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The solar irradiance and the Earth’s spectral emittance

(for a clear sky standard atmosphere)

Earth absorbs the Sun’s radiation and re-radiates
in the infrared range

“Long-wave” considered > 4 um (wavenumber of
2500 cm1)

Earth’s emission is a strong long-wave IR signal

For satellites in LEO at 500km, IR radiation from
the Sun is insignificant due to the small solid angle
subtended by the Sun in comparison to Earth

e Sun solid angle: ~ 7x107> sr

e Earth solid angle: ~ 4 sr

Merrelli, A. The Atmospheric Information Content of Earth’s Far Infrared. University of Wisconsis-Madison. November, 2012.

http://www.aos.wisc.edu/uwaosjournal/Volume19/Aronne_Merrelli_PhD_Thesis.pdf
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I I" Thermopile Detectors
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 Thermopiles convert thermal energy into
electrical energy

Relative Responsitivity (%)

* Filters can be integrated to reduce transmission
spectral band width

N
=

90 80 70 60 50 40 30 20 -0 O 10 20 30 40 50 €0 70 80 90  Sensor sensitivity has Gaussian characteristics

Angle of incidence (°) » Effective field of view can range from fine (7° —

10° with lens) to coarse (60° — 70°)
Standard thermopile sensor sensitivity
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 Thermopiles can be mounted on
satellites to detect Earth’s IR radiation

* For fixed body-mounted sensors,
mounting orientation depends on orbit

 Valid horizon sensing achieved when
sensor FOV partially obscured by Earth

* IR EHS still work in eclipse periods (not
possible with visible camera EHS)

STK model of MicroMAS satellite
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I I" Earth-limb-space Sensor Configuration

3 sensors/mount

“Space” sensor
e “cold” reference e Use “Space” and “Earth” as
* 0% obscuration reference for middle horizon
Sensors

* Mitigate the effects of

Horizon sensor e :
variation in Earth’s IR signal

e Partial obscuration

e Coarse pointing using other
attitude sensors required for

“Earth” sensor EHS readings to be valid
e “hot” reference
e 100% obscuration
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III" Objectives

Given 2 valid horizon sensor
readings from distinct mount
directions:

e Estimate nadir vector with high

accuracy (using only limited satellite
computational resources)

e Evaluate the accuracy of the
estimation through simulation results

* Analyze the sensitivity of estimation
with mounting uncertainties

STK model of MicroMAS satellite
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I Convert sensor reading to obscured area

Sensor U
FOV ~_ 7/~ Simple model:
- Earth IR emission is relatively constant within sensor FOV
- Earth shape is circular
- Sensor responsitivity is uniform within FOV } f"’i” be reﬁn.ed
- Satellite altitude is constant In next section

Sensor reading is approximately proportional to the area
obstructed by Earth in sensor FOV.

Unit sphere
around satellite

€ = sensor FOV radius
p = Earth disk radius

Spacecraft-centered celestial sphere with o = angle between nadir and sensor boresight
projections of sensor FOV and Earth disk S = overlap area between sensor FOV and Earth disk
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I Convert sensor obscured area to nadir angle

FOV ~_ 7~ € = sensor FOV radius (constant)

p = Earth disk radius (assume constant for this analysis)
o = angle between nadir and sensor boresight

S = overlap area between sensor FOV and Earth disk

cos(g)—cos(p) cos(a)) _

S(a) x 2|t — cos(p) acos( Sin(e) sin(a)

cos(p)—cos(g) cos(a) _
sin(¢) sin(a) )
cos(a)—cos(€) cos(p)

sin(¢) sin(p)

Unit sphere
around satellite

cos(&) acos(

acos(

Spacecraft-centered celestial sphere with
projections of sensor FOV and Earth disk J. Wertz. Spacecraft Attitude Determination and Control. 1978
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nadir angles

« Sensor boresights: 57, S,

(P -5, = cos(ey)

- P, = cos(¢2)
* Possible nadir vector: P, P’ \ |13|=1

(Px Sixt Py S1y + P S512= cos(¢p4)
Py Sax+ Py Say +F; S22= cos(¢p3)
P¢ + P +Pf=1

* Nadir angles: @4, @,

A

A

\

System of equations can be solved analytically
Contains a 2" order equation —» maximum of 2 solutions

Assume low sensor noise and correct calibration
— 2 possible nadir vectors (ambiguity)

Geometric representation of the solutions
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I|I| | Attitude ambiguity visualization from 03 cronsrro
2-sensor configuration

Both attitudes yield the same sensor readings
The two possible nadir vectors are separated by 120° in the satellite’s body frame
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I I" Resolve ambiguity

A p * g; < 0
: P'-5;3 >0
(from symmetry)

* Acquire lock:

* Need another attitude sensor (coarse) to
resolve ambiguity

* Use EHS for fine attitude knowledge
* Maintain lock:

* Solutions can be distinguished by being
on opposite sides of the plane containing
S{and S,

B * Compare nadir solutions to past valid
S nadir vectors (assuming low disturbance level)

=

14
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I I" Sensor Gaussian approximation model

14

= Gaussian sensitivity
B approximation

12~
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Responsitivity (%)
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Angle of incidence ( °)
Sensor responsitivity 2D approximation

Sensor responsitivity 3D approximation

e Gaussian responsitivity curve can be approximated with piece-wise constant function
e Sensor field can be divided into regions of constant sensitivity with corresponding weight factor
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IIII-
I Sensor Gaussian approximation model

Sensor 100
regions

Gaussian response
Uniform response
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I I" Altitude Correction

satellite

* Important for de-orbiting phase of
missions and for satellites in high-
eccentricity orbit

e Earth disk radius:

p= s (R (%) )
where:

x = satellite position (from GPS or TLE)

Ry (x) = Earth radius from WGS84 model
Earth model: Ellipsoid WGS84 R (55) = Orbit radius
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Earth
STK obscuration Convert to Convert to
Simulation percentage in sensor values nadir angles

sensor FOV

Simulated Output nadir Solve for
nadir vector 1 t vector possible nadir
vectors

Compare
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I I" Satellite Tool Kit Simulation Scenario

* Spacecraft sensor model
* sensor FOV: 10°
* mount directions: -X, +y
* horizon sensor dip angle: 20°

* Attitude setting
* Attitude: Spin aligned around nadir
* Spin rate : 0.1 rev/min
* Nutation levels: 4°

— Satellite’s z-axis oscillates around nadir
vector with maximum offset of 4°.
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I I" Simulation Scenario Orbit Profile

Satellite-MicroMAS: LILA Position - 16 Apr 2014 17:44:00
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I I" Simulation Results

e Sensor sensitivity: Uniform Angular error: (1_23 _|_/_ 0_43) 0
 No altitude correction
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* Sensor sensitivity: Gaussian

 No altitude correction
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Angular error: (0.28 +/- 0.14) °
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* Sensor sensitivity: Gaussian

e Altitude correction
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Angular error: (0.18 +/- 0.082) °
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* Assume perfect mounting in

Xandy
- * Mounting error occurs only
Actual sensor y in Z (“dip” angle)
boresight >

O, ¥ Measured 1 8y
sensor boresight

4/23/2014 Nguyen 27



AEROASTRO

»

t errors

ignmen

1 Sensitivity to al

1° error

. H :
Pree b 2 $%° Oooc ooocnco’o\oﬂtﬁolhbnlﬂ

.&avgamwv

o 8] 0 300 Tete
vcu&Mum......a_.“n..

AT,

. .soﬁo

0.02 0.03

0.01

0.03¢

Q024 ey

-0.02}

0.03

-0.02

-0.03

X
Z pointing uncertainty

0 0.01 0.02

-0.01

-0.03

e Nadir direction — centered at (0,0,0)

® Nadir estimation errors

X
X-y pointing offset

28

Nguyen

4/23/2014



{
AEROASTRO

I H
I I" Boresight measurement sensitivity

4
* Nadir estimation error sensitivity to
35- . .
alignment error follows linear
3 correlation
Ci:2.5 e 0.25° boresight offset on each mount
% 5 leads to an additional 0.7° in attitude
o error
= e xandy errors are more dominant than
T Z errors
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Conclusion

* Nadir vector estimation method from EHS was presented

e Estimation accuracy was verified through simulations to be 0.2°
(assuming perfect sensor response and alignment)

* Nadir estimation error increases linearly with sensor alignment errors

Future work

e Quantify the effects of sensor response error
 Verify attitude accuracy from satellite data
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