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Space-Frequency Quantization
for Wavelet Image Coding

Zixiang Xiong, Member, IEEE,Kannan Ramchandran,Member, IEEE,and Michael T. Orchard,Member, IEEE

Abstract—Recently, a new class of image coding algorithms
coupling standard scalar quantization of frequency coefficients
with tree-structured quantization (related to spatial structures)
has attracted wide attention because its good performance ap-
pears to confirm the promised efficiencies of hierarchical rep-
resentation [1], [2]. This paper addresses the problem of how
spatial quantization modes and standard scalar quantization
can be applied in a jointly optimal fashion in an image coder.
We consider zerotree quantization(zeroing out tree-structured
sets of wavelet coefficients) and the simplest form of scalar
quantization (a single common uniform scalar quantizer applied
to all nonzeroed coefficients), and we formalize the problem of
optimizing their joint application. We develop an image coding
algorithm for solving the resulting optimization problem. Despite
the basic form of the two quantizers considered, the resulting
algorithm demonstrates coding performance that is competitive,
often outperforming the very best coding algorithms in the
literature.

I. INTRODUCTION

A LL IMAGE coding algorithms can be viewed as being
based on some model for the class of natural images,

and can be seen to exploit dependencies characterized by
that model. Typical transform and subband coding algorithms
model images as a composition of statistically distinct nar-
rowband processes. Basic vector quantization (VQ) algorithms
are based on low-dimensional, but very general, models for
small blocks of image data, though they provide no model for
dependencies between blocks [3]. A variety of more complex
coding algorithms have been proposed that are based on
models of block interdependence (e.g., finite-state VQ [4],
lapped-orthogonal transform coding [5]), composite source
models (e.g., classified VQ [6], [7]), image segmentation
models, etc. The performance of each of these approaches
has been optimized through careful consideration of quan-
tization strategy (e.g., optimal bit-allocation among bands
[8], vector quantizers [9], [10], optimal nonuniform scalar
quantizers [11], trellis-coded quantization [12], etc.). It has
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been a general trend that more complex models are needed
to achieve improved coding efficiency. One could easily draw
the conclusion that the promising directions in image coding
involve higher modeling complexity designed to better capture
the complex character of natural images.

This paper takes a step in the opposite direction, proposing a
very efficient image coding algorithm based on a remarkably
simple image model. Drawing on the experience of several
recent wavelet-based coding algorithms [1], [2], we suggest
that natural images are well characterized as a linear combi-
nation of energy concentrated in both frequency and space; i.e.,
most of the energy of typical images is concentrated in low-
frequency information, and of the remaining high-frequency
components of the image, most energy is spatially concentrated
around edges (we view texture as a dense clustering of
edges). Efficient transform coding of such a source model
calls for a transform that compacts energy into few low-
frequency coefficients, while also representing high-frequency
energy in a few spatially clustered high-frequency coefficients.
The wavelet transform provides exactly these desired features
[13]–[15].

Since the introduction of wavelets as a signal processing
tool in the late 1980’s, considerable attention has focused on
the application of wavelets to image compression [1], [2], [8],
[16]–[18]. The hierarchical signal representation given by the
dyadic wavelet transform provides a convenient framework
both for exploiting the specific types of statistical dependencies
found in images, and for designing quantization strategies
matched to characteristics of the human visual system. Indeed,
before the introduction of wavelets, a wide variety of closely
related coding frameworks had been extensively studied in the
image coding community, including pyramidal coding [19],
transform coding [20], and subband coding [21]. Viewed in
the context of this prior work, initial efforts in wavelet coding
research concentrated on the promise of more effective com-
paction of energy into a small number of low-frequency coeffi-
cients. Following the design methodology of earlier transform
and subband coding algorithms, initial “wavelet-based” coding
algorithms [8], [16]–[18] were designed to exploit the energy
compaction properties of the wavelet transform by applying
quantizers (either scalar or vector) optimized for the statistics
of each frequency band of wavelet coefficients. Such algo-
rithms have demonstrated modest improvements in coding
efficiency over standard transform-based algorithms.

Contrasting with those early coders, this paper proposes to
exploit both the frequency and spatial compaction property
of the wavelet transform through the use of two very simple
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quantization modes. To exploit the spatial compaction proper-
ties of wavelets, we define a symbol that indicates that a spatial
region of high-frequency coefficients has value zero. We refer
to the application of this symbol as zerotree quantization,
because it will involve setting to zero a tree-structured set
of wavelet coefficients. In the next section, we explain how
a spatial region in the image is related to a tree-structured
set of coefficients in the hierarchy of wavelet coefficients.
Zerotree quantization can be viewed as a mechanism for
pointing to the locations where high-frequency coefficients
are clustered. Thus, this quantization mode directly exploits
the spatial clustering of high-frequency coefficients predicted
by our image model.

For coefficients that are not set to zero by zerotree quantiza-
tion, we propose to apply a common uniform scalar quantizer,
independent of the coefficient’s frequency band. The resulting
scalar indices are coded with an entropy coder, with proba-
bilities adapted to the statistics of each band. We select this
quantization scheme for its simplicity. In addition, though we
recognize that improved performance can be achieved by more
complicated quantization schemes (e.g., vector quantization,
scalar quantizers optimized for each band, optimized nonuni-
form scalar quantizers, entropy-constrained scalar quantization
[22], etc.), we conjecture that these performance gains will
be limited when coupled with zerotree quantization. When
zerotree quantization is applied most efficiently, the remaining
coefficients will be characterized by distributions that are not
very peaked near zero. Consequently, uniform scalar quan-
tization followed by entropy coding provides nearly optimal
coding efficiency, and achieves nearly optimal bit allocation
among bands with differing variances. The coding perfor-
mance of our proposed algorithm provides some experimental
evidence in support of this conjecture.

Though zerotree quantization has been applied in several
recent wavelet-based image coders, this paper is the first to
address the question of how to jointly optimize the application
of spatial quantization modes (zerotree quantization) and scalar
quantization of frequency bands of coefficients. In [1], Lewis
and Knowles apply a perceptually based thresholding scheme
to predict zerotrees of high-frequency coefficients based on
low-valued coefficients in a lower frequency band correspond-
ing to the same spatial region. While this simplead hocscheme
exploits interband dependencies induced by spatial clustering,
it often introduces large error in the face of prediction errors.
Shapiro’s embedded zerotree approach [2] applies the zerotree
symbol when all coefficients in the corresponding tree equal
zero. While this strategy can claim to minimize distortion of
the overall coding scheme, it cannot claim optimality in an
operational rate and distortion sense (i.e., it does not minimize
distortion over all strategies that satisfy a given rate constraint).

This paper focuses on the problem of optimizing the appli-
cation of zerotree and scalar quantization in order to minimize
distortion for a given rate constraint. The image coding algo-
rithm described in the following sections is an algorithm for
optimally selecting the spatial regions (from the set of regions
allowed by the zerotree quantizer), for applying zerotree
quantization, and for optimally setting the scalar quantizer’s
stepsize for quantizing the remaining coefficients. We observe

that, although these two quantization modes are very basic,
an image coding algorithm that applies these two modes in
a jointly optimal manner can be competitive with (and per-
haps outperform) the best coding algorithms in the literature.
Consequently, we claim that the joint management of space-
and frequency-based quantizers is one of the most important
fundamental issues in the design of efficient image coders.

Section II-A begins by defining the tree-structured hierarchy
of wavelet coefficients relating trees of wavelet coefficients to
spatial regions in the image, and defines zerotree quantization
in the context of this tree. The remainder of Section II formally
defines the objective function upon which our image coding
algorithm is based, and outlines our proposed approach for
minimizing this objective function. Section III describes the
image coding algorithm developed from the formulation of
Section II. Section III-B details our scheme for predicting the
information defining where zerotree quantization is applied.
It can be viewed as an extension of the Lewis and Knowles
scheme [1] intended to exploit interband dependencies. Fi-
nally, Section IV presents simulation results of the new
algorithm on standard images.

II. BACKGROUND AND PROBLEM STATEMENT

A. Defining the Tree

A wavelet image decomposition can be thought of as a
tree-structured set of coefficients, providing a hierarchical data
structure for representing images, with each coefficient corre-
sponding to a spatial region in the image. Fig. 1(a) shows a
three-level wavelet decomposition of the Lena image, together
with a spatial wavelet coefficient tree structure representing the
eye region of Lena. A spatial wavelet coefficient tree is defined
as the set of coefficients from different bands that represent
the same spatial region in the image. Arrows in Fig. 1(b)
identify the parent–children dependencies in a tree. The lowest
frequency band of the decomposition is represented by the root
nodes (top) of the tree, the highest frequency bands by the leaf
nodes (bottom) of the tree, and each parent node represents a
lower frequency component than its children. Except for a root
node, which has only three children nodes, each parent node
has four children nodes, the 2 2 region of the same spatial
location in the immediately higher frequency band.

Define aresidue treeas the set of all descendants of any
parent node in a tree. (Note: a residue tree does not contain the
parent node itself.) Zerotree spatial quantization of a residue
tree assigns to the elements of the residue tree either their
original values or all zeros. Note the semantic distinction
between residue trees and zerotrees: The residue tree of a
node is the set of all its descendants, while a zerotree is an
all-zero residue tree. A zerotree node refers to a node whose
descendants are all set to zero. Note that zerotrees can originate
at any level of the full spatial tree, and can therefore be of
variable size. When a residue tree is zerotree quantized, only a
single symbol is needed to represent the set of zero-quantized
wavelet coefficients—our coder uses a binary zerotree map
indicating the presence or absence of zerotree nodes in the
spatial tree.
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(a) (b)

Fig. 1. Wavelet decomposition offers a tree-structured representation. (a) A three-level wavelet decomposition of the Lena image. (b) A spatial wavelet
coefficient tree consisting of coefficients from different bands that corresond to the same spatial region of the original image (e.g., the eye of Lena).
Arrows identify the parent-children dependencies.

The motivation for applying zerotree spatial-quantization of
a residue tree is the observation that the coefficients of any
residue tree represent the energy above some fixed frequency
(varies with the residue tree size) over some spatial region
of the image. Thus, if the spatial region associated with
any node of the tree has no energy at frequencies greater
than or equal to its assigned frequency, the entire residue
tree of coefficients descending from that node should be
zero. The zerotree data structure is a convenient way to
deal with of coefficients and therefore to characterize
the entropy of sets or vectors of insignificant coefficients
without approximating them as the sum of individual entropies,
i.e., without assuming independence. An important distinction
between our proposed framework and that of earlier use of
the zerotree data structure [2] is that in our case, the zerotree
criterion doesnot necessarily require thatall coefficients of
the residue tree be insignificant with respect to a set of
quantization thresholds. Thus, although scalar quantization
can also result in a residue tree of zero values, our zerotree
quantization framework is a vector operation that is more
general.

B. Motivation and High-Level Description

The underlying theme of the space-frequency quantization
(SFQ) is that of efficiently coupling the spatial and frequency
characterization modes offered by the wavelet coefficients by
defining quantization strategies that are well matched to the
respective modes. The paradigm we invoke is a combination
of simple uniform scalar quantization to exploit the frequency
characterization, with a fast tree-structured zerotree quantiza-
tion scheme to exploit the spatial characterization.

Our proposed SFQ coder has a goal of jointly finding the
best combination of spatial zerotree quantization choice and
the scalar frequency quantizer choice. The block diagram of
the new coder is shown in Fig. 2. The SFQ paradigm is
conceptually simple: Throw away, i.e., quantize to zero, a
subset of the wavelet coefficients, and use a single simple

uniform scalar quantizer on the rest. Given this framework,
the key questions are obviously

1) What (spatial) subset of coefficients should be thrown
away?

2) What uniform scalar (frequency) quantizer stepsize
should be used to quantize the survivor set, i.e. the
complementary set of 1)?

This paper formulates the answers to these questions, invok-
ing an operational rate-distortion optimality criterion. While
the motivation is simple, this optimization task is complicated
by the fact that the two questions posed above are interdepen-
dent. The reason for this is easily seen. The optimal answer
to 1), i.e., the optimal spatial subset to throw away depends
on the scalar quantizer choice of 2) since the zerotree pruning
operation involved in 1) is driven by rate-distortion tradeoffs
induced by the quantizer choice. Conversely, the scalar quan-
tizer of 2) is applied only to the complementary subset of 1),
i.e., to the population subset that survives the zerotree pruning
operation involved in 1). This interplay between these modes
necessitates an iterative way of optimizing the problem, which
will be described in detail in the following sections.

Note that the answers to 1) and 2) are sent as side informa-
tion (“map” bits) to the decoder in addition to the quantized
values of the survivor coefficients (“data” bits). Since a single
scalar quantizer is used for the entire image, the quantizer
stepsize information of 2) is negligible and can be ignored.
The side-information of 1) is sent as a binary zerotree map
indicating whether or not tree nodes are zerotree quantized.
This overhead information is not negligible and is optimized
jointly with the “data” information in our SFQ coder, with the
optimization being done in a rate-distortion sense. At this point
we will not concern ourselves with the details of how this map
is sent, but we will see later that much of this zerotree map
information is actually predictable and can be inferred by the
decoder using a novel prediction scheme based on the known
data field of the corresponding parent band.
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Fig. 2. Block diagram of the proposed SFQ coder (assuming a two-level wavelet decompostion). All nine possible complementary subsets of (I) for
each depth-2 spatial wavelet coefficient tree are listed in the spatial zerotree quantization block, three possible scalar quantizer choices of (II)in the
frequency scalar quantization block.

Finally, while it appears counterintuitive at first glance to
expect high performance from using a single uniform scalar
quantizer, further inspection reveals why this is possible. The
key is to recall that the quantizer is applied only to a subset
of the full wavelet data, namely the survivors of the zerotree
pruning operation. This pruned set has a distribution which
is considerably less peaked than that of the original full
set (see Fig. 9), since most of the samples populating the
zero and low-valued bins are discarded during the zerotree
pruning operation. Thus, the spatial zerotree operation effec-
tively “flattens” the residue density of the “trimmed” set of
wavelet coefficients, endorsing the use of a single stepsize
uniform quantizer. In summary, the motivation of resorting
to multiple quantizers for the various image subbands (as is
customarily done) is to account for the different degrees of
“peakiness” around zero of the associated histograms of the
different image subbands. In our proposed scheme, the bulk of
the insignificant coefficients responsible for this peakiness are
removed from consideration, rendering the bands with near-
flat distributions and justifying a simple single stepsize scalar
quantizer. Experimental evidence verifying these claims will
be given in Section IV.

We will now proceed to give a quantitative description of
the problem and its solution using our framework. To this end,
it is necessary to introduce some notation to aid in the analysis.

C. Notation and Problem Statement

Let denote the balanced (full) spatial tree, i.e., the tree
grown to full depth (in a practical scenario, this may be
restricted to four to six levels typically). Lettingdenote any
node of the spatial tree, signifies the full balanced tree

rooted at node. Note that is shorthand notation for the
balanced full-depth tree (i.e., rooted at the origin). In keeping
with conventional notation, we define a pruned subtree
as any subtree of that shares its root. Again for brevity,

refers to any pruned subtree of the full depth tree.
Note that the set of all corresponds to the collection of
all possible zerotree spatial-quantization topologies. We also
need to introduce notation for residue trees. Aresidue tree
(corresponding to any arbitrary parent nodeof ) consists
of the set of all descendants ofin but does not include
itself, i.e., , where is the set of
children or direct descendants of(this is a 2 2 children
set for all parent nodes except the root nodes that contain only
three children). See Fig. 3.

Let us now address quantization. Letrepresent the (finite)
set of all admissible scalar frequency quantizer choices. Thus,
the quantization modes in our framework are the spatial tree-
structured quantizer and the scalar frequency quantizer

(used to quantize the coefficients of). The unquantized
and quantized wavelet coefficients associated with nodeof
the spatial tree will be referred to by and , with the
explicit dependency on of being dropped where obvious.
In this framework, we seek to minimize the average distortion
subject to an average rate constraint. Let and
denote the distortion and rate, respectively, associated with
quantizer choice . We will use a squared-error distortion
measure. The rate consists of two components: tree
data rate , measured by the first-order entropy;
and tree map rate , where the superscripts will be
dropped where obvious.
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Fig. 3. Definitions ofCi; Ui andTi for a nodei in a spatial tree.Ci is the
set of children or direct descendants ofi;Ui the residue tree ofi;Ti the full
balanced tree rooted at nodei(Ti = i [ Ui).

Then, our problem can be stated simply as

subject to (1)

where is the coding budget.
Stated in words, our coding goal is to find the optimal

combination of spatial subset to prune (via zerotree spatial
quantization) and scalar quantizer stepsize to apply to the sur-
vivor coefficients (frequency quantization) such that the total
quantization distortion is minimized subject to a constraint on
the total rate. Qualitatively stated, scalar frequency-quantizers
trade off bits for distortion in proportionality to their stepsizes,
while zerotree spatial-quantizers trade off bits for distortion
by zeroing out entire sets of coefficients but incurring little or
no bit-rate cost in doing so. We are interested in finding the
optimal tradeoff between these two quantization modes.

D. Proposed Approach

The constrained optimization problem of (1) can be con-
verted to an unconstrained formulation using the well-known
Lagrange multiplier method. That is, it can be shown [23],
[24] that the solution to (1) is identical to the solution to the
following equivalent unconstrained problem for the special
case of :

(2)

where is the Lagrangian (two-sided) cost including
both rate and distortion, that are connected through the La-
grange multiplier 0, which is the quality-factor trading
off distortion for rate ( 0 refers to the highest attainable
quality and to the lowest attainable rate). Note
that the entropy only or distortion only cost measure of [2]
become special cases of this more general Lagrangian cost
measure corresponding to and 0, respectively.
The implication of (2) is that if an appropriate can be
found for which the solution to (2) is ( ) and further

, then ( ) is also the solution to (1).
The solution of (2) finds points that reside on the convex-
hull of the rate-distortion function, and sweepingfrom 0 to

traces this convex hull. In practice, for most applications

(including ours), a convex-hull approximation to the desired
rate suffices, and the only suspense is in determining the
value of that is best matched to the bit budget constraint.
Fortunately, the search for the optimal rate-distortion slope
is a fast convex search that can be done with any number of
efficient methods, e.g., the bisection method [24].

Our proposed approach is therefore to find the convex-hull
approximation to (1) by solving

(3)

where the innermost minimization (a) involves the search for
the best spatial subtree for fixed values of and , the
second minimization (b) involves search for the best scalar
quantizer [and associated ] for a fixed value of , and
finally the outermost optimization (c) is the convex search for
the optimal value of that satisfies the desired rate constraint
(see [24]). The solution ( ) to (3) is thus obtained in
three sequential optimization steps.

Minimization (a) involves optimal tree-pruning to find the
best for a fixed and , and is by far the most important of
the three optimization operations of (3). This will be described
in Sections III-A and III-B. Given our global framework of
data tree-map, minimization (a) can be written as

(4)

where is the tree-map rate and
the tree-data rate. We seek an efficient way to jointly code the
data map information using a novel way of predicting the
map information from the known data information (see Section
III-B). As this method dictates a strong coupling between the
data and map field components, the chicken-and-egg problem
is solved using a two-phase approach. In the first phase, (4)
is optimized assuming that is zero, or more
generally that it is a fixed cost1independent of the choice of

and .
The optimal from the phase I tree-pruning operation is

, i.e.,

(5)

In the second phase (tree-map prediction phase), the true data-
map dependencies are taken into account, and the solution
of phase I, , is modified to reflect the globally correct
choice . Details are provided in Section III.

At the end of phase II, for each space-frequency quantization
choice, we identify a single point on the operational–
curve corresponding to a choice of , and their best matched

. In order to find the best scalar quantizer, we search for the
[in minimization ], which “lives” at absolute slope

on the convex hull of the operational– curve. This defines
the optimal combination of and for a fixed . Finally, the
“correct” value of , that matches the rate constraint is
found using a fast convex search in optimization.

1Assuming thatR(map)(q; S) is a constant rather than zero simply
changes the optimal operating slope�� for the same target bit budgetRb.
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(a) (b)

Fig. 4. Zerotree pruning in Step 2) of Algorithm I. (a) Zero out or pruneUi: (b) SendCi and the best residue tree representations of nodes inCi:

Prune residue treeUi if that is the cheaper option: i.e., j2U w2

j � j2C (J(k)
j + J�U ). This pruning process starts from the leaf nodes and

proceeds toward the root nodes.

III. T HE SFQ CODING ALGORITHM

A. Tree Pruning Algorithm: Phase I (For
Fixed Quantizer and Fixed )

The proposed algorithm is designed to minimize an un-
weighted mean-squared error distortion measure, with dis-
tortion energy measured directly in the transform domain to
reduce computational complexity. In this tree-pruning algo-
rithm, we also approximate the encoder output rate by the
theoretical first-order entropy, which can be approached very
closely by applying adaptive arithmetic coding. Our (phase I)
tree-pruning operation assumes that the cost of sending the tree
map information is independent of the cost of sending the data
given the tree map, an approximation that will be accounted for
and corrected later in phase II. Thus, there will be no mention
of the tree-map rate in this phase of the algorithm, where the
goal will be to search for that spatial subtree whose
data cost is minimum in the rate-distortion sense.

The lowpass band of coefficients at the coarsest scale cannot
(by definition) be included in residue trees, since residue trees
refer only to descendants. The lowpass band quantizer operates
independently of other quantizers. Therefore, we code this
band separately from other highpass bands. The quantizer
applied to the lowpass band is selected so that the operating
slope on its – curve matches the overall absolute slope

on the convex hull of the operational– curve for the
“highpass” coder; i.e., we invoke the necessary condition that
at optimality both coders operate at the same slope on their
operational rate-distortion curves, else the situation can be
improved by stealing bits from one coder to the other until
equilibrium is established.

The following algorithm is used for a fixed value ofand
to find the best . Note that the iteration count is

used as a superscript where needed. refers to the binary
zerotree map (at theth iteration of the algorithm) indicating
the presence [ 0] or absence [ 1] of a zerotree
associated with nodeof the tree. Recall that 0 implies
that all descendants of(i.e., elements of ) are set to zero
at the iteration. refers to the (current) best subtree

obtained after iterations, with initialized to the full tree
. We will drop the “data” suffix from to avoid cluttering.

refers to the set of children nodes (direct offspring) of
node . refers to the minimum or best (Lagrangian) cost
associated with the residue tree of node , with this cost
being set to zero for all leaf nodes of the full tree. is
the (Lagrangian) cost of quantizing node(with and
denoting the unquantized and quantized values of the wavelet
coefficient at node , respectively) at the th iteration of the
algorithm, with and referring to the distortion and

rate components, respectively. is the probability at the
th iteration, i.e., using the statistics from the set , of the

quantization bin associated with node. We need to superscript
the tree rate (and hence the Lagrangian) cost with the iteration
count , because the tree changes topology (i.e., gets pruned)
at every iteration, and we assume a global entropy coding
scheme. Finally, we assume that the number of levels in the
spatial tree is indexed by the scale parameter, with 0
referring to the coarsest (lowest frequency) scale.

Algorithm 1:

• Step 0 (Initialization): Set ; set the iteration
count . For all leaf nodes of , set .

leaf nodes of

• Step 1 (Probability Update—Needed Due to the Use of
Entropy Coding): Update the probability estimates for all
nodes in , i.e., update , where

no. of coeffs. quantized to bin no.

no. of coeffs. in

• Step 2 (Zerotree Pruning, see Fig. 4): Set tree-depth count
maximum depth of . For every node at

current tree-depth of , determine if it is cheaper
to zero out or to keep its best residue treein a rate-
distortion sense. Zeroing out or pruning incurs a cost
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(a) (b)

(c) (d)

Fig. 5. The iterative Algorithm I to findingS�
data

for a fixed value ofq and�: (a)S(0) is initialized as the full treeT: (b) S(1) is obtained by running Step

2) (zerotree pruning) using statisticsp(0). (c) At thekth iteration,S(k) is obtained by running Step 2) usingp(k�1)
i

. (d) The algorithm stops at the(k+1)th
iteration whenS(k+1) = S(k), i.e., no new nodes get pruned in the(k + 1)th iteration, andS(k+1) is the targeted optimalS�

data
.

equal to the energy of residue tree [left-hand side
of inequality (6)], while keeping incurs the cost of
sending and the best residue tree representations of
nodes in [right-hand side. of inequality (6)]. That is

maximum depth of

depth of

If

then

else

(6)

where

(7)

• Step 3 (Loop Bottom-Up Through All Tree Levels):Set
and go to Step 2) if 0.

• Step 4 (Check for Convergence, Else Iterate): Using the
values of for all found by optimal
pruning, carve out the pruned subtree for the
next iteration. If (i.e., if some nodes got
pruned), then increment the iteration count
and go back to Step 1) to update statistics and iterate
again. Else, declare as the converged
pruned spatial tree associated with scalar quantizer choice

and rate-distortion slope. This uniquely defines the
(locally) optimal zerotree map for all nodes .
See Fig. 5 for a pictorial explanation of this algorithm.

Discussion:

1) Scalar frequency quantization (using stepsize) of all the
highpass coefficients is applied in an iterative fashion. At
each iteration, a fixed tree specifies the coefficients
to be uniformly quantized, and the pruning rule of Step
2) is invoked to decide whether coefficients are worthy
of being retained or if they should be killed. As the
decision of whether or not to kill the descendants
of node cannot be made without knowing the best
representation (and associated best cost) for residue tree

, the pruning operation must proceed from the bottom
of the tree (leaves) to the top (root).

2) Note that in Step 2, we query whether or not it is
worthwhile to send any of the descendants of node.
This is done by comparing the cost of zeroing outall
descendants of node(assuming that zerotree quantized
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data incurs zero rate cost) to the best alternative asso-
ciated with not choosing to do so. This latter cost is
that of sending the children nodes oftogether with the
best cost of the residue trees associated with each of the
children nodes. Since processing is done in a bottom-up
fashion, these best residue tree costs are known at the
time. The cheaper of these costs is used to dictate the
zerotree decision to be made at node, and is saved for
future reference involving decisions to be made for the
ancestors of .

3) As a result of the pruning operation of Step 2, some
of the spatial tree nodes are discarded. This affects the
histogram of the surviving nodes, which is recalculated
in Step 1 (initially the histogram associated with the full
tree is used) whenever any new node gets pruned out.

4) The above algorithm is guaranteed to converge to a local
optimal choice for .

Proof: See Appendix.
A plausible explanation for the above proposition is the
following: Recall that the motivation for our iterative
pruning algorithm is that as the trees get pruned, the
probability density functions (pdf) of the residue trees
change dynamically. So, at each iteration we update to
reflect the “correct” pdf’s till the algorithm converges.
The above Proposition shows that the gain in terms of
Lagrangian cost comes from better representation of the
pdf’s of the residue trees in the iterations. In the above
tree-pruning algorithm, the number of nonpruned nodes
is monotonically decreasing before it converges, so the
above iterative algorithm converges very fast! In our
simulations, the above algorithm converges in less than
five iterations in all our experiments.

Proposition 1:The above tree pruning algorithm con-
verges to a local minimum.

5) In addition to being locally optimal, our algorithm can
make claims to having global merits as well. While the
following discussion is not intended to be a rigorous
justification, it serves to provide a relative argument
from a viewpoint of image coding. After the hierarchical
wavelet transform, the absolute values of most of the
highpass coefficients are small, and they are deemed to
be quantized to zero. The pdf of the wavelet coefficients
is approximately symmetric, and sharply peaked at zero
[see Fig. 9(c)]. Sending those zero-quantized coefficients
is not cost effective. Zerotree quantization efficiently
identifies those zerotree nodes. A larger portion of the
available bit budget is allocated for sending the larger
coefficients that represent more energy. So, the result-
ing pdf after zerotree quantization is considerably less
peaked than the original one [see Fig. 9(d)]. Suppose
the algorithm decided to zerotree quantize residue tree

at the th iteration, i.e., deemed the descendants of
to be not worth sending at theth iteration. This is

because the cost of pruning, which is identical to the
energy of [left-hand side of inequality (6)], is less
than or equal to the cost of sending it [right-hand side

of inequality (6)], or

The decision to zerotree quantize the setis usually
because consists mainly of insignificant coefficients
(with respect to the quantizer stepsize). Then, in the

th iteration, due to the trimming operation, the
probability of “small” coefficients becomes smaller, i.e.,
the cost of sending residue tree becomes larger at the

th iteration, goes up [since

while in (7)], thus reinforcing the
wisdom in killing at the th iteration. That is, if
inequality (6) holds at the th iteration, then with high
probability it is also true at the th iteration.
Thus, our algorithm’s philosophy of “once pruned it
is pruned forever,” which leads to a fast solution, is
likely to be very close to the globally optimal point
as well. Of course, for residue trees that only have a
few large coefficients, zerotree quantization in an early
iteration might affect the overall optimality. However,
we expect that the probability of such subtrees to be
relatively small for natural images. So, our algorithm is
efficient globally.

B. Predicting the Tree: Phase II

Recall that our coding data structure is a combination of a
zerotree map indicating which nodes of the spatial tree have
their descendants set to zero, and the quantized data stream
corresponding to the survivor nodes. The side information
needed to send the zerotree map is obviously a key issue in
our design. In the process of formulating the optimal pruned
spatial-tree representation, as described in Section III-A, we
did not consider the cost needed to send the tree description

. This is tantamount to assuming that the tree map is free,
or more generally that the tree-map cost is independent of the
choice of tree (i.e., all trees cost the same regardless of choice
of tree). While this is certainly feasible, it is not necessarily an
efficient coding strategy. In this section, we describe a novel
way to improve the coding efficiency by using a prediction
strategy for the treemap bits of the nodes of a given band
based on the (decoded)data information of the associated
parent band. We will see that this leads to a way for the
decoder todeducemuch of the tree-map information from
the data field (sent top-down from lower to higher frequency
bands), leaving the encoder to send zerotree bits only for nodes
having unpredictable map information.

Due to the tight coupling between data and map information
in our proposed scheme, the “best” tree representation, as
found through Algorithm I (assuming that the map bits are
decoupled from the data bits), needs to be updated to correct
for this bias, and zerotree decisions made at the tree nodes
need to be reexamined to check for possible reversals in
decision due to the removal of this bias. In short, the maxim
that “zerotree maps are not all equally costly” needs to
be quantitatively reflected in modifying the spatially pruned
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(a) (b)

Fig. 6. Predicting the tree. (a) Basic idea of predicting the tree. The energy of a node is used to predict the significance/insignificance of its residuetree.
(b) The optimal design of thresholdTh: The variances of the parent nodes of each band are ordered in decreasing magnitude, and the zerotree map bits
corresponding to these nodesni are listed in the same order.Th should be at least as small as the variance of the first node from the top of the list for
which ni = 0. The bestTh is designed in the rate-distortion sense to reflect the global data+ map optimality.

subtree obtained from Algorithm I to a tree description that is
the best in the global (data map) sense. In this subsection,
we describe how to accomplish this within the framework
of predictive spatial-quantization while maintaining overall
rate-distortion optimality. The basic idea is to predict the
significance/insignificance of a residue tree from the energy
of its parent [see Fig. 6(a)].

The predictability of subtrees depends on two thresholds
output from the spatial quantizer. This is a generalization
of the prediction scheme of Lewis and Knowles [1] for
both efficiently encoding the tree and modifying the tree to
optimally reflect the tree encoding. The Lewis and Knowles
technique is based on the observation that the variance of a
parent block centered around nodeusually provides a good
prediction of the energy of coefficients in the residue tree

. Their algorithm eliminates tree information by completely
relying on this prediction. In order to improve performance,
we incorporate this prediction in our algorithm by using it
to represent the overall spatial tree information in a rate-
distortion optimal way, rather than blindly relying on it to
completely avoid sending tree-map information, which is, in
general, suboptimal.

First, the variance of each (parent) nodeis calculated as the
energy of a 3 3 block centered at the corresponding wavelet
coefficient of the node.2 Note also that, for decodability or

2This “lowpass” filtering is needed to more accurately reflect the level of
activity at the node.

closed-loop operation, all variances should be calculated based
on thequantizedwavelet coefficients. We assume zero values
for zerotree quantized coefficients.

Then, the variances of the parent nodes of each band are
ordered in decreasing magnitude, and the zerotree map bits
corresponding to these nodes,, are listed in the same order
[see Fig. 6(b)]. Two thresholds and are sent per band
as (negligible) overhead information to assist the encoding.3

Nodes whose parents have variances aboveare assumed to
be significant (i.e., is assumed to be 1), thus requiring no
tree information. Similarly, nodes with parents having energy
below are assumed to be insignificant (i.e., is assumed
to be 0), and they too require no side information. Tree-map
information is sent only for those nodes whose parents have
a variance between and . The algorithm is motivated by
the potential for the Lewis and Knowles predictor to be fairly
accurate for nodes having very high or very low variance,
but to perform quite poorly for nodes with variance near the
threshold.

This naturally leads to the question of optimization of the
parameters and within the pruned spatial-tree quantiza-
tion framework. We now address their optimal design. Clearly,

should be at least as small as the variance of the highest
insignificant node (or the first node from the top of the list for
which 0), since setting any higher would require

3
Th andTl are actually sent indirectly by sending the coordinates of two

parent nodes, which have variancesTh andTl respectively.
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sending redundant tree information for residue tree, which
could be inferred via the threshold. Likewise, should be
at least as large as the variance of the smallest significant
node (or the first node from the bottom of the list for which

1).
Now let us consider if should be made smaller in an

optimal scenario. Let denote the index of the node with
variance equal to ( must be 0), and suppose the number
of 0 nodes down to in the variance-ordered list is. Note,
if we shall reduce at all, then, 1, since, should
made at least as small as the variance of the next node
with 0. Let be the position difference between

and , then, this change to saves us bits,
equal to the number of positions we move down in the list
(we assume that these binary map symbols have an entropy of
one bit per symbol). Thus, changing from 0 to 1 for all
from 1 to decreases the map rate by

(8)

Of course, we know that reversing the map bits for the
nodes from 0 to 1 increases thedatacost (in the rate-distortion
or Lagrangian sense) as determined in the pruning phase of
Algorithm I. So in performing a complete analysis of data

map, we reexamine and, where globally profitable, reverse
the “data-only”-based zerotree decisions output by Algorithm
I. The rule for reversing the decisions for the nodes is
clear: weigh the “data cost loss” versus the “map cost gain”
associated with the reversals and reverse only if the latter
outweighs the former. As we are examining rate-distortion
tradeoffs, we need to use Lagrangian costs in this comparison.

It is clear that in doing the tree-pruning of Algorithm I, we
can store (in addition to the tree map information ) the
winning and losing Lagrangian costs corresponding to each
node , where the winning cost corresponds to that associated
with the optimal binary decision (i.e., and the losing
cost corresponds to that associated with the losing decision

(i.e., the larger side of inequality (6). Denote by
the magnitude of this Lagrangian cost difference for node
(note the inclusion of the data subscript for emphasis); i.e.,

, for every parent node is the absolute value
of the difference between the two sides of the inequality (6)
after convergence of Algorithm I. Then, the rule for reversing
the decisions from 0 to 1 for all nodes from 1 to

is clearly

If (9)

Then reverse phase I decision (10)

If inequality (9) is not true, no decision shall be made until
we try to move to the next 0 node. In this case, is
incremented until inequality (9) satisfied for some larger,
whereupon is reversed to 1 for all from 1 to .
Then is reset to 1 and the whole operation repeated until the
entire list has been exhausted.

We summarize the design of as follows.
Algorithm 2:

• Step 1: Order the variance of each parent node in decreas-
ing magnitude, and list the zerotree map bits associated
with these nodes in the same order.

• Step 2: Identify all the zero nodes in the list, and
record , the difference in list position entry between
the th and the th zero nodes.

• Step 3: Set 1.
• Step 4: Check if inequality (9) is satisfied for this value

of . If it is not, increment , if possible, and go to Step
4). Else, reverse the tree-map bits from 0 to 1 for all

from 1 to , and go to Step 2).

will point to the first zero node on the final modified
list. It is obvious that Algorithm II optimizes the choice of

, using a global data map rate-distortion perspective. A
similar algorithm is used to optimize the choice of. As
a result of the tree prediction algorithm, the optimal pruned
subtree output by Algorithm I (based on data only) is
modified to .

C. Joint Optimization of Space-Frequency Quantizers

The above fast zerotree pruning algorithm tackles the in-
nermost optimization (a) of (3), i.e., finds for each
scalar quantizer (and , which is implied). As stated earlier,
for a fixed quality factor , the optimal scalar quantizer is
the one with stepsize that minimizes the Lagrangian cost

, i.e., lives at absolute slope on the composite
distortion-rate curve. That is, from (3), we have

While faster ways of reducing the search time for the optimal
exist, in this work, we exhaustively search for all choices

in a finite admissible list. Finally, the optimal slope is
found using the convex search bisection algorithm as described
in [23]. By the convexity of the pruned-tree rate-distortion
function [23], starting from two extreme points in the rate-
distortion curve, the bisection algorithm successively shrinks
the interval in which the optimal operating point lies until
it converges. The convexity of the pruned-tree rate-distortion
function guarantees the convergence of the optimal space-
frequency quantizer.

IV. SIMULATION RESULTS

Experiments are performed on standard 512512 grey-
scale Lena, Barbara, and Goldhill images to test the proposed
SFQ algorithm at several bit rates. Although our analysis of
scalar quantizer performance assumed the use of orthogonal
wavelet filters, simulations showed that little is lost in practice
from using “nearly” orthogonal wavelet filters that have been
reported in the literature to produce better perceptual results.
We use the 7–9 biorthogonal set of linear phase filters of [18] in
all our experiments. We use a 4-scale wavelet decomposition
with the coarsest lowpass band having dimension 3232.
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(a) (b)

(c) (d)

Fig. 7. Original and decoded 512� 512 Goldhill images. (a) Original image. (b) Bit rate= 1.0 b/pixel, PSNR= 36.70. (c) Bit rate= 0.5 b/pixel,
PSNR= 33.37 dB. (d) Bit rate= 0.25 b/pixel, PSNR= 30.71 dB.

This lowest band is coded separately from the remaining
bands, and the tree node symbols are also treated separately.
For decodability, bands are scanned from coarse to fine scale,
so that no child node is output before its parent node. The
scalar quantization stepsizetakes values from the set

, . An adaptive arithmetic
coding [25], [26] is used to entropy code the quantized wavelet
coefficients. All reported bit rates, which include both the
data rate and the map rate, are calculated from the “real”
coded bitstreams. About 10% of the total bit rate is spent
in coding the zerotree map. The original Goldhill image is
shown in Fig. 7(a), while the decoded Goldhill images at bit
rates of 1.0 b/pixel, 0.5 b/pixel and 0.25 b/pixel, are shown
in Fig. 7(b)–(d), respectively. The corresponding peak signal-

to-noise ratios (PSNR’s), defined as mse at
different bit rates for all three images, are tabulated in Table I.

We compare the performance of our SFQ algorithm in
Fig. 8 with some of the high-performance image compression
algorithms by Shapiro [2], Said and Pearlman [27], and Joshi,
Crump, and Fisher [28]. Our simulations show that the SFQ
algorithm is competitive with the best coders in the literature.
For example, our SFQ-based coder outperforms 0.2 dB and
0.7 dB better in PSNR over the coder in [27] for Lena and
Barbara, respectively.

To illustrate how zerotree pruning in our proposed SFQ
algorithm changes the statistics of the set of wavelet coef-
ficients to be scalar quantized, we compare the probability
distributions of the highpass wavelet coefficients of the Lena
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TABLE I
CODING RESULTS OF THESFQ ALGORITHM AT VARIOUS BIT RATES FOR

THE STANDARD 512� 512 LENA, BARBARA, AND GOLDHILL IMAGES

image with and without zerotree pruning. The comparison
results are based on the output bit rate of 1.0 b/pixel. Fig. 9(a)
and (b) display the scalar and space-frequency quantized four-
level wavelet decompositions of the Lena image, respectively.
A scalar quantization stepsize of 7.8 is applied to all
highpass coefficients in Fig. 9(a) and 9(b). White regions in
Fig. 9(b) represent pruned nodes by zerotree quantization. His-
tograms (after scalar quantization) of the full set of highpass
coefficients in Fig. 9(a) and the pruned set in Fig. 9(b) are
plotted in Fig. 9(c) and 9(d). The probability of zero index
decreases from 0.7181 in the full set of highpass coefficients
to 0.3755 in the pruned set, so zerotree pruning effectively
flattens the probability density of the pruned set of highpass
wavelet coefficients.

Another simulation explores the justification of using a
single scalar quantization stepsize for all highpass bands of
our decomposition. Earlier subband and wavelet coders have
confirmed the importance of optimizing scalar quantization
stepsizes to match the distribution of coefficients in each
band. However, we observe that the distribution of coefficients
in different bands are not nearly so different after zerotree
pruning than before pruning. In particular, while the percent-
age of very small coefficients (i.e., those quantized to 0 or

, 1) in each band differs significantly before pruning, it
is very similar in most bands after pruning. Consequently,
we conjecture that the slope of the operational rate-distortion
functions for uniform scalar quantizers operating with the same
stepsize in different bands will be approximately equal after
zerotree pruning. Fig. 10 shows two sets of plots testing this
conjecture for two collections of bands. In all cases, we fix
the pruned tree produced by the SFQ algorithm at 1 b/pixel
[see Fig. 9(b)], and we show the operational rate-distortion
curves of uniform scalar quantizers applied to the coefficients
remaining in the tree. The marks indicated on each curve show
the operating points of the quantizers with the SFQ coding at
1 b/pixel. The first set of three curves in Fig. 10(a) shows
the rate distortion (RD) curves for the three highest frequency
bands ( , and in Fig. 1) for the Lena image.
The three slopes shown for this first set match very closely.
The second set of curves in Fig. 10(b) shows the RD curves
for three different frequency bands at the same orientation

(a)

(b)

Fig. 8. Comparisons of SFQ and other high-performance coders. (a) Com-
parisons for the Lena and Goldhill images. (b) Comparisons for the Barbara
image.

( , and in Fig. 1). Though the slopes of
these three curves do not match as closely as for the first set,
they are close enough to suggest that overall performance will
not suffer significant degradation by using a common stepsize
for all bands.

The SFQ algorithm developed in this paper is based on
minimizing a squared-error objective function. This formu-
lation can be naturally adapted to incorporate other distortion
measures modeling perceptual sensitivity to error, though such
variations are beyond the scope of the current work. For
example, the rate-distortion relations considered throughout
this paper could use a distortion measure incorporating both
frequency and spatial weightings in characterizing visual sensi-
tivity to errors; e.g., errors in higher frequency bands could be
weighted less than those in lower bands, and errors in textured
regions could be weighted less than those in smoothly varying
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(a) (b)

(c) (d)

Fig. 9. Histograms of the quantized Lena images before and after zerotree pruning forq = 7.8 targeted at 1.0 b/pixel. (a) Scalar quantized four-level wavelet
decomposition of the Lena image. A scalar quantization step size ofq = 7.8 is applied to all highpass coefficients. All highpass quantized coefficients
are shifted by 128 for display. (b) The space-frequency quantized four-level wavelet decomposition of the Lena image (white regions represent pruned
nodes). (c) Histogram of the full set of highpass bands in (a). The probability of zero index is 0.7181. (d) Histogram of the pruned set of highpass
bands after SFQ of (b). The probability of zero index is 0.3755.

regions. Although the current algorithm is not optimized for
subjective quality, we felt that some subjective testing of
the SFQ-coded images could provide insight into how the
higher PSNR measurements of the SFQ algorithm relate to
noticeable improvements in picture quality, and could hint at
the important issues in designing an SFQ algorithm optimized
for subjective quality. Thus, we report on several simple
subjective comparisons of the SFQ results with those of the
Shapiro’s algorithm and the Joint Photographers Expert Group
(JPEG) standard at various bit rates.

In direct comparison of SFQ- and JPEG-coded images, the
SFQ-coded images show dramatically higher picture quality at
all bit rates. While it has been noted that wavelet-based coding
algorithms eliminate annoying blocking artifacts, the superior

SFQ picture quality is much too pronounced to be accounted
for by the different types of artifacts. The differences are
more likely attributable to the approximately 2.5 dB higher
PSNR of the SFQ results across the range of bit rates. A very
dramatic example of the perceptual differences of SFQ and
JPEG images coded at 0.25 b/pixel is shown in Fig. 11.

It would be tempting to conclude that SFQ and JPEG images
having similar PSNR measurements would have comparable
picture quality. However, in comparisons of SFQ and JPEG
images coded to have identical PSNR measurements, the SFQ-
coded images appear to have lower overall picture quality
at almost all PSNR levels (at very low PSNR levels, it is
difficult to make meaningful comparisons betweenextremely
blocky JPEG images andextremelyblurry SFQ images). Thus,
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as an example, our tests show that the SFQ image coded at 0.5
b/pixel is clearly superior in picture quality to the JPEG image
coded at 0.5 b/pixel, but inferior to the JPEG image coded at
0.95 b/pixel. In a crude attempt to identify coded images with
similar subjective quality, we compared SFQ coded images at
a fixed bit rate to JPEG images, allowing the JPEG bit rate to
increase until the picture quality seemed roughly comparable.
The results are plotted in Fig. 12.

In our final subjective tests, we compared the SFQ and
Shapiro coding results at various bit rates, and we found little
or no noticeable differences in overall picture quality. Actually,
the differences between the two algorithms appeared mostly to
reflect differences in spatial rate allocation across the picture.
Since the control of this rate allocation does not consider
subjective picture quality in either algorithm, the subjective
difference between the two algorithms appears quite random
(i.e., each algorithm looks better in some places and worse in
others). There appeared to be little subjective evidence of the
approximately 1 dB higher PSNR of the SFQ results. Further
interpretation of the subjective test results are found in the
discussions in the following section.

V. DISCUSSION AND CONCLUSIONS

The complexity of the SFQ algorithm lies mainly in the
iterative zerotree pruning stage of the encoder, which can
be substantially reduced with fast heuristics based on models
rather than actual – data, which is expensive to compute.
A good complexity measure is the running time on a specific
machine. On a Sun SPARC 5, it takes about 20 s to run the
SFQ algorithm for a fixed and pair. On the same machine,
Said and Pearlman’s coder [27] takes about 4 s to run on
encoding. Although our SFQ encoder is slower than that of
Said and Pearlman’s, the decoder is much faster because there
are only two quantization modes used in the SFQ algorithm
with the classification being sent as side-information. Our
coder is suitable for applications such as image libraries,
CD-ROM’s, and centrally stored databases where asymmetric
coding complexity is preferred.

The SFQ algorithm developed in this paper tests the hy-
pothesis that high performance coding depends on exploiting
both frequency and spatial compaction of energy in a space-
frequency transform. The two simple quantization modes used
in the SFQ algorithm put a limit its overall performance. This
can be improved by introducing sophisticated schemes such
as trellis-coded quantization and subband classification [12],
[29] to exploit “packing gain” in the scalar quantizer, a type
of gain quite separate and above anything considered in this
paper. Zerotree quantization can be viewed as providing a
mechanism for spatial classification of wavelet coefficients
into two classes: i) “zerotree” pruned coefficients and ii)
nonpruned coefficients. The tree-structure constraint of the
SFQ classification permits us to efficiently implement RD-
optimization, but produces suboptimal classification for coding
purposes. I.e., if our classification procedure searched over a
richer collection of possible sets of coefficients (e.g., including
some nontree-structured sets), algorithm complexity would be
increased, but improved results could be realized. In fact,

(a)

(b)

Fig. 10. Operational rate-distortion curves generated by quantizing a fixed
pruned tree structure (bsed on the one obtained for Lena at 1.0 b/pixel) with
different scalar quantization step sizes. (a) Operational rate-distortion curves
of the three bands in the lowest scale (LH1; HL1 andHH1 in Fig. 1. (b)
Operational rate-distortion curves of the diagonal bands of three different
scales (HH1;HH2, andHH3 in Fig. 1). The slopes at the operation point
(q = 7.8 are approximately equal for all bands. This justifies the choice of a
single uniform scalar quantization step size for all bands.

performance improvements in other zerotree algorithms have
been realized by expanding the classification to consider sets
of coefficients other than purely tree-structured sets [27].

We list these possible improvements of the SFQ algorithm
to highlight the fact that the SFQ algorithm makes no claim to
establishing any limits to performance of image coding algo-
rithms, even within the general paradigm of linear transform
coding within which it is defined. In fact, it is built from
relatively straightforward components, suggesting extensions
that would almost certainly improve performance. Though
complexity is one reason for not considering such extensions,
our primary reason for not doing so in this paper is to provide
a clear and direct test of our hypothesis that the optimal
allocation of bit rate among space- and frequency-compacted
signal energy is one of the most important characteristics of
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Fig. 11. SFQ (left) and JPEG (right) decoded Lena images at 0.25 b/pixel.

Fig. 12. Comparison of subjective qualities between SFQ and JPEG coded
images. Arrows indicate the RD points at which both coders achieve com-
parable image quality.

high-performance image coding algorithms. Without zerotree
quantization, the SFQ algorithm reduces to a most trivial
wavelet coder; i.e., a wavelet transform followed by scalar
quantizer with a common stepsize applied to all highpass
bands. By providing this trivial coder with a limited and
simple spatial quantization (zeroing out tree-structure sets of
coefficients), and optimally allocating bitrate between spatial
quantization and scalar quantization, we are able to achieve
among the best coding results in today’s literature.

We attribute the excellent performance of our coder to
two important characteristics. First, the SFQ is built around
a linear transform that allows signal energy to be com-
pacted both in frequency and space, and quantization modes
designed to match this characterization. Second, the SFQ
provides a framework for optimizing (in the rate-distortion
sense) the application of the quantization modes available

to it. Insights into the importance of these characteristics
are offered by comparing the SFQ to three other coding
approaches from the literature. The algorithms of [17] use
subband transforms with very sophisticated scalar and vector
quantizers optimized for the statistics of each band. However,
these algorithms lack a mechanism for efficiently identifying
locations of compacted energy in the highpass bands (i.e.,
spatial quantization), thus limiting coding performance (the
best results obtained from these algorithms are 1.1 dB below
SFQ for Lena). We conclude that the SFQ achieves superior
coding performance with a much less sophisticated scalar
quantizer because its use of zerotree quantization allows it
to better exploit the spatial compaction of high-frequency
energy. The algorithm of [2] uses the wavelet transform as
well as zerotree quantization in an embedded coding algorithm.
However, zerotree quantization is applied in [2] to minimize
distortion rather than to optimize rate-distortion performance,
and we believe this difference accounts for most of the PSNR
advantage of the SFQ algorithm seen in Fig. 8. We should
note that the embedded structure of the algorithm of [2]
makes direct comparison of these two algorithms difficult.
Finally, it is interesting to compare the SFQ algorithm with
the rate-distortion optimized version of JPEG proposed in
[30]. These two algorithms are built around very similar rate-
distortion optimization frameworks, with the algorithms of
[30] using block discrete cosine transforms (DCT’s) instead of
the wavelet transform, and using runlengths of zeros instead of
zerotrees. The – optimization provides a large gain over
standard JPEG (0.7 dB at 1 b/pixel for Lena), but the final
PSNR results (e.g., 39.6 dB at 1 b/pixel for Lena) remain
about 0.9 dB below SFQ for the Lena image at a bit rate of
1 b/pixel. We interpret these results as reflecting the fact that
the block DCT is not as effective as the wavelet transform at
compacting high-frequency energy around edges (i.e., blocks
containing edges tend to spread high-frequency energy among
many coefficients.)
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To complete our conclusions, we offer some final comments
on the subjective quality of SFQ coded images. Although
the SFQ offers noticeably improved picture quality compared
with the JPEG algorithm at 1 b/pixel, reflecting a difference
of nearly 3 dB in PSNR, comparisons with the algorithm
of [2] showed no noticeable improvement in picture quality,
despite being 1 dB higher in PSNR. This result is a direct
consequence of our rate-distortion optimization procedure. The
key difference between these two algorithms lies in how bit
rate is distributed spatially across the image. In [2], this spatial
allocation of bit rate is dictated by when coefficients fall below
a threshold. In the SFQ algorithm, spatial allocation of bit rate
is governed by the rule that each bit is applied to the location
where it gives the biggest reduction in distortion. While the
second strategy must (and does) produce higher PSNR, it
may lead to bit allocations that do not give higher picture
quality. For example, bits invested in highly textured areas
often give greater reduction in distortion than bits invested in
smooth areas. However, it is widely recognized that distortion
in smooth areas can yield much lower picture quality than
the equivalent distortion in textured areas. We interpret the
disappointing subjective quality of the SFQ coded images
as reflecting a mismatch between the squared-error distortion
measure that governs our spatial allocation of rate, and the
subjective distortion as perceived by the viewer. We conclude
that optimum spatial allocation of available bit rate is an
important feature of high-performance image coding, but we
emphasize that the optimization criterion should reflect as
closely as possible the true coding objective—typically, sub-
jective picture quality. Modification of the SFQ algorithm to
incorporate such criterion remains a topic for future research.

APPENDIX

PROOF OF PROPOSITION 1:
ALGORITHM I CONVERGES TO ALOCAL OPTIMUM

We will show that , thereby es-
tablishing the proposition, since the number of iterations is
guaranteed to be finite, given that the tree is always being
pruned.

Since is a pruned version of , let us refer to the
set of tree coefficients pruned out in the th iteration
as , i.e.,

or

(11)

Let us now evaluate the costs and , as
follows:

(12)

where (a) above follows from the cost of being the sum
of the Lagrangian cost of all nodes in plus the

cost of zerotree quantizing the set , and (b) follows
from (11).

Similarly, we have

(13)

where (a) above follows from the definition of and (b)
above follows from (11).

We therefore have

(14)

(15)

(16)

(17)

(18)

where (14) follows from (12) and (13). (15) follows because
the second summation of (14) is greater than or equal to
zero [else would not have been pruned out in
the th iteration, by hypothesis]. (16) follows, since

, with . (17)
expresses the rates for theth and th iterations in
terms of their first-order entropies induced by the distributions

and , respectively [note that is
the histogram bin number and refers to the cardinality
or number of elements in ]. (18) follows from the fact
that the summation in (17) is the Kullback–Leibler distance
or relative entropy between the distributions and

, which is nonnegative.
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