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Space-Frequency Quantization
for Wavelet Image Coding

Zixiang Xiong, Member, IEEE Kannan Ramchandramember, IEEE.and Michael T. Orchardyiember, IEEE

Abstract—Recently, a new class of image coding algorithms been a general trend that more complex models are needed
coupling standard scalar quantization of frequency coefficients to achieve improved coding efficiency. One could easily draw

with tree-structu_red quan@ization (relate_zd to spatial structures) the conclusion that the promising directions in image coding
has attracted wide attention because its good performance ap-

pears to confirm the promised efficiencies of hierarchical rep- INVOIve higher modeling complexity designed to better capture
resentation [1], [2]. This paper addresses the problem of how the complex character of natural images.

spatial quantization modes and standard scalar quantization  This paper takes a step in the opposite direction, proposing a
can be applied in a jointly optimal fashion in an image coder. very efficient image coding algorithm based on a remarkably

We consider zerotree quantization(zeroing out tree-structured simple image model. Drawing on the experience of several
sets of wavelet coefficients) and the simplest form of scalar

quantization (a single common uniform scalar quantizer applied '€C€nt wavelet-based coding algorithms [1], [2], we suggest
to all nonzeroed coefficients), and we formalize the problem of that natural images are well characterized as a linear combi-
optimizing their joint application. We develop an image coding nation of energy concentrated in both frequency and space; i.e.,
algorithm for solving the resulting optimization problem. Despite  most of the energy of typical images is concentrated in low-

the basic form of the two quantizers considered, the resulting . : . -
algorithm demonstrates coding performance that is competitive, frequency information, and of the remaining high-frequency

often outperforming the very best coding algorithms in the COMPponents of the image, most energy is spatially concentrated
literature. around edges (we view texture as a dense clustering of
edges). Efficient transform coding of such a source model

|. INTRODUCTION calls for a transform that compacts energy into few low-

LL IMAGE coding algorithms can be viewed as beinirﬁguen_cy coefficienf[s, while also re_presenting high-frquency
A b rgy in a few spatially clustered high-frequency coefficients.

ased on some model for the class of natural imag . .
and can be seen to exploit dependencies characterize d% _v[vlasv]elet transform provides exactly these desired features

that model. Typical transform and subband coding algorith'#S)S]ince the introduction of wavelets as a sianal processin
model images as a composition of statistically distinct nar- 9 P g

rowband processes. Basic vector quantization (VQ) algorithr%)sOI In the Igte 1980's, con5|d_erable attention _has focused on
application of wavelets to image compression [1], [2], [8],

are based on low-dimensional, but very general, models 1¢ . . . ; :
small blocks of image data, though they provide no model f 6]_.[18]' The hierarchical 5'9”?" representatlt_)n given by the
adic wavelet transform provides a convenient framework

dependencies between blocks [3]. A variety of more compl h loiting th i f istical d denci
coding algorithms have been proposed that are based or exploiting the specific types of statistical dependencies

models of block interdependence (e.g., finite-state VQ [L{ und in images, and for designing quantization strategies
lapped-orthogonal transform coding [5]’) composite sour latched to characteristics of the human visual system. Indeed,

models (e.g., classified VQ [6], [7]), image segmentatio efore the introduction of wavelets, a wide variety of closely

models, etc. The performance of each of these approachegted coding frameworks had been extensively studied in the
has been optimized through careful consideration of quaf?29€ coding community, including pyramidal coding [19],
tization strategy (e.g., optimal bit-allocation among band&nsform coding [20], and subband coding [21]. Viewed in
[8], vector quantizers [9], [10], optimal nonuniform scalafhe context of this prior work, initial efforts in wavelet coding

quantizers [11], trellis-coded quantization [12], etc.). It ha§Seéarch concentrated on the promise of more effective com-
paction of energy into a small number of low-frequency coeffi-
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guantization modes. To exploit the spatial compaction propehat, although these two quantization modes are very basic,
ties of wavelets, we define a symbol that indicates that a spatal image coding algorithm that applies these two modes in
region of high-frequency coefficients has value zero. We refarjointly optimal manner can be competitive with (and per-
to the application of this symbol as zerotree quantizatiohaps outperform) the best coding algorithms in the literature.
because it will involve setting to zero a tree-structured s€onsequently, we claim that the joint management of space-
of wavelet coefficients. In the next section, we explain hoand frequency-based quantizers is one of the most important
a spatial region in the image is related to a tree-structur&chdamental issues in the design of efficient image coders.
set of coefficients in the hierarchy of wavelet coefficients. Section II-A begins by defining the tree-structured hierarchy
Zerotree quantization can be viewed as a mechanism fdrwavelet coefficients relating trees of wavelet coefficients to
pointing to the locations where high-frequency coefficiengpatial regions in the image, and defines zerotree quantization
are clustered. Thus, this quantization mode directly exploitsthe context of this tree. The remainder of Section Il formally
the spatial clustering of high-frequency coefficients predictetefines the objective function upon which our image coding
by our image model. algorithm is based, and outlines our proposed approach for
For coefficients that are not set to zero by zerotree quantizainimizing this objective function. Section Il describes the
tion, we propose to apply a common uniform scalar quantizémage coding algorithm developed from the formulation of
independent of the coefficient’s frequency band. The resultiggction Il. Section I1I-B details our scheme for predicting the
scalar indices are coded with an entropy coder, with probiaformation defining where zerotree quantization is applied.
bilities adapted to the statistics of each band. We select tlican be viewed as an extension of the Lewis and Knowles
guantization scheme for its simplicity. In addition, though wecheme [1] intended to exploit interband dependencies. Fi-
recognize that improved performance can be achieved by moadly, Section IV presents simulation results of the new
complicated quantization schemes (e.g., vector quantizatiatgorithm on standard images.
scalar quantizers optimized for each band, optimized nonuni-
form scalar quantizers, entropy-constrained scalar quantization
[22], etc.), we conjecture that these performance gains will
be limited when coupled with zerotree quantization. When
zerotree quantization is applied most efficiently, the remainifyy Defining the Tree
coefficients will be characterized by distributions that are not A wavelet image decomposition can be thought of as a
very peaked near zero. Consequently, uniform scalar quaree-structured set of coefficients, providing a hierarchical data
tization followed by entropy coding provides nearly optimasdtructure for representing images, with each coefficient corre-
coding efficiency, and achieves nearly optimal bit allocatiosponding to a spatial region in the image. Fig. 1(a) shows a
among bands with differing variances. The coding perfothree-level wavelet decomposition of the Lena image, together
mance of our proposed algorithm provides some experimentéth a spatial wavelet coefficient tree structure representing the
evidence in support of this conjecture. eye region of Lena. A spatial wavelet coefficient tree is defined
Though zerotree quantization has been applied in sevesgl the set of coefficients from different bands that represent
recent wavelet-based image coders, this paper is the firstthie same spatial region in the image. Arrows in Fig. 1(b)
address the question of how to jointly optimize the applicatiddentify the parent—children dependencies in a tree. The lowest
of spatial quantization modes (zerotree quantization) and scét@quency band of the decomposition is represented by the root
quantization of frequency bands of coefficients. In [1], Lewisodes (top) of the tree, the highest frequency bands by the leaf
and Knowles apply a perceptually based thresholding schemmles (bottom) of the tree, and each parent node represents a
to predict zerotrees of high-frequency coefficients based fwwer frequency component than its children. Except for a root
low-valued coefficients in a lower frequency band correspondede, which has only three children nodes, each parent node
ing to the same spatial region. While this simptehocscheme has four children nodes, the 2 2 region of the same spatial
exploits interband dependencies induced by spatial clusterifgsation in the immediately higher frequency band.
it often introduces large error in the face of prediction errors. Define aresidue treeas the set of all descendants of any
Shapiro’s embedded zerotree approach [2] applies the zerofpeeent node in a tree. (Note: a residue tree does not contain the
symbol when all coefficients in the corresponding tree equaarent node itself.) Zerotree spatial quantization of a residue
zero. While this strategy can claim to minimize distortion ofree assigns to the elements of the residue tree either their
the overall coding scheme, it cannot claim optimality in aariginal values or all zeros. Note the semantic distinction
operational rate and distortion sense (i.e., it does not minimizetween residue trees and zerotrees: The residue tree of a
distortion over all strategies that satisfy a given rate constraimjpde is the set of all its descendants, while a zerotree is an
This paper focuses on the problem of optimizing the appkl-zero residue tree. A zerotree node refers to a node whose
cation of zerotree and scalar quantization in order to minimiziescendants are all set to zero. Note that zerotrees can originate
distortion for a given rate constraint. The image coding algat any level of the full spatial tree, and can therefore be of
rithm described in the following sections is an algorithm fovariable size. When a residue tree is zerotree quantized, only a
optimally selecting the spatial regions (from the set of regioséngle symbol is needed to represent the set of zero-quantized
allowed by the zerotree quantizer), for applying zerotregavelet coefficients—our coder uses a binary zerotree map
guantization, and for optimally setting the scalar quantizerisdicating the presence or absence of zerotree nodes in the
stepsize for quantizing the remaining coefficients. We obserspatial tree.

Il. BACKGROUND AND PROBLEM STATEMENT
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Fig. 1. Wavelet decomposition offers a tree-structured representation. (a) A three-level wavelet decomposition of the Lena image. (b) A sfetial wav
coefficient tree consisting of coefficients from different bands that corresond to the same spatial region of the original image (e.g., the eye of Lena)
Arrows identify the parent-children dependencies.

The motivation for applying zerotree spatial-quantization afniform scalar quantizer on the rest. Given this framework,
a residue tree is the observation that the coefficients of atiye key questions are obviously
residue tree represent the energy above some fixed frequency) what (spatial) subset of coefficients should be thrown
(varies with the residue tree size) over some spatial region away?

any node of the tree has no energy at frequencies greater ghould be used to quantize the survivor set, i.e. the
than or equal to its assigned frequency, the entire residue complementary set of 1)?

tree of coefficients descending from that node should beThis paper formulates the answers to these questions, invok-

zero. The zerotree data structure is a convenient way irt% an operational rate-distortion optimality criterion. While

deal with of coefficients and therefore to characteriz N . Lo : .
sets ?he motivation is simple, this optimization task is complicated

the entropy of sets or vectors of insignificant coefficients . .
Py 9 [s;the fact that the two questions posed above are interdepen-

without approximating them as the sum of individual entropies; t Th for this | i Th timal
i.e., without assuming independence. An important distincti nt. the reason for this 1S €asty seen. 1he oplimal answer
o 1), i.e., the optimal spatial subset to throw away depends

between our proposed framework and that of earlier use h | _ hoi £ ) i h :
the zerotree data structure [2] is that in our case, the zerotfgbNe Scalar quantizer choice o ) since the zerotree pruning

criterion doesnot necessarily require thatll coefficients of pperation involved in,l) Is driyen by rate-distortion tradeofs
the residue tree be insignificant with respect to a set Bduced by the quantizer choice. Conversely, the scalar quan-
quantization thresholds. Thus, although scalar quantizatifif€" Of 2) is applied only to the complementary subset of 1),
can also result in a residue tree of zero values, our zerottée: 10 the population subset that survives the zerotree pruning
quantization framework is a vector operation that is moi@Peration involved in 1). This interplay between these modes

general. necessitates an iterative way of optimizing the problem, which
will be described in detail in the following sections.
B. Motivation and High-Level Description Note that the answers to 1) and 2) are sent as side informa-

The underlying theme of the space-frequency quantizati§Rn (‘map” bits) to the decoder in addition to the quantized
(SFQ) is that of efficiently coupling the spatial and frequenc‘{ﬁ'ues of the survivor coefficients (“data” bits). Since a single
characterization modes offered by the wavelet coefficients Bgalar quantizer is used for the entire image, the quantizer
defining quantization strategies that are well matched to tRtepsize information of 2) is negligible and can be ignored.
respective modes. The paradigm we invoke is a combinatibf€e side-information of 1) is sent as a binary zerotree map
of simple uniform scalar quantization to exploit the frequendjidicating whether or not tree nodes are zerotree quantized.
characterization, with a fast tree-structured zerotree quantiZdis overhead information is not negligible and is optimized
tion scheme to exploit the spatial characterization. jointly with the “data” information in our SFQ coder, with the

Our proposed SFQ coder has a goal of jointly finding theptimization being done in a rate-distortion sense. At this point
best combination of spatial zerotree quantization choice awe will not concern ourselves with the details of how this map
the scalar frequency guantizer choice. The block diagram iefsent, but we will see later that much of this zerotree map
the new coder is shown in Fig. 2. The SFQ paradigm igformation is actually predictable and can be inferred by the
conceptually simple: Throw away, i.e., quantize to zero, gecoder using a novel prediction scheme based on the known
subset of the wavelet coefficients, and use a single simplata field of the corresponding parent band.
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Fig. 2. Block diagram of the proposed SFQ coder (assuming a two-level wavelet decompostion). All nine possible complementary subsets of (I) for
each depth-2 spatial wavelet coefficient tree are listed in the spatial zerotree quantization block, three possible scalar quantizer choicethef (Il)
frequency scalar quantization block.

Finally, while it appears counterintuitive at first glance toooted at node. Note that7 is shorthand notation for the
expect high performance from using a single uniform scalbalanced full-depth tree (i.e., rooted at the origin). In keeping
quantizer, further inspection reveals why this is possible. Théth conventional notation, we define a pruned subfiee 7;
key is to recall that the quantizer is applied only to a subsgé any subtree df; that shares its roat Again for brevity,
of the full wavelet data, namely the survivors of the zerotreg < 7" refers to any pruned subtree of the full depth tiée
pruning operation. This pruned set has a distribution whigqote that the set of alf < 7" corresponds to the collection of
is considerably less peaked than that of the original fullj possible zerotree spatial-quantization topologies. We also
set (see Fig. 9), since most of the samples populating thged to introduce notation for residue treestesidue treel/;
zero and low-valued bins are discarded during the zerotrg@responding to any arbitrary parent nadef 7°) consists
pruning operation. Thus, the spatial zerotree operation effeg-the set of all descendants oin 7' but does not includé
tively “flattens.”.the residue Qen5|ty of the “tnmmed” set Of_itself, ie.,U; = T; — {i} = Ujec,T;, whereC; is the set of
wavelet coefficients, endorsing the use of a single Stepsiggiqren or direct descendants fthis is a 2x 2 children
unlform_ quantlze_r. In summary, Fhe motlvatlon of resortmget for all parent nodes except the root nodes that contain only
to multiple quantizers for the various image subbands (ast ee children). See Fig. 3.

‘(‘:ustomanl){’ done) is to account for the dn‘ferent degrees © Let us now address quantization. Letrepresent the (finite)
peakiness” around zero of the associated histograms of th oo : :
X ) set of all admissible scalar frequency quantizer choices. Thus,

different image subbands. In our proposed scheme, the bulk 0

the insignificant coefficients responsible for this peakiness apee quantization modes in our framework are the spatial tree-

removed from consideration, rendering the bands with neglt_ructured quantize§ = 7" and the scalar frequency quantizer

flat distributions and justifying a simple single stepsize scaldr® @ (used to quantize the coefficients®f. The unquantized

quantizer. Experimental evidence verifying these claims wind qua.ntized wgvelet coefficients associa:[ed With riode
be given in Section IV. the spatial tree will be referred to hy; andw;(q), with the

We will now proceed to give a quantitative description ofXPlicit dependency on of «; being dropped where obvious.

the problem and its solution using our framework. To this enH this framework, we seek to minimize the average distortion

it is necessary to introduce some notation to aid in the analysigbject to an average rate constraint. D¢, S) andR(q, 5)
denote the distortion and rate, respectively, associated with

C. Notation and Problem Statement quantizer choicéq, S). We will use a squared-error distortion

Let 7 denote the balanced (full) spatial tree, i.e., the tregeasure. The rat&(q, S) consists of two components: tree
grown to full depth (in a practical scenario, this may béata rateR(4.:q)(q, S), measured by the first-order entropy;
restricted to four to six levels typically). Lettingdenote any and tree map raté,,,,,)(S), where the superscripts will be
node of the spatial tre€]; signifies the full balanced tree dropped where obvious.
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(including ours), a convex-hull approximation to the desired
rate R, suffices, and the only suspense is in determining the
ﬁ value of A that is best matched to the bit budget constraint

! Fortunately, the search for the optimal rate-distortion slope
is a fast convex search that can be done with any number of
efficient methods, e.g., the bisection method [24].
d Our proposed approach is therefore to find the convex-hull
approximation to (1) by solving

l © © @
il max min win {D(g, §) + A[Rlg, 5) = R} ()

where the innermost minimization (a) involves the search for
the best spatial subtreg for fixed values ofg and A, the
Fig. 3. Definitions ofC;, U; andT; for a nodei in a spatial treeC; is the  second minimization (b) involves search for the best scalar
set of children or direct descendants:ot/; the residue tree of, T, the full quantizerq [and associatecﬁ(q)] for a fixed value of), and

balanced tree footed at NOdET; = i U Us). finally the outermost optimization (c) is the convex search for
the optimal value ofA that satisfies the desired rate constraint
Then, our problem can be stated simply as (see [24]). The solution)¢, ¢*, S*) to (3) is thus obtained in
. . three sequential optimization steps.
{qegﬁgg} D{g, 5) subject tof(g, 5) < Ry (1) Minimization (a) involves optimal tree-pruning to find the
. ) bestsS for a fixedg and A, and is by far the most important of
where R, IS the coding budg_et. . ! . the three optimization operations of (3). This will be described
Stated in words, our coding goal is to find the 0pt|me}_E Sections IlI-A and llI-B. Given our global framework of

combi_nat?on of spatial subset_ to prune (via zerotree 5pat£?alta+ tree-map, minimization (a) can be written as
guantization) and scalar quantizer stepsize to apply to the sur-

vivor coefficients (frequency quantization) such that the total (a)

quantization distortion is minimized subject to a constraint on (&%7, {D(2; ) + MB(data) (¢, 5) + Bimapy(0: S} (4)

the total rate. Qualitatively stated, scalar frequency-quantizers

trade off bits for distortion in proportionality to their stepsizesy¥here Raqp (g, S) is the tree-map rate an®(josq)(q, S)
while zerotree spatial-quantizers trade off bits for distortiofe tree-data rate. We seek an efficient way to jointly code the
by zeroing out entire sets of coefficients but incurring little o#ata+ map information using a novel way of predicting the
no bit-rate cost in doing so. We are interested in finding th@ap information from the known data information (see Section

optimal tradeoff between these two quantization modes. 11I-B). As this method dictates a strong coupling between the
data and map field components, the chicken-and-egg problem
D. Proposed Approach is solved using a two-phase approach. In the first phase, (4)

The constrained optimization problem of (1) can be cor|1$- optimized assuming t aRéggg)é(pqe’n?erﬁ Ozfetrr?e gaorir::c;r%f

verted to an unconstrained formulation using the well-knom%e:ri;agy that it is a fixed ¢
Lagrange multiplier method. That is, it can be shown [23], . i . L
[24] that the solution to (1) is identical to the solution to th *The oip(t;maIS from the phase | tree-pruning operation is
following equivalent unconstrained problem for the special(¢ata)’” “="

case ofR(q, S) = Ry: * o i
(7, 5) = Ry Staay =21 0in [D(; ) + AR (g )] (8)

min [J(g, 5) = D(q, §) + AR(q, 5)] 2 o
{4€Q, ST} In the second phase (tree-map prediction phase), the true data-

where J(g, §) is the Lagrangian (two-sided) cost includindﬂap dependencies are taken into account, and the solution

both rate and distortion, that are connected through the LY-Phase 1,57, is modified to reflect the globally correct
Details are provided in Section lll.

grange multiplierh > 0, which is the quality-factor trading N1 5 uatatmap)- o
off distortion for rate A = O refers to the highest attainable Atthe end of p]}i}ase II, for each space-frequency quantization
quality and A\ = oo to the lowest attainable rate). NoteCOice, we identify a single point on the operatiodatD

that the entropy only or distortion only cost measure of [FU"Ve corresponding to a choicegf), and their best matched

become special cases of this more general Lagrangian cosfh order to find the best scalar quantizer, we search for the
measure corresponding to = oo and A = 0, respectively. ¢ € @ [in minimization (b)], which “lives” at absolute slopa
The implication of (2) is that if an appropriatt can be ©N the convex hull of the operation&-D curve. This defines
found for which the solution to (2) isq(, S*) and further the optimal combination of and .S for a fixed A. Finally, the
R(¢*, §*) = Ry, then ¢*, S*) is also the solution to (1) “correct” value of\, \* that matches the rate constraify is

) - 1 ? . . . . . .
The solution of (2) finds points that reside on the convefeund using a fast convex search in optimizatiei.
hull of the rgte—d|stort|on function, gnd sweepiagrom O tq LAssuming that R, (¢, §) Is a constant rather than zero simply
oo traces this convex hull. In practice, for most applicationsanges the optimal operating slopt for the same target bit budgé, .
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Which option is cheaper?

(@ (b)
Fig. 4. Zerotree pruning in Step 2) of Algorithm 1. (@) Zero out or prdie (b) SendC; and the best residue tree representations of nodes;in
Prune residue treé’; if that is the cheaper option: i'eEief’i w]2 < ZJEQ(J(“')J- + Jg}j). This pruning process starts from the leaf nodes and
proceeds toward the root nodes.

lll. THE SFQ GODING ALGORITHM obtained aftef: iterations, withS(® initialized to the full tree

T. We will drop the “data” suffix fromS to avoid cluttering.
A. Tree Pruning Algorithm: Phase | (For C; refers to the set of children nodes (direct offspring) of
Fixed Quantizerg and Fixed\) nodes:. J§; refers to the minimum or best (Lagrangian) cost

. J, ) f . . )
The proposed algorithm is designed to minimize an ur'%l§§00|ated with the residue tré of node,, with th|?k;:(?st
oing set to zero for all leaf nodes of the full treg™ is

weighted mean-squared error distortion measure, with dEe ; ~ . .
tortion energy measured directly in the transform domain {§€ (Lagrangian) cost of quantizing nogdegwith w; and1;
reduce computational complexity. In this tree-pruning algélenoting the unquantized and quantized values of the wavelet
rithm, we also approximate the encoder output rate by thaefficient at nod(%, respe&fc)lvely) at the:th iteration of the
theoretical first-order entropy, which can be approached vegorithm, with D" and R ;™ referring to the distortion and
closely by applying adaptive arithmetic coding. Our (phase 1ate components, respectivelgék) is the probability at the
tree-pruning operation assumes that the cost of sending the ftgeiteration, i.e., using the statistics from the $&¥), of the
map information is independent of the cost of sending the dajaantization bin associated with nogleNVe need to superscript
given the tree map, an approximation that will be accounted fgre tree rate (and hence the Lagrangian) cost with the iteration
and corrected later in phase II. Thus, there will be no menti@aunt %, because the tree changes topology (i.e., gets pruned)
of the tree-map rate in this phase of the algorithm, where the every iteration, and we assume a global entropy coding
goal will be to search for that spatial subti€,,, < 7"whose scheme. Finally, we assume that the number of levels in the
data cost is minimum in the rate-distortion sense. spatial tree is indexed by the scale paramétewith [ = 0

The lowpass band of coefficients at the coarsest scale canedérring to the coarsest (lowest frequency) scale.
(by definition) be included in residue trees, since residue treesAlgorithm 1:
refer only to descendants. The lowpass band quantizer operates step 0 (Initialization) Set S(¥ «— T set the iteration
independently of other quantizers. Therefore, we code this : £ 0.
band separately from other highpass bands. The quantizer countk « 0. For all leaf nodey' of 7; setJg; =0
applied to the lowpass band is selected so that the operating SO
slope on itsR-D curve matches the overall absolute slope k0,
A on the convex hull of the operation&-D curve for the
“highpass” coder; i.e., we invoke the necessary condition that

at optimality both coders operate at the same slope on theik Step 1 (Probability Update—Needed Due to the Use of
operational rate-distortion curves, else the situation can be Entropy Coding) Update the probability estimates for all
improved by stealing bits from one coder to the other until  podes ins®), i.e., updatq;Ek), Vie S®. where
equilibrium is established.

The following algorithm is used for a fixed value gfand no. of coeffs. quantized to bin nH% + 0_5>J
A to find the bestS < T'. Note that the iteration couri is (k) _ q
used as a superscript where needeEéT? refers to the binary L no. of coeffs. inS*)

zerotree map (at thith iteration of the algorlthm) indicating . Step 2 (Zerotree Pruning’ see F|g &t tree-depth count

Ji, <0, Vj € leaf nodes off".

the presencenlﬁk) = 0] or absencedgk) = 1] of a zerotree [ — maximum depth ofS*) — 1. For every node at
associated with nodeof the tree. Recall thatgk) = 0 implies current tree-depthi of ™), determine if it is cheaper
that all descendants af(i.e., elements ot/;) are set to zero to zero out or to keep its best residue tlégin a rate-

at the k iteration. S¢*) refers to the (current) best subtree  distortion sense. Zeroing out or pruni incurs a cost
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Fig. 5. The iterative Algorithm I to finding;_,, for a fixed value ofy and\. (a) S0 is initialized as the full tred. (b) S(*) is obtained by running Step
2) (zerotree pruning) using statistip&”). (c) At the kth iteration,$(*) is obtained by running Step 2) usip§"~". (d) The algorithm stops at th + 1)th
iteration whenS(*+1) = $(¥) e, no new nodes get pruned in ttle+ 1)th iteration, andS(*+") is the targeted optima$_, .

equal to the energy of residue tré& [left-hand side
of inequality (6)], while keepingl; incurs the cost of
sendingC; and the best residue tree representations of
nodes inC; [right-hand side. of inequality (6)]. That is

[ — maximum depth ofs®*) — 1
Vi € depthl of S,

If
k "
PIRTED VAR A
jel; JEC;
then
ngk) =0; J, = Z wj2
jel;
else
i =105 = > U + 08 (6)
JEC;
where

J* =D L AR® = [w; — ]2 + M= log, [pP]}.
(7)

e Step 3 (Loop Bottom-Up Through All Tree LevelSet

l—1l—1andgoto Step 2) if > 0.

Step 4 (Check for Convergence, Else Iteratd3ing the
values of {n{™} for all i € S® found by optimal
pruning, carve out the pruned subtréé*+1) for the
next iteration. If S*+1) £ §(*) (je., if some nodes got
pruned), then increment the iteration codnt— (k + 1)

and go back to Step 1) to update statistics and iterate
again. Else, declaré?,,. «— S*+1 as the converged
pruned spatial tree associated with scalar quantizer choice
g and rate-distortion slop@. This uniquely defines the
(locally) optimal zerotree magn;} for all nodesi € T

See Fig. 5 for a pictorial explanation of this algorithm.

Discussion:

1)

2)

Scalar frequency quantization (using stepgizef all the
highpass coefficients is applied in an iterative fashion. At
each iteration, a fixed treg(*) specifies the coefficients
to be uniformly quantized, and the pruning rule of Step
2) is invoked to decide whether coefficients are worthy
of being retained or if they should be killed. As the
decision of whether or not to kill the descendants

of node j cannot be made without knowing the best
representation (and associated best cost) for residue tree
Uj, the pruning operation must proceed from the bottom
of the tree (leaves) to the top (root).

Note that in Step 2, we query whether or not it is
worthwhile to send any of the descendants of nede
This is done by comparing the cost of zeroing ailt
descendants of nodglassuming that zerotree quantized
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3)

4)

5)
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data incurs zero rate cost) to the best alternative asso-
ciated with not choosing to do so. This latter cost is
that of sending the children nodesiofogether with the
best cost of the residue trees associated with each of the
children nodes. Since processing is done in a bottom-up
fashion, these best residue tree costs are known at the
time. The cheaper of these costs is used to dictate the
zerotree decision to be made at nadand is saved for
future reference involving decisions to be made for the
ancestors of.
As a result of the pruning operation of Step 2, some
of the spatial tree nodes are discarded. This affects the
histogram of the surviving nodes, which is recalculated
in Step 1 (initially the histogram associated with the full
tree is used) whenever any new node gets pruned out.
The above algorithm is guaranteed to converge to a local
optimal choice forS7 , .
Proof. See Appendix.
A plausible explanation for the above proposition is the
following: Recall that the motivation for our iterative
pruning algorithm is that as the trees get pruned, the
probability density functions (pdf) of the residue trees
change dynamically. So, at each iteration we update to
reflect the “correct” pdf’s till the algorithm converges.
The above Proposition shows that the gain in terms of
Lagrangian cost comes from better representation of the

of inequality (6)], or

>

w? < ST IV g
JjeU; JeC;
The decision to zerotree quantize the Egtis usually
becausd/; consists mainly of insignificant coefficients
(with respect to the quantizer stepsige Then, in the
(k + D)th iteration, due to the trimming operation, the
probability of “small” coefficients becomes smaller, i.e.,
the cost of sending residue trég becomes larger at the
(k+1)th iteration,s***) goes up [sinceD{* " = DV
while R{**V > R in (7)), thus reinforcing the
wisdom in killing U; at the kth iteration. That is, if
inequality (6) holds at thé&th iteration, then with high
probability it is also true at thék 4 1)th iteration.
Thus, our algorithm’s philosophy of “once pruned it
is pruned forever,” which leads to a fast solution, is
likely to be very close to the globally optimal point
as well. Of course, for residue trees that only have a
few large coefficients, zerotree quantization in an early
iteration might affect the overall optimality. However,
we expect that the probability of such subtrees to be
relatively small for natural images. So, our algorithm is
efficient globally.

pdf's of the residue trees in the iterations. In the aboJ@ Predicting the Tree: Phase II

tree-pruning algorithm, the number of nonpruned nodesRecall that our coding data structure is a combination of a
is monotonically decreasing before it converges, so tlzerotree map indicating which nodes of the spatial tree have
above iterative algorithm converges very fast! In ouheir descendants set to zero, and the quantized data stream
simulations, the above algorithm converges in less thanrresponding to the survivor nodes. The side information

five iterations in all our experiments.

needed to send the zerotree map is obviously a key issue in

Proposition 1:The above tree pruning algorithm con-our design. In the process of formulating the optimal pruned

verges to a local minimum.

spatial-tree representation, as described in Section IlI-A, we

In addition to being locally optimal, our algorithm cardid not consider the cost needed to send the tree description

make claims to having global merits as well. While thén:}- This is tantamount to assuming that the tree map is free,
following discussion is not intended to be a rigorou8" more generally that the tree-map cost is independent of the
justification, it serves to provide a relative argumerﬁhOice of tree (i.e., all trees cost the same regardless of choice

from a viewpoint of image coding. After the hierarchicaPf tree). While this is certainly feasible, it is not necessarily an

wavelet transform, the absolute values of most of t
highpass coefficients are small, and they are deemed"{B
be quantized to zero. The pdf of the wavelet coefficiens
is approximately symmetric, and sharply peaked at zero
[see Fig. 9(c)]. Sending those zero-quantized coefficie
is not cost effective. Zerotree quantization efficientl¥h
identifies those zerotree nodes. A larger portion of tqfa

}gﬁcient coding strategy. In this section, we describe a novel
y to improve the coding efficiency by using a prediction
trategy for the treenap bits of the nodes of a given band
ased on the (decodedlata information of the associated
arent band. We will see that this leads to a way for the
@coder todeducemuch of the tree-map information from

e data field (sent top-down from lower to higher frequency
nds), leaving the encoder to send zerotree bits only for nodes

available bit budget is allocated for sending the 'arg?{aving unpredictable map information.

coefficients that represent more energy. So, the resultp e g the tight coupling between data and map information
ing pdf after zerotree quantization is considerably less our proposed scheme, the “best’ tree representation, as
peaked than the original one [see Fig. 9(d)]. Suppogsund through Algorithm | (assuming that the map bits are
the algorithm decided to zerotree quantize residue trggcoupled from the data bits), needs to be updated to correct
U; at thekth iteration, i.e., deemed the descendants @r this bias, and zerotree decisions made at the tree nodes
i to be not worth sending at thth iteration. This is need to be reexamined to check for possible reversals in
because the cost of pruniig, which is identical to the decision due to the removal of this bias. In short, the maxim
energy ofU; [left-hand side of inequality (6)], is lessthat “zerotree maps are not all equally costly” needs to
than or equal to the cost of sending it [right-hand sidee quantitatively reflected in modifying the spatially pruned
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Fig. 6. Predicting the tree. (a) Basic idea of predicting the tree. The energy of a node is used to predict the significance/insignificance of titseresidue

(b) The optimal design of thresholfl,. The variances of the parent nodes of each band are ordered in decreasing magnitude, and the zerotree map bits
corresponding to these nodes are listed in the same ord€f}, should be at least as small as the variance of the first node from the top of the list for
which n; = 0. The bestT}, is designed in the rate-distortion sense to reflect the global gataap optimality.

subtree obtained from Algorithm | to a tree description that iosed-loop operation, all variances should be calculated based
the best in the global (dat® map) sense. In this subsectionpn thequantizedwavelet coefficients. We assume zero values
we describe how to accomplish this within the frameworfor zerotree quantized coefficients.
of predictive spatial-quantization while maintaining overall Then, the variances of the parent nodes of each band are
rate-distortion optimality. The basic idea is to predict therdered in decreasing magnitude, and the zerotree map bits
significance/insignificance of a residue tree from the energgrresponding to these nodes, are listed in the same order
of its parent [see Fig. 6(a)]. [see Fig. 6(b)]. Two threshold$;, and 1; are sent per band
The predictability of subtrees depends on two thresholds (negligible) overhead information to assist the encotgling.
output from the spatial quantizer. This is a generalizatiddodes whose parents have variances alfjyare assumed to
of the prediction scheme of Lewis and Knowles [1] fobe significant (i.e.n; is assumed to be 1), thus requiring no
both efficiently encoding the tree and modifying the tree tivee information. Similarly, nodes with parents having energy
optimally reflect the tree encoding. The Lewis and Knowldselow 7; are assumed to be insignificant (i.e;, is assumed
technique is based on the observation that the variance dfoebe 0), and they too require no side information. Tree-map
parent block centered around nodesually provides a good information is sent only for those nodes whose parents have
prediction of the energy of coefficients in the residue tregevariance betweef; and7;. The algorithm is motivated by
U;. Their algorithm eliminates tree information by completelyhe potential for the Lewis and Knowles predictor to be fairly
relying on this prediction. In order to improve performancegccurate for nodes having very high or very low variance,
we incorporate this prediction in our algorithm by using ibut to perform quite poorly for nodes with variance near the
to represent the overall spatial tree information in a ratédreshold.
distortion optimal way, rather than blindly relying on it to This naturally leads to the question of optimization of the
completely avoid sending tree-map information, which is, iparameterd; and7; within the pruned spatial-tree quantiza-
general, suboptimal. tion framework. We now address their optimal design. Clearly,
First, the variance of each (parent) nads calculated as the 73, should be at least as small as the variance of the highest
energy of a 3x 3 block centered at the corresponding wavelé@tsignificant node (or the first node from the top of the list for
coefficient of the nodé.Note also that, for decodability or which n; = 0), since settingl;, any higher would require

2This “lowpass” filtering is needed to more accurately reflect the level of 3T}, andT; are actually sent indirectly by sending the coordinates of two
activity at the node. parent nodes, which have variancBs and T, respectively.
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sending redundant tree information for residue tree, whichWe summarize the design @f, as follows.
could be inferred via the threshold. Likewis& should be  Algorithm 2:
at least as large as the variance of the smallest significant Step 1 Order the variance of each parent node in decreas-
node (or the first node from the bottom of the list for which ing magnitude, and list the zerotree map bits associated
n; = 1). with these nodes in the same order.

Now let us consider iff;, should be made smaller in an « Step 2 Identify all the zero nodesn._, in the list, and
optimal scenario. Let;, denote the index of the node with  record b, the difference in list position entry between
variance equal td}, (n., must be 0), and suppose the number  the hth and the(h + 1)th zero nodes.

of 0 nodes down ta ., in the variance-ordered list fs Note, » Step 3 Seth = 1.

if we shall reducel}, at all, then,h > 1, since,7}, should » Step 4 Check if inequality (9) is satisfied for this value
made at least as small as the variance of the next ngdg of h. If it is not, increment, if possible, and go to Step
with n., . = 0. Let b, be the position difference between  4). Else, reverse the tree-map bits from 0 to 1 for all
n., andn.,, ., then, this change @, saves u$_l_, b; bits, i from 4 =1 to h, and go to Step 2).

equal to the number of positions we md¥g down in the list T3, will point to the first zero node on the final modified
(we assume that these binary map symbols have an entropyisif It is obvious that Algorithm Il optimizes the choice of
one bit per symbol). Thus, changing, from 0 to 1 for alli 1}, using a global data- map rate-distortion perspective. A
from ¢ = 1 to A decreases the map rate by similar algorithm is used to optimize the choice ©of. As

a result of the tree prediction algorithm, the optimal pruned
subtreeSy,,, output by Algorithm | (based on data only) is

h
ARpmap,n = 2 bi. ®  modified 105547 map-

Of course, we know that reversing the map bits forthe C. Joint Optimization of Space-Frequency Quantizers
nodes from O to 1 increases tHatacost (in the rate-distortion he above fast zerotree pruning algorithm tackles the in-
or La'grangian sgnse) as dgtermined in the prunipg phaseng most optimization (a) of (3), i.e., findS*(q) for each
Algorithm 1./So in performmg a complete ana_ly5|s of datg ¢ quantizeg (and A, which is implied). As stated earlier,
+ m“ap, we re?xamlne and, where _g!obally profitable, FEVErsst a fixed quality factor}, the optimal scalar quantizer is
the “data-only”-based zerotree decisions output by Algorithiia qne with stepsize* that minimizes the Lagrangian cost

I. The rule for reversing the decisions for the nodes is J[g, S*(q)], i.e., lives at absolute slopk on the composite

clear: weigh the “data cost loss” versus the “map cost gaiQisiortion-rate curve. That is. from (3), we have

associated with the reversals and reverse only if the latter

outweighs the former. As we are examining rate-distortion q* = arg min {J[g, S*(¢)]}
tradeoffs, we need to use Lagrangian costs in this comparison. ‘IE_Q . .
It is clear that in doing the tree-pruning of Algorithm I, we = ate g {Dla, 5*(9)] + AR[g, S™(9)]}-

can store (in addition to the tree map informatifm; }) the

winning and losing Lagrangian costs corresponding to ea¥fhile faster ways of reducing the search time for the optimal
nodei, where the winning cost corresponds to that associatedXist, in this work, we exhaustively search for all choices
with the optimal binary decision; (i.e., J;;,) and the losing in @ finite admissible list. Finally, the optimal slope is

cost corresponds to that associated with the losing decisf@4nd using the convex search bisection algorithm as described
7; (i.e., the larger side of inequality (6). Denote By/y,sa ; in [23]. By the convexity of the pruned-tree rate-distortion
the magnitude of this Lagrangian cost difference for nadefunction [23], starting from two extreme points in the rate-
(note the inclusion of the data subscript for emphasis); i.&listortion curve, the bisection algorithm successively shrinks
AJdata, i for every parent nodé € 7 is the absolute value Fhe interval in which the'optlmal operating point I|e§ untlll
of the difference between the two sides of the inequality (g)cor?verges. The convexity of the pruned-tree rat_e-dlstomon
after convergence of Algorithm I. Then, the rule for reversinP-'”C'“On guarantees the convergence of the optimal space-
the n., decisions from 0 to 1 for all nodeg from i = 1 to Teduency quantizer.

h is clearly
; ; V. SIMULATION RESULTS
If AARpmap, = A Z b; > Z AJyata. 5 - (9) Experiments are performed on standard 51512 grey-
’ Py im1 ’ scale Lena, Barbara, and Goldhill images to test the proposed
Then reverse phase | decisiom., — 1. (10) SFQ algorithm at several bit rates. Although our analysis of

scalar quantizer performance assumed the use of orthogonal
If inequality (9) is not true, no decision shall be made untiiavelet filters, simulations showed that little is lost in practice
we try to movel} to the next O node. In this casé, is from using “nearly” orthogonal wavelet filters that have been
incremented until inequality (9)s satisfied for some largér, reported in the literature to produce better perceptual results.
whereuponn.., is reversed to 1 for alf from ¢ = 1 to h. We use the 7-9 biorthogonal set of linear phase filters of [18] in
Thenh is reset to 1 and the whole operation repeated until tlafl our experiments. We use a 4-scale wavelet decomposition
entire list has been exhausted. with the coarsest lowpass band having dimensionx332.
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(b)

(© (d)

Fig. 7. Original and decoded 512 512 Goldhill images. (a) Original image. (b) Bit rate 1.0 b/pixel, PSNR= 36.70. (c) Bit rate= 0.5 b/pixel,
PSNR = 33.37 dB. (d) Bit rate= 0.25 b/pixel, PSNR= 30.71 dB.

This lowest band is coded separately from the remainitg-noise ratios (PSNR’s), defined a8 log;, [255%/msd at
bands, and the tree node symbols are also treated separattfferent bit rates for all three images, are tabulated in Table I.
For decodability, bands are scanned from coarse to fine scalé)le compare the performance of our SFQ algorithm in
so that no child node is output before its parent node. TIkég. 8 with some of the high-performance image compression
scalar quantization stepsizetakes values from the sdly : algorithms by Shapiro [2], Said and Pearlman [27], and Joshi,
q=754+01"k k=1,2, ---,245}. An adaptive arithmetic Crump, and Fisher [28]. Our simulations show that the SFQ
coding [25], [26] is used to entropy code the quantized wavelgigorithm is competitive with the best coders in the literature.
coefficients. All reported bit rates, which include both th&or example, our SFQ-based coder outperforms 0.2 dB and
data rate and the map rate, are calculated from the “re@l7 dB better in PSNR over the coder in [27] for Lena and
coded bitstreams. About 10% of the total bit rate is speBarbara, respectively.

in coding the zerotree map. The original Goldhill image is To illustrate how zerotree pruning in our proposed SFQ
shown in Fig. 7(a), while the decoded Goldhill images at b#lgorithm changes the statistics of the set of wavelet coef-
rates of 1.0 b/pixel, 0.5 b/pixel and 0.25 b/pixel, are showfitients to be scalar quantized, we compare the probability
in Fig. 7(b)—(d), respectively. The corresponding peak signalistributions of the highpass wavelet coefficients of the Lena



688 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 5, MAY 1997

TABLE |
CoDING RESULTS OF THESFQ ALGORITHM AT VARIOUS BIT RATES FOR ! ! ! ! T i T
THE STANDARD 512 X 512 LENA, BARBARA, AND GOLDHILL IMAGES :

Lena || Barbara || Goldhill
Rate || PSNR PSNR PSNR
(b/p) || (dB) (dB) (dB)
0.20 33.32 27.23 29.86
0.25 34.33 28.29 30.71
0.30 35.07 29.21 31.34
0.40 36.43 30.77 32.45
0.50 37.36 32.15 33.37
0.60 38.19 33.21 34.08
0.70 38.85 34.40 34.76
0.80 39.46 35.36 35.42
0.90 40.04 36.21 36.05
1.00 40.52 37.03 36.70

Solid line: SFQ

32 Dashed linte: Said -and Peariman -

+++: Joshi, Crump and Fisher

30p - : *-**--Shapiro A - =

| 1 L 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
bitrate (b/p)

image with and without zerotree pruning. The comparison
results are based on the output bit rate of 1.0 b/pixel. Fig. 9(a) @)
and (b) display the scalar and space-frequency quantized four?:8
level wavelet decompositions of the Lena image, respectively.
A scalar quantization stepsize gf = 7.8 is applied to all
highpass coefficients in Fig. 9(a) and 9(b). White regions inss
Fig. 9(b) represent pruned nodes by zerotree quantization. His-
tograms (after scalar quantization) of the full set of highpass
coefficients in Fig. 9(a) and the pruned set in Fig. 9(b) are®[
plotted in Fig. 9(c) and 9(d). The probability of zero indexg
decreases from 0.7181 in the full set of highpass coefficientssz|
to 0.3755 in the pruned set, so zerotree pruning effectiveﬁl
flattens the probability density of the pruned set of highpass
wavelet coefficients. %0

Another simulation explores the justification of using a R Solid line: SFQ
single scalar quantization stepsize for all highpass bands ofs| ./ " : o Dashed lirie: Said and Peariman - - 4
our decomposition. Earlier subband and wavelet coders havey”.” ++ - Shapiro
confirmed the importance of optimizing scalar quantization * )
stepsizes to match the distribution of coefficients in each®2 ~ o5 04 05 o6 o7 08 oo 1
band. However, we observe that the distribution of coefficients bitrate (b/p)
in different bands are not nearly so different after zerotree (b)

pruning than before pruning. In particular, while the percengig. 8. Comparisons of SFQ and other high-performance coders. (a) Com-
age of very small coefficients (i.e., those quantized to O parisons for the Lena and Goldhill images. (b) Comparisons for the Barbara

—1, 1) in each band differs significantly before pruning, i{"29¢:

is very similar in most bands after pruning. Consequently,

we conjecture that the slope of the operational rate-distorti( H', HH?,, and HH? in Fig. 1). Though the slopes of
functions for uniform scalar quantizers operating with the santigese three curves do not match as closely as for the first set,
stepsize in different bands will be approximately equal afténey are close enough to suggest that overall performance will
zerotree pruning. Fig. 10 shows two sets of plots testing thist suffer significant degradation by using a common stepsize
conjecture for two collections of bands. In all cases, we fior all bands.

the pruned tree produced by the SFQ algorithm at 1 b/pixelThe SFQ algorithm developed in this paper is based on
[see Fig. 9(b)], and we show the operational rate-distortioninimizing a squared-error objective function. This formu-
curves of uniform scalar quantizers applied to the coefficiertgion can be naturally adapted to incorporate other distortion
remaining in the tree. The marks indicated on each curve shaveasures modeling perceptual sensitivity to error, though such
the operating points of the quantizers with the SFQ coding \&riations are beyond the scope of the current work. For
1 b/pixel. The first set of three curves in Fig. 10(a) showexample, the rate-distortion relations considered throughout
the rate distortion (RD) curves for the three highest frequentlyis paper could use a distortion measure incorporating both
bands LH', HL', and HH'! in Fig. 1) for the Lena image. frequency and spatial weightings in characterizing visual sensi-
The three slopes shown for this first set match very closelyvity to errors; e.g., errors in higher frequency bands could be
The second set of curves in Fig. 10(b) shows the RD curveighted less than those in lower bands, and errors in textured
for three different frequency bands at the same orientatioegions could be weighted less than those in smoothly varying
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Fig. 9. Histograms of the quantized Lena images before and after zerotree pruning fé18 targeted at 1.0 b/pixel. (a) Scalar quantized four-level wavelet
decomposition of the Lena image. A scalar quantization step sizge of 7.8 is applied to all highpass coefficients. All highpass quantized coefficients

are shifted by 128 for display. (b) The space-frequency quantized four-level wavelet decomposition of the Lena image (white regions représent prune
nodes). (c) Histogram of the full set of highpass bands in (a). The probability of zero index is 0.7181. (d) Histogram of the pruned set of highpass
bands after SFQ of (b). The probability of zero index is 0.3755.

regions. Although the current algorithm is not optimized foBFQ picture quality is much too pronounced to be accounted
subjective quality, we felt that some subjective testing dbr by the different types of artifacts. The differences are
the SFQ-coded images could provide insight into how thraore likely attributable to the approximately 2.5 dB higher
higher PSNR measurements of the SFQ algorithm relate R&NR of the SFQ results across the range of bit rates. A very
noticeable improvements in picture quality, and could hint a@ramatic example of the perceptual differences of SFQ and
the important issues in designing an SFQ algorithm optimizd®EG images coded at 0.25 b/pixel is shown in Fig. 11.
for subjective quality. Thus, we report on several simple It would be tempting to conclude that SFQ and JPEG images
subjective comparisons of the SFQ results with those of thaving similar PSNR measurements would have comparable
Shapiro’s algorithm and the Joint Photographers Expert Gropjgture quality. However, in comparisons of SFQ and JPEG
(JPEG) standard at various bit rates. images coded to have identical PSNR measurements, the SFQ-
In direct comparison of SFQ- and JPEG-coded images, tbeded images appear to have lower overall picture quality
SFQ-coded images show dramatically higher picture quality @t almost all PSNR levels (at very low PSNR levels, it is
all bit rates. While it has been noted that wavelet-based codidifficult to make meaningful comparisons betwesxtremely
algorithms eliminate annoying blocking artifacts, the superitrocky JPEG images arektremelyblurry SFQ images). Thus,
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as an example, our tests show that the SFQ image coded at 0,5
b/pixel is clearly superior in picture quality to the JPEG image
coded at 0.5 b/pixel, but inferior to the JPEG image coded at'[
0.95 b/pixel. In a crude attempt to identify coded images with 12f
similar subjective quality, we compared SFQ coded images at_ |
a fixed bit rate to JPEG images, allowing the JPEG bit rate to
increase until the picture quality seemed roughly comparable!of
The results are plotted in Fig. 12. wool
In our final subjective tests, we compared the SFQ ant
Shapiro coding results at various bit rates, and we found little %]
or no noticeable differences in overall picture quality. Actually, -
the differences between the two algorithms appeared mostly to |
reflect differences in spatial rate allocation across the picture. |
Since the control of this rate allocation does not consider sp
subjective picture quality in either algorithm, the subjective , ‘ ; ‘
difference between the two algorithms appears quite random® %2 ¢4 06 o8 ' 4 12 14 16 18
(i.e., each algorithm looks better in some places and worse in @
others). There appeared to be little subjective evidence of the
approximately 1 dB higher PSNR of the SFQ results. Furtherzs
interpretation of the subjective test results are found in the
discussions in the following section.

20}

V. DiscussiON AND CONCLUSIONS

The complexity of the SFQ algorithm lies mainly in them1
iterative zerotree pruning stage of the encoder, which c&n
be substantially reduced with fast heuristics based on models,|
rather than actuakR—D data, which is expensive to compute.
A good complexity measure is the running time on a specific xu
machine. On a Sun SPARC 5, it takes about 20 s to run thes|
SFQ algorithm for a fixeg and A pair. On the same machine,
Said and Pearlman’s coder [27] takes about 4 s to run on
encoding. Although our SFQ encoder is slower than that of o;——5 : P T Ry
Said and Pearlman’s, the decoder is much faster because there rate (b/p)
are only two quantization modes used in the SFQ algorithm (b)
with the classification being sent as side-information. Olﬁg. 10. Operational rate-distortion curves generated by quantizing a fixed
coder is suitable for applications such as image librarigsuned tree structure (bsed on the one obtained for Lena at 1.0 b/pixel) with

CD-ROM'’s. and centrally stored databases where aSymmefﬁféerent scalar quantization step sizes. (a) Operational rate-distortion curves
' of the three bands in the lowest scaleH{', HL! and HH! in Fig. 1. (b)

COd'ng complexny IS prefermd' . . Operational rate-distortion curves of the diagonal bands of three different
The SFQ algorithm developed in this paper tests the hseales HH', HH?, and H H? in Fig. 1). The slopes at the operation point

pothesis that high performance coding depends on exploiti(ﬂ_rg: 7.8 are approximately _eqqal for all pands. This justifies the choice of a
. . . sifigle uniform scalar quantization step size for all bands.
both frequency and spatial compaction of energy in a space-
frequency transform. The two simple quantization modes used
in the SFQ algorithm put a limit its overall performance. Thiperformance improvements in other zerotree algorithms have
can be improved by introducing sophisticated schemes sumen realized by expanding the classification to consider sets
as trellis-coded quantization and subband classification [12], coefficients other than purely tree-structured sets [27].
[29] to exploit “packing gain” in the scalar quantizer, a type We list these possible improvements of the SFQ algorithm
of gain quite separate and above anything considered in ttashighlight the fact that the SFQ algorithm makes no claim to
paper. Zerotree quantization can be viewed as providingestablishing any limits to performance of image coding algo-
mechanism for spatial classification of wavelet coefficientithms, even within the general paradigm of linear transform
into two classes: i) “zerotree” pruned coefficients and ioding within which it is defined. In fact, it is built from
nonpruned coefficients. The tree-structure constraint of thelatively straightforward components, suggesting extensions
SFQ classification permits us to efficiently implement RDthat would almost certainly improve performance. Though
optimization, but produces suboptimal classification for codingpmplexity is one reason for not considering such extensions,
purposes. l.e., if our classification procedure searched oveowr primary reason for not doing so in this paper is to provide
richer collection of possible sets of coefficients (e.g., includirg clear and direct test of our hypothesis that the optimal
some nontree-structured sets), algorithm complexity would béocation of bit rate among space- and frequency-compacted
increased, but improved results could be realized. In fasignal energy is one of the most important characteristics of
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Fig. 11. SFQ (left) and JPEG (right) decoded Lena images at 0.25 b/pixel.

to it. Insights into the importance of these characteristics
are offered by comparing the SFQ to three other coding
approaches from the literature. The algorithms of [17] use
- subband transforms with very sophisticated scalar and vector
guantizers optimized for the statistics of each band. However,
these algorithms lack a mechanism for efficiently identifying
locations of compacted energy in the highpass bands (i.e.,
1 spatial quantization), thus limiting coding performance (the
| best results obtained from these algorithms are 1.1 dB below
SFQ for Lena). We conclude that the SFQ achieves superior
coding performance with a much less sophisticated scalar
quantizer because its use of zerotree quantization allows it
1 to better exploit the spatial compaction of high-frequency
energy. The algorithm of [2] uses the wavelet transform as
well as zerotree quantization in an embedded coding algorithm.
Fig. 12. Comparison of subjective qualities between SFQ and JPEG coc&'_gwe\_/er’ zerotree quantlza}thn 1S appll.ed m, [2] to minimize
images. Arrows indicate the RD points at which both coders achieve cofiistortion rather than to optimize rate-distortion performance,
parable image quality. and we believe this difference accounts for most of the PSNR

advantage of the SFQ algorithm seen in Fig. 8. We should

note that the embedded structure of the algorithm of [2]
high-performance image coding algorithms. Without zerotreakes direct comparison of these two algorithms difficult.
guantization, the SFQ algorithm reduces to a most trivifdinally, it is interesting to compare the SFQ algorithm with
wavelet coder; i.e., a wavelet transform followed by scaldine rate-distortion optimized version of JPEG proposed in
guantizer with a common stepsize applied to all highpak30]. These two algorithms are built around very similar rate-
bands. By providing this trivial coder with a limited anddistortion optimization frameworks, with the algorithms of
simple spatial quantization (zeroing out tree-structure sets[80] using block discrete cosine transforms (DCT'’s) instead of
coefficients), and optimally allocating bitrate between spatitiie wavelet transform, and using runlengths of zeros instead of
guantization and scalar guantization, we are able to achiezgrotrees. Thek—D optimization provides a large gain over
among the best coding results in today’s literature. standard JPEG (0.7 dB at 1 b/pixel for Lena), but the final

We attribute the excellent performance of our coder ®8SNR results (e.g., 39.6 dB at 1 b/pixel for Lena) remain

two important characteristics. First, the SFQ is built arourmbout 0.9 dB below SFQ for the Lena image at a bit rate of
a linear transform that allows signal energy to be coni- b/pixel. We interpret these results as reflecting the fact that
pacted both in frequency and space, and quantization mottes block DCT is not as effective as the wavelet transform at
designed to match this characterization. Second, the SEQ@mpacting high-frequency energy around edges (i.e., blocks
provides a framework for optimizing (in the rate-distortiortontaining edges tend to spread high-frequency energy among
sense) the application of the quantization modes availalmeny coefficients.)

31 1 1 1 i I | X L
0.6 0.7 0.8 0.9 1 11
bitrate (b/p)
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To complete our conclusions, we offer some final commentsst of zerotree quantizing the SE*{\S(’““), and (b) follows
on the subjective quality of SFQ coded images. Althoudihom (11).
the SFQ offers noticeably improved picture quality compared Similarly, we have
with the JPEG algorithm at 1 b/pixel, reflecting a difference
of nearly 3 dB in PSNR, comparisons with the algorithm J[S(k)]@ Z I 4 Z w}

of [2] showed no noticeable improvement in picture quality, i Sk FET\S)
despite being 1 dB higher in PSNR. This result is a direct ) (k) (%) 9
consequence of our rate-distortion optimization procedure. The - Z S+ Z g7+ Z wij

. . . . . ; k =9 k q k
key difference between these two algorithms lies in how bit ie Sty JEASHEFL) FET\SH)

rate is distributed spatially across the image. In [2], this spatial (13)
allocation of bit rate is dictated by when coefficients fall beloyy o (a) above follows from the definition fs®*)] and (b)
a threshold. In the SFQ algorithm, spatial allocation of bit ratg) sve follows from (11).

is governed by the rule that each bit is applied to the IocationWe therefore have

where it gives the biggest reduction in distortion. While the

second strategy must (and does) produce higher PSNR, fs®)] - J[s*+] = %~ [ — g+

may lead to bit allocations that do not give higher picture i€ S(k+1)

quality. For example, bits invested in highly textured areas 1 Z [J(k) — w?] (14)
often give greater reduction in distortion than bits invested in J J

N : ; . JEASHFD)
smooth areas. However, it is widely recognized that distortion *) (1)
in smooth areas can yield much lower picture quality than > Y LY =5Y (15)
the equivalent distortion in textured areas. We interpret the ieSs(k+D)
disappointing subjective quality of the SFQ coded images =\ Z R — R+ (16)
as reflecting a mismatch between the squared-error distortion e St )
measure that governs our spatial allocation of rate, and the +o0
subjective distortion as perceived by the viewer. We conclude :)\|5(k+1)| Z
that optimum spatial allocation of available bit rate is an bin— —oo
important feature of high-performance image coding, but we (kD) 1 p® (bin)
emphasize that the optimization criterion should reflect as —-p (bin) log, [m}

closely as possible the true coding objective—typically, sub-
jective picture quality. Modification of the SFQ algorithm to
incorporate such criterion remains a topic for future research. 20 (18)

where (14) follows from (12) and (13). (15) follows because

17)

APPENDIX _ the second summation of (14) is greater than or equal to
PROOF OF PROPOSITION 1: zero [else AS*+1) would not have been pruned out in
ALGORITHM | CONVERGES TO ALOCAL OPTIMUM the k + 1th iteration, by hypothesis]. (16) follows, since

We will show that JI[S*+D] < J[S®)], thereby es- J; = D; + AR;, with DI = DFY = (w, — ;)2 (17)
tablishing the proposition, since the number of iterations é&xpresses the rates for thi¢h and (k + 1)th iterations in
guaranteed to be finite, given that the tree is always beitgyms of their first-order entropies induced by the distributions
pruned. {p™) (bin)} and {p*+1) (bin)}, respectively [note thakin is

SinceS*+1) is a pruned version of %), let us refer to the the histogram bin number afd*+1)| refers to the cardinality
set of tree coefficients pruned out in tiie + 1)th iteration or number of elements i§*+1)]. (18) follows from the fact
as AS*+D e, that the summation in (17) is the Kullback—Leibler distance

ASUHD Z gy glk+D or relative entropy between the Qistributioﬁs(’“)(bin)} and
{p*+1(bin)}, which is nonnegative.
or
Sk — glk+1) j A GR+L) (11) REFERENCES
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