attacker can learn of

secret inputs by backwards analysis of the program, from the outputs to the inputs.

The quantitative evaluation of the partition LoI(P ) (Heusser and Malacaria 2009b;

Backes et al. 2009) measures such knowledge gains of an attacker, solely depending on

the partition of states and the probability distribution of the input.

4.2. Definition of leakage

Let us start from the following intuition (Clark et al. 2002):

The leakage of confidential information of a program is defined as the difference between

an attacker’s uncertainty about the secret before and after available observations about the

program.

For a Shannon-based measure, the above intuition can be expressed in terms of mutual

information. In fact if we start by observing that the attacker uncertainty about the

secret before observations is H(h) and the attacker uncertainty about the secret after

observations is H(h|LoI(P )) then using the definition of mutual information we define
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leakage as

H(h)−H(h|LoI(P )) = I(h; LoI(P )).

We can now simplify the above definition as follows

I(LoI(P );h) = H(LoI(P ))−H(LoI(P )|h)

=A H(LoI(P ))− 0

= H(LoI(P )) (9)

where the equality A holds because the program is deterministic. Thus, for such programs

Leakage: (Shannon-based) leakage of a program P is defined as the (Shannon) entropy of

the partition LoI(P ).

In the light of the results from Section 3 in the context of programs, we deduce a corre-

spondence between the refinement order of the observations, leakage, expected probability

of guessing and expected number of guesses (we will return to this point in Theorem 1).

Note: in the more general case, where the restriction on the low inputs to be initialised

in the code is lifted, leakage is defined in terms of conditional mutual information between

the secret h and the output of the program LoI(P ) conditioned to the low input l :

I(h; LoI(P )|l) = H(h|l)−H(h|LoI(P ), l) = H(LoI(P )|l)

4.3. Relation with Yasuoka and Terauchi ordering results

The results from Section 3 are related to some recent work by Yasuoka and Terauchi

(Yasuoka and Terauchi 2010a); they define quantitative analysis in terms of Shannon

entropy, Smith’s vulnerability and average number of guesses.

Their definitions follow the pattern we discussed before:

The quantitative analysis of confidential information of a program is defined as the difference

between an attacker’s capability before and after available observations about the program.

By replacing the word “capability” with: (A) uncertainty about the secret, (B) proba-

bility of guessing the secret in one try, (C) expected number of guesses we derive different

quantitative analysis. Once formalized (A)(B)(C) as a function F (and its conditional

counterpart F (−|−) ) on a probability space all these definitions will have the form:

F (h)− F (h|LoI(P ))

Formally the choices for F, F (−|−) are:

(A)for uncertainty about the secret: F and F (−|−) are Shannon entropy and conditional

entropy

(B)for probability of guessing in one try: (noted ME)

F (X) = − log(max
x∈X

µ(X = x)) and F (X|Y ) = − log(
∑
y∈Y

µ(y)(max
x∈X

µ(X = x|Y = y)))

(C)for the expected number of guesses: (noted GE)

F (X) =
∑

xi∈X,i≥1

i µ(X = xi) and F (X|Y ) =
∑
y∈Y

µ(y)(
∑

xi∈X,i≥1

iµ(X = xi|Y = y))
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(here we assume i < j implies µ(X = xi) ≥ µ(X = xj))

Notice that is only for F = Shannon’s entropy that

F (h)− F (h|LoI(P )) = F (LoI(P ))

i.e. only for Shannon’s entropy the difference in capability is a “measure” on LoI.

We now want to relate results from Section 3 with ME and GE definitions of leakage.

To appreciate the difference in the definitions let’s consider the examples from (Yasuoka

and Terauchi 2010a); we consider the following programs:

1 M1 ≡ if(h == 1) then o = 0; else o = 1;

2 M2 ≡ o = h;

Table 1 shows the results of analyses of these programs for a 2 bits secret uniformly

distributed. Columns H, G, NG corresponds to our definitions for Shannon entropy, the

expected probability of guessing (in 1 guess) and the expected number of guesses on

LoI(P ), i.e. H, G, NG stands for H(LoI(P )), G(LoI(P )), NG(LoI(P )). ME and GE are

the definitions given above.

Table 1. comparing measures

H G NG ME GE

M1 0.8112 0.5 1.75 1 0.75
M2 2 1 1 2 1.5

The numbers in Table 1 can be connected in a uniform narrative. Take program M1 :

G = 0.5 means that after running the program an attacker has probability 0.5 of guessing

the secret in one try. The chances of guessing the secret have doubled from 0.25 (=G(h))

before the program to 0.5 (=G(LoI(M1))) after the program, so the rate of increase is

2ME(M1) = G(LoI(M1))
G(h) = 21; the average number of questions needed (initially NG(h) =

2.5) has been reduced by 0.75 (=GE(M1)) so that it will take now on average to guess

it NG(LoI(M1)) = 1.75 tries. The observations provide H(LoI(M1)) = 0.8112 bits of

information about the secret.

Consider now the second row, i.e. program M2: here H = 2 means that everything is

leaked, i.e. the observations provide 2 bits of information about the secret. In this case the

secret will be guessed in one try (G(LoI(M2)) = NG(LoI(M2)) = 1) and the chances have

hence increased 4 folds from the initial probabilities (2ME(M2) = G(LoI(M2))
G(h)) = 1

0.25 = 22);

the average number of questions needed (initially NG(h) = 2.5) has been reduced by 1.5

(= GE(M2)) to one (NG(LoI(M2)) = 1).

The narrative can be strengthened formally: the following result clarifies how ME,NG

relate to LoI; in the following we set h in G(h), NG(h) to be the bottom partition in LoI

(i.e. the equivalence relation relating all values of h).

Proposition 6. For a program P

1 ∀µ. ME(P ) = log(G(LoI(P )))− log(G(h))

2 ∀µ. GE(P ) = NG(h)−NG(LoI(P ))
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Proof. (1) We start by recalling Smith’s definition of vulnerability:

ME(P ) = log
1

maxh µ(h)
− log

1∑
o∈LoI(P ) maxh µ(h|o)

We have then (we use o for a block in the partition LoI(P )): ∀µ

ME(P ) = log(
∑

o∈LoI(P )

max
h

µ(h|o))− log(max
h

µ(h))

= log(
∑

o∈LoI(P )

max{µ(h)|h ∈ o})− log(max
h

µ(h))

= log(G(LoI(P )))− log(G(h))

(2) We can rewrite the definition of GE(P ) from (Yasuoka and Terauchi 2010a) as:

GE(P ) =
∑

1≤i≤n

iµ(hi)−
∑

o∈LoI(P )

∑
hi∈o,1≤i≤m

iµ(hi)

Notice then that the first term is NG(h) and the second term is NG(LoI(P ))

The following results sum up the order result of this work in the context of programs:

Theorem 1. Given programs P, P ′ the following are equivalent:

1 LoI(P ) v LoI(P ′)

2 ∀µ. LoI(P ) ≤d LoI(P ′)

3 ∀µ. Hµ(LoI(P )) ≤ Hµ(LoI(P ′))

4 ∀n, µ. Gn,µ(LoI(P )) ≤ Gn,µ(LoI(P ′))

5 ∀µ. NGµ(LoI(P ′)) ≤ NGµ(LoI(P ))

6 ∀µ. MEµ(P ) ≤MEµ(P ′)

7 ∀µ. GEµ(P ) ≤ GEµ(P ′)

Proof. equivalence 1 ⇔ 3 was first proved in (Heusser and Malacaria 2009b), equiv-

alences 1 ⇔ 2, 4, 5 proved in Section 3; equivalences 1 ⇔ 3, 6, 7 are proven in (Yasuoka

and Terauchi 2010a). It may be however interesting to reprove the equivalences in (Ya-

suoka and Terauchi 2010a) using the algebraic techniques and results from this paper.

For example we can prove 1⇔ 6 as follows:

LoI(P ) v LoI(P ′) ⇔ ∀µ. G(LoI(P )) ≤ G(LoI(P ′))

⇔ ∀µ. log(G(LoI(P )))− log(G(h)) ≤ log(G(LoI(P ′)))− log(G(h))

⇔ ∀µ. ME(P ) ≤ME(P ′)

where the first equivalence is Corollary 1 and the second is Proposition 6.

1⇔ 7 follows from Proposition 6(2) by rewriting GE(P ) as NG(h)−NG(LoI(P ))

A consequence of these results is that programs that are not ordered in LoI can be

ordered by particular distributions in any possible way. An important example is now

discussed.
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4.4. Discussion on Smith’s argument on the foundations of Quantitative Information

Flow

Consider the following two programs (Smith 2009) where h is a secret of size 8k bits:

1 P1 ≡ if (h%8 == 0) then o = h; else o = 1;

2 P2 ≡ o = h& 07k−11k+1;

The program P1 will return the value of h when the last three bits of the secret are 0s

and will return 1 otherwise; its LoI interpretation will hence be the partition of the form

X = {{h1000}, . . . , {hm000}, X1}

where the hi are arbitrary binary string of length 8k − 3.

The program P2 copies the last k + 1 bits of the secret in o ( & the bitwise and). The

partition associated has hence the shape

Y = {Y1, . . . , Yr}

where each Yi is a set of string with the same k + 1 last bits.

Smith notices that under uniform distribution the two programs have a very similar

entropy (H(X) = k + 0.169 < H(Y ) = k + 1) but they have a very different guessing

behaviour; in the case of the first program in fact with probability one eight the whole

secret is revealed, while in the second program all attempts reveal the last k + 1 bits of

the secret but give no indication of what the remaining bits are. Hence in general it is

much easier to guess the secret in one try after running the first program than it is to

guess the secret after running the second one. These programs motivate the introduction

of vulnerability in Quantitative Information Flow.

Smith’s analysis above assumes a uniform distribution on the secret: it is only one of

the possible ones in the Lattice of Information. The partitions X and Y are unrelated in

LoI, hence by the results from Section 3 we can find distributions and number of guesses

that make one’s expected guessing probability less than the other.

For Gn(X) < Gn(Y ) notice that X1 splits in many blocks Yi: hence take any distri-

bution non zero only on the atoms in X1, e.g. let’s consider the uniform distribution on

the atoms in X1 and take n = |X1| − 1.

Then

Gn(X) = gn(X1) =
n

n+ 1
< 1 = Gn(Y )

To make Gn(X) > Gn(Y ) pick any block Yi in Y whose last three bits are 0s; then

this block is split in many Xis in X, again by taking the distribution uniform over the

elements of Yi and 0 otherwise and taking n = |Yi| − 1 we have

Gn(Y ) = gn(Y1) =
n

n+ 1
< 1 = Gn(X)

In fact all distributions giving probability 0 to all values divisible by 8 will favour program

P2 even when we consider a single guess (n=1), and things don’t change when we take

ME instead of Gn.

Similarly we can find distributions that make the expected number of guesses of any

of the two programs less than the expected number of guesses of the other program.
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In particular while for the uniform distribution it is much easier to guess the secret in

the case of the first program compared to the second (which is at the heart of Smith’s

argument), by choosing the distribution zero everywhere apart from the block X1 it

becomes easier to guess the secret using the second program. While such a distribution

may be seen as pathological it still shows the possible problems in making code analysis

dependent on particular distributions.

4.5. LoI, maximum leakage and Channel Capacity

The relation between LoI and channel capacity has been investigated in the literature

(Malacaria and Chen 2008; Yasuoka and Terauchi 2010b; Köpf and Smith 2010). The

channel capacity of a program is defined as the maximum possible leakage for that pro-

gram. Intuitively this is the context most advantageous for the attacker. LoI provides

an elementary characterization of channel capacity: in fact as the leakage is defined by

H(LoI(P )) using the well known information theoretical fact that the maximal entropy

over a system with n probabilities is log(n) we deduce that the channel capacity is

log(|LoI(P )|).
We note by CC(P ) for the channel capacity of the program P . We have then

Proposition 7.

LoI(P ) v LoI(P ′)⇒ CC(P ) ≤ CC(P ′)

If LoI(P ) v LoI(P ′) then all blocks of LoI(P ) are refined by blocks of LoI(P ′) so the

number of blocks of LoI(P ) is ≤ than the number of blocks of LoI(P ′), but the channel

capacity for programs is the log of the number of blocks interpretation, hence the result

is proved.

The opposite direction of the implication doesn’t hold: for example the partitions

{{a, b, c}, {d}} and {{a, b}, {c, d}}

are not order related but have the same channel capacity 1.

4.5.1. LoI and min-entropy Channel Capacity: The relation between channel capacity

of a program P and log(|LoI(P )|) is not confined to Shannon entropy. In fact Braun,

Chatzikokolakis and Palamidessi (Braun et al. 2009) have shown that even if we choose

Smith’s min-entropy quantitative analysis we get the same value, i.e. maximum vulnera-

bility of a program P according to Smith measure ME is log(|LoI(P )|). We hence have

the equalities

CC(P ) = log(|LoI(P )|) = max
µ

Hµ(LoI(P )) = max
µ

MEµ(P )

5. Low inputs, Multiple runs and l.u.b. in LoI

A major source of confusion in security analysis derives from poorly defined attacker

models. In this Section we discuss a few common modelling issues and how they can be

dealt with in LoI.
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5.1. Active and passive attackers

The lattice of information allows for different attacker’s models: the most common and

possibly interesting is the one corresponding to an active attacker, i.e. an attacker who

control the low inputs; a typical example would be a cash machine where an attacker is

able to choose a pin number. An active attacker can be modelled as we did in the previous

Sections by assuming that the low variables are initialised in the code, the initialisation

values corresponding to the attacker choice.

We could however also model a passive attacker, an eavesdropper with no power to

choose the low inputs. In this case the lattice atoms are the pair of low and high inputs.

Take for example the program

if (h == l) then o= 1; else o=2;

where h, l are 2 bits variables. The partition associated to the programs is:

LoI(P ) = {{(x, x)|0 ≤ x ≤ 3}, {(x, y)|0 ≤ x, y ≤ 3, x 6= y}}

and for the low input LoI(l) = {{(x, 0)|0 ≤ x ≤ 3}, . . . , {(x, 3)|0 ≤ x ≤ 3}}. Hence

LoI(P ) t LoI(l) = {{(0, 0)}, {(1, 0), (2, 0), (3, 0)}, . . . , {(3, 3)}, {(0, 3), (1, 3), (2, 3)}}

assuming uniform distribution on the low and high inputs we then compute leakage as

H(P |l) = H(P, l)−H(l) = H(LoI(P ) t LoI(l))−H(LoI(l)) = 1.2075− 1 = .2075

In fact an active attacker is a particular case of this setting, where the distribution on

the inputs is such that only one low input has probability non-zero. In that case the atoms

of the lattice are, up to isomorphism, only the high inputs and H(P |l) = H(LoI(P )).

5.1.1. Hidden variables, probabilistic and non deterministic systems: by interpreting a

probabilistic system as a deterministic system plus some hidden variables we can analyse

such systems within LoI. As an example consider the program

x= coin or h;

where coin is the a random boolean and h a one bit variable; then we can see this

program as a function of two variables P (coin, h). We have hence partitions: LoI(P ) =

{{(0, 0)}, {(0, 1), (1, 0), (1, 1)}}, LoI(coin) = {{(x, y)|0 ≤ x, y ≤ 1} and compute leakage

as we did in section 5.1 by H(LoI(P ) t LoI(coin)) − H(LoI(coin)). The development

of such interpretation and its ability to model the subtleties of probabilistic and non

deterministic systems (McIver and Morgan 2003; Alvim et al. 2010b) is left for future

work.

5.2. Non termination

In this work we have defined observations as the program output values. We could how-

ever include among the possible observations non termination. This doesn’t change the

theory: non-termination is just an additional equivalence class: the class of all input states

over which the program doesn’t terminate; of course the usual decidability problems arise

were we try to compute such a class.
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5.3. Multiple runs

Another aspect of an attacker model that has a natural algebraic interpretation in LoI

is an attacker capability to run the system n times: for example an attacker trying three

pin numbers on a cash machine. Running a program several times with different low

inputs may reveal more and more information about the secret; For example consider

the password checking program P

if (h == l) then o= 1; else o=2;

If we run it once assigning the value 5 to the low variable we gain the information

whether the secret is 5 or not; by running it twice, assigning to the low variable the value

5 and the value 7 we will gain the information whether the secret is 5 or is 7 or something

else. Written in terms of partitions this is nothing else than the join operation in LoI

{{5}, {6= 5}} t {{7}, {6= 7}} = {{5}, {7}, {6= 5, 7}}

Hence the knowledge available to an attacker running the program who can choose the

low inputs and run the program m times is modelled by the partition

LoI(P1) t . . . t LoI(Pm)

where LoI(Pj) is the partition corresponding to the i-th run of the program.

Notice that this is an extensional definition, i.e. the way the attacker chooses this m

inputs is irrelevant. For example adaptive attacks from (Köpf and Basin 2007) can be

modelled by t{LoI(P1) t . . . t LoI(Pm)|P1 . . . Pm a possible sequence}.

5.3.1. Does it leak the same information? A related question is whether a program leaks

always the same information for each run of the program; for example a program leaking

the last bit of the secret always leaks the same information no matter how many times

we run the program but a password check leaks different information when we run it

choosing different low inputs. This question can also be addressed by using l.u.b.s: if the

program P leaks different information over different runs this means we can find two

runs Pi, Pj such that

LoI(Pi) t LoI(Pj) A LoI(Pi) or LoI(Pi) t LoI(Pj) A LoI(Pj)

The interpretation of multiple runs in terms of l.u.b.s has also somehow a reverse impli-

cation, i.e. it is possible, given programs P1, P2 to build a program whose interpretation

is their l.u.b. This result has a practical significance: when P1, P2 are different runs

of the same program the l.u.b. is their self-composition (Barthe et al. 2004). Formally

(Malacaria and Heusser 2010):

Proposition 8. Given programs P1, P2 there exists a program P1t2 such that

LoI(P1t2) = LoI(P1) t LoI(P2)

Given P1, P2, define P1t2 = P ′1;P ′2 where the primed programs P ′1, P
′
2 are P1, P2 with

variables renamed so to have disjoint variable sets. If the two programs are syntacti-

cally equivalent, then this results in self-composition (Barthe et al. 2004). For example,
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consider the two programs

P1 ≡ if (h == 0) then x = 0; else x = 1;, P2 ≡ if (h == 1) then x = 0; else x = 1;

with their partitions LoI(P1) = {{0}, {h 6= 0}} and LoI(P2) = {{1}, {h 6= 1}}. The

program P1t2 is the concatenation of the previous programs with variable renaming

P1t2 ≡ h′ = h; if (h′ == 0) x′ = 0; else x′ = 1;

h′′ = h; if (h′′ == 1) x′′ = 0; else x′′ = 1;

The corresponding lattice element is the join, i.e. intersection of blocks, of the individual

programs P1, P2

LoI(P1t2) = {{0}, {1}, {h 6= 0, 1} = {{0}, {h 6= 0}} t {{1}, {h 6= 1}}

6. Further applications of LoI

We quickly review two applications of LoI beyond the foundational aspect:

6.1. Loop analysis

Loop constructs are difficult to analyse. However they have a natural interpretation in

the lattice of information. In informal terms the idea is that loops can be seen as l.u.b. of

a chain in the lattice of information, where the chain is the interpretation of the different

iterations of the loop. To understand the ideas let’s consider the program

l=0;

while(l < h) {

if (h==2) l=3 else l++

}

and let us now study the partitions it generates. The loop terminating in 0 iterations

will reveal that h=0 i.e. the partition W0 = {{0}{1, 2, 3}}, termination in 1 iteration will

reveal h=1 if the output is 1 and h=2 if the output is 3 i.e. W1 = {{1}{2}{0, 3}}, the loop

will never terminate in 2 iterations i.e. W2 = {{0, 1, 2, 3}} and in 3 iterations will reveal

that h=3 given the output 3, i.e. W3 = {{3}{0, 1, 2}}. Let’s define W≤n as tn≥i≥0Wi; we

have then the chain (trivial in this example)

W≤1 = W≤2 = W≤3 = {{0}{1}{2}{3}}

We also introduce an additional partition C to cater for the collisions in the loop: in the

example above the collision partition is C = {{0}{1}{2, 3}} because for h=2 the loop

terminates with output 3 in 1 iterations and for h=3 the loop terminates with the same

output 3 in 3 iterations. We have then

LoI(P ) = tn≥0W≤n u C = {{0}{1}{2, 3}}

This setting is formalized in (Malacaria and Heusser 2010): given a looping program

P define W≤n = tn≥i≥0Wi as the equivalence relation corresponding to the output

observations available for the loop terminating in ≤ n iterations and let the collision
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equivalence of a loop be the reflexive and transitive closure of the relation σ 'C σ′ iff

σ, σ′ generate the same output from different iterations.

The following is then true:

Proposition 9.

LoI(P ) = tn≥0W≤n u C

Hence leakage H(LoI(P )) for looping programs can be computed in terms of the chain

(W≤n)n≥0 and the collision equivalence C. The equivalence of this technique with pre-

vious information theoretical analysis of loops (Malacaria 2010) is proved in (Malacaria

and Heusser 2010).

Notice that Propositions 9 and 6 can be used for an analysis of loops using Smith’s

vulnerability leakage and guessability leakage:

ME(P ) = log(G(LoI(P )))− log(G(h)) = log(G(tn≥0W≤n u C))− log(G(h)) (10)

GE(P ) = NG(h)−NG(LoI(P )) = NG(h)−NG(LoI(tn≥0W≤n u C)) (11)

6.2. Analysis of C-code vulnerabilities

Recent work inspired by the LoI interpretation of programs, has demonstrated the appli-

cability of QIF to real world vulnerabilities. Previous attempts to implement a quantita-

tive analysis had hit a major hurdle: in very simple terms since QIF is based on LoI(P )

and LoI(P ) is the set theoretical kernel of the denotational semantics of P computing

LoI(P ) is computationally unfeasible. The approach followed in (Heusser and Malacaria

2010) is to change the QIF question from computing LoI(P ) to computing bounds on

the channel capacity CC(P ): their relation has been shown in Proposition 7.

In that work a C program is seen as a family of equivalence relations, one for each

possible low input. Given a bound k the aim is to determine whether does exists a member

of this family of equivalence relations which has more than k equivalence classes (we are

hence modelling an active attacker in the sense of section 5.1). Using assume-guarantee

reasoning these questions about bounds can be expressed in verification terms, an idea

also proposed in (Yasuoka and Terauchi 2010b). In particular by expressing them as

drivers for the symbolic model checker CBMC (Clarke et al. 2004) several CVE reported

vulnerabilities in the Linux kernel were quantitatively analysed in (Heusser and Malacaria

2010), the secret h here being the kernel memory. Moreover the official patches for such

vulnerabilities were formally verified as fixing the leak. From a verification point of view

the problem is non trivial: given a modest C structure consisting of five integers and a

4GB kernel memory there are 2160 equivalence relations over a space of 232 atoms.

The need of considering all possible equivalence relations is demonstrated by vulnera-

bility CVE-2007-2875 which is caused by an underflow, i.e. among all equivalence relations

associated to the code only the ones associated to the input triggering the underflow had

> k equivalence classes. In general vulnerabilities were caused by programming bugs or

wrong architecture: for example in CVE-2009-2847 kernel memory is not leaking when



Algebraic Foundations for Quantitative Information Flow 23

running on a 32 bits architecture but leaks when run on a 64 bits machine. The ability

to analyse architecture leaks shows the flexibility of the approach.

7. Related works

The relation between number of observables and leakage was first stressed by Lowe

(Lowe 2002). The random variable interpretation of partitions we presented originated

from (Clark et al. 2005) and (Köpf and Basin 2007) who also showed its relevance to side

channels analysis. The lattice structure here presented was first outlined in (Heusser and

Malacaria 2009b). The use of partitions in implementing QIF using verification techniques

was first demonstrated by (Backes et al. 2009).

The work (Yasuoka and Terauchi 2010a) has been very inspiring in many respects:

equivalences in Theorem 1 are also considered in that paper from a verification perspec-

tive.

There is a wealth of work in QIF whose relation to LoI deserves further study. One

thread is QIF beyond non-interactive deterministic systems; examples are (Chatzikoko-

lakis et al. 2008; Chen and Malacaria 2009) on anonymity protocols, (Alvim et al. 2010a)

on information hiding systems, (McIver and Morgan 2003; Morgan 2009) on probabilistic

systems. Another thread is about QIF approaches non based on an objective probability

distribution, a high profile example being the work on beliefs (Clarkson et al. 2009).

8. Conclusions

We investigated the importance of the Lattice of Information for Quantitative Infor-

mation Flow. This lattice allows for an algebraic treatment of information leakage and

clarifies the relationship between the Information Theoretical, probabilistic and guess-

ability measures by relating them to the refinement order in LoI.

We have seen how these results fit and contribute to recent work in the community,

especially the ones by Yasuoka and Terauchi (Yasuoka and Terauchi 2010a) and by

Smith (Smith 2009). It is a matter for future research to determine whether the Lattice

of Information can also provide a unifying foundation for probabilistic systems and beliefs

based approaches.
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A. Rényi: On measures of information and entropy. Proceedings of the 4th Berkeley Symposium

on Mathematics, Statistics and Probability 1960: 547-561.

C. Shannon: A mathematical theory of communication. Bell Systems Technical Journal,

27(3):379-423, 1948.

C. Shannon: The lattice theory of information. IEEE Transactions on Information Theory, 1:105-

107, 1953.

G. Smith: On the Foundations of Quantitative Information Flow. In Proc. FOSSACS 2009:

Twelfth International Conference on Foundations of Software Science and Computation Struc-

tures LNCS 5504, pp. 288-302, York, UK, March 2009.

T. Terauchi and A. Aiken: Secure information flow as a safety problem: In SAS, volume 3672 of

LNCS, pages 352–367, 2005.

H. Yasuoka and T.Terauchi: Quantitative Information Flow - Verification Hardness and Possi-

bilities. In Proceedings CSF 2010(a): 15-27.

H. Yasuoka and T. Terauchi: On Bounding Problems of Quantitative Information Flow. In

Proceedings ESORICS 2010(b).

G. Winskel: The Formal Semantics of Programming Languages. The MIT Press 1993.


