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Abstract
Closely coupled systems aim at a more efficient communication
and cooperation between processing nodes compared to loosely cou-
pled systems. This can be achieved by using globally shared semi-
conductor memory to speed up the exchange of messages or to store
global data structures. For distributed database processing, the
database sharing (shared disk) architecture can benefit most from
such a close coupling. We present a detailed simulation study of
closely coupled database sharing systems. A shared store called
Global Extended Memory (GEM) is used for system-wide concur-
rency and coherency control, and to improve I/O performance. The
performance of such an architecture is evaluated and compared
with loosely coupled database sharing systems employing the pri-
mary copy approach for concurrency and coherency control. In par-
ticular, we study the impact of different update strategies (FORCE
vs. NOFORCE) and workload allocation schemes (random vs. af-
finity-based routing). The use of shared disk caches implementing
a global database buffer is also considered. Simulation results will
be presented for synthetically generated debit-credit workloads
and a real-life workload represented by a database trace.

1. Introduction
Growing demands for high performance, scalability, and high
availability require distributed architectures for transaction
and database processing. For this purpose, three general archi-
tectures termed "shared memory" (or "shared everything"), da-
tabase sharing ("shared disk") and database partitioning
("shared nothing") are considered as most appropriate [St86,
Bh88, DG92]. "Shared memory" refers to the use of multiproces-
sors for database processing. In this case, we have a tightly coupled
system where all processors share a common main memory as well
as peripheral devices (terminals, disks). While the shared memory
supports efficient cooperation and synchronization between proc-
essors, it can also become a performance bottleneck thereby limit-
ing the scalability of the architecture [DG92]. Furthermore, there
are significant availability problems since the shared memory re-
duces failure isolation between processors, and since there is only
a single copy of system software like the operating system or the
DBMS [Ki84]. These limitations can be overcome by database
sharing and database partitioning systems which are typically
based on a loose coupling of processors. In loosely coupled systems,
each processor is autonomous, i.e., it runs a separate copy of the op-
erating system, the DBMS and other software, and there is no
shared memory [Ki84]. Inter-processor communication takes place
by means of message passing. Loose coupling can be used for inter-
connecting uniprocessors or multiprocessors. We use the term
processing node (or node) to refer to either a uniprocessor or a mul-
tiprocessor as part of a loosely coupled system.
Database partitioning and database sharing differ in the way the
external storage devices (usually disks) are allocated to the
processing nodes. In database partitioning or "shared nothing" sys-
tems [St86, ÖV91, DG92], external storage devices and thus the
data are partitioned among all nodes. A node can directly access
only data of the local database partition; if remote data needs to be
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accessed a distributed transaction execution becomes necessary.
For this purpose, the DBMS has to support construction of distrib-
uted query execution plans as well as a distributed commit proto-
col. In database sharing or "shared disk" systems [Ra86, Yu87,
MN91], on the other hand, each node can directly access all
disks holding the common database. As a result, no distributed
transaction execution is necessary as for database partitioning.
Inter-node communication is required for concurrency control in
order to synchronize the node’s accesses to the shared database.
Furthermore, coherency control is needed since database pages
are buffered in the main memory of every node. These page copies
remain cached beyond the end of the accessing transaction making
the pages susceptible to invalidation by other nodes. Both system
architectures, database partitioning and database sharing, are
supported by a number of commercially available DBMS (e.g.,
Tandem’s and Teradata’s relational DBMSs follow the shared
nothing approach; IBM’s IMS, DEC’s RDB and CODASYL
DBMSs, Oracle, Ingres, Fujitsu and Unisys support shared disk
environments).
The performance of loosely coupled database partitioning and da-
tabase sharing systems is largely influenced by the typically high
cost of message passing. With the proliferation of high-speed net-
works message transfer times improved substantially, but the
CPU overhead for executing the communication protocols re-
mained very high in most general-purpose systems. Closely cou-
pled systems aim at a more efficient communication and coopera-
tion between nodes compared to loosely coupled systems. This can
be achieved by using globally shared semiconductor memory to
speed up the exchange of messages or to store global data struc-
tures [Ra91a]. To avoid the overhead of process switching, access
times of the global memory should be short enough to allow a syn-
chronous access, i.e., without releasing the CPU. This is only fea-
sible for locally distributed (clustered) systems where all proces-
sors and the global memory reside in close proximity. The global
memory should not be instruction-addressable like main memory
to obtain better failure isolation than for shared memory in multi-
processors. Failure isolation is also improved compared to tightly
coupled systems because the nodes connected to the global memo-
ry are autonomous as for loose coupling, i.e., they have their own
main memory and software copies. This also enhances scalability
since the global memory is merely used for certain global func-
tions.
In [KLS86], DEC’s VaxClusters have been named a closely coupled
system. According to our terminology however, the VaxClusters
represent a loosely coupled shared-disk architecture since inter-
node communication is based on message passing over an inter-
connection network. On the other hand, the shared disk control-
lers may maintain a disk cache which then represents a page-ad-
dressable global memory. This memory can be used for implement-
ing a global database buffer or to exchange pages between
different nodes. Shared disk caches cannot synchronously be ac-
cessed since access times are in the order of 1-5 ms per page [Sm85,
Ra92a]. The shared-disk system TPF [Sc87] which is widely used
in high-volume transaction processing systems also supports the



use of shared disk caches. Furthermore, the shared disk control-
lers in TPF systems implement a simple lock protocol to avoid in-
ter-node communication for global concurrency control [BDS79]. A
similar approach is the use of special-purpose processors for global
functions, e.g., a "lock engine" for global concurrency control in da-
tabase sharing systems [Yu87]. Such an architecture can also be
considered as a closely coupled approach, in particular if special
machine instructions are provided to perform the global services so
that inter-node communication and process switching are avoided.
In [Ra91a], we have considered the use of a special non-volatile
semiconductor store called GEM (Global Extended Memory) for
database processing in closely coupled systems. It turned out that
database sharing systems can benefit most from such a shared
store since it can be used to improve the performance of global con-
currency and coherency control. Furthermore, I/O performance
can be improved by keeping database or log files resident in GEM
or by caching pages at an intermediate storage level between main
memory and disk. In this paper, we present a performance evalu-
ation of different GEM usage forms in database sharing systems.
In particular, the performance of a concurrency control scheme us-
ing a global lock table in GEM is evaluated and compared with a
distributed locking protocol in a loosely coupled database sharing
system. Furthermore, we study the impact of a close coupling on
workload allocation by comparing random with affinity-based
transaction routing. With respect to coherency control, we consider
different update propagation schemes between main memory and
external storage (FORCE vs. NOFORCE). These important as-
pects were not covered in previous studies like [DIRY89, DDY91]
where the intermediate memory was solely used as a global data-
base buffer. Another unique feature of our study is the use of both
synthetically generated workloads and database traces for per-
formance evaluation.
In the next section, we briefly summarize the characteristics of
GEM and its usage forms for database sharing. In section 3, we de-
scribe our simulation model. Section 4 presents the experiments
conducted and analyses the simulation results. Finally, we dis-
cuss related work and provide the conclusions of this investi-
gation.

2. Close coupling with Global Extended Memory
Global Extended Memory (GEM) is assumed to be a non-volatile
semiconductor memory accessible by all nodes in the system (Fig.
2.1). Non-volatility may be achieved either by using a battery back-
up or uninterruptible power supply. GEM shares many character-
istics of extended memory for centralized (mainframe) systems,
e.g., IBM’s Expanded Storage [CKB89, Ra91a]. In particular, a
page-oriented interface with special machine instructions to trans-
fer pages between GEM and main memory is supported. Further-
more, GEM accesses are synchronous with page access times in the
order of 10-50 microseconds. GEM is a largely passive storage unit
that is managed by system software (e.g., the operating system or
the DBMS) of the accessing systems. A consequence of this ap-
proach is that all page transfers between extended memory and
the disk subsystem must go through main memory (Fig. 2.1).
In the central case, extended memory is used to improve I/O per-
formance. This is possible because extended memory supports
much better access times and I/O rates than magnetic disks, albeit
at a substantially higher storage cost. Our previous study of ex-
tended storage architectures in centralized systems [Ra92a]
showed that the best I/O performance is obtained if non-volatile ex-
tended memory is used to keep entire database or log files resident
in semiconductor memory. This is because all disk accesses are
avoided for the respective files in this case. Non-volatile extended
memory can also be used as a write buffer for disks. This approach
only requires a small amount of non-volatile semiconductor mem-
ory to substantially speed up page writes. A modified page is writ-
ten to the write buffer at first, while the disk copy is updated asyn-
chronously, i.e., without increasing response time. A third usage

form of extended memory is for caching database pages at an inter-
mediate storage level to reduce the number of disk reads.
These usage forms are also supported by GEM to enhance I/O per-
formance in the distributed case. To additionally improve inter-
node communication and cooperation, GEM supports an extended
interface with a second access granularity called entry. Entries are
smaller than pages and can be used to implement global data
structures in GEM. The entry size may be defined in multiples of
a unit size, e.g., a double word. Hence, the main instructions for
GEM usage are read and write operations to pages and entries. In
addition, a Compare&Swap operation is assumed to be available
for the unit entry size in order to synchronize concurrent GEM ac-
cesses. Note that despite the fact that we can modify individual
double words with the Compare&Swap instruction, GEM still can-
not directly be modified like main memory. Rather all page and en-
try modifications need to be performed in main memory before
they are written back to GEM. A further advantage of the sketched
access interface is its upward compatibility with extended memory
in centralized systems. The GEM interface is general and simple
permitting fast access times. The use of special-purpose processors
implementing global functions in hardware or microcode, on the
other hand, results in a specialized interface (e.g., lock and unlock
operations) and incurs a high hardware development cost.
A general application of GEM is to use it for inter-node communi-
cation such that all messages are exchanged across the GEM. Such
a fast communication is a general service to be implemented by the
operating system and can by used by database sharing and data-
base partitioning systems without affecting the DBMS. Database
sharing systems can utilize GEM in a number of more specific
ways to be supported by the DBMS. In particular, the most per-
formance-critical functions of database sharing systems, concur-
rency control and coherency control, may greatly benefit from
GEM (see below). Furthermore, GEM can be used to support load
control functions, e.g., by keeping system-wide status information
for transaction routing, and to efficiently construct a global log by
merging local log data [Ra91a].
Global concurrency control is necessary for database sharing to
synchronize accesses to the shared database and enforce serializa-
bility. In loosely coupled systems, the communication overhead for
concurrency control can substantially affect overall performance
so that it is of paramount importance to find algorithms that re-
duce the number of remote lock requests as far as possible. (In this
paper, we consider only locking schemes for concurrency control.)
An overview of concurrency control protocols for data sharing can
be found in [Ra91b]. A storage-based communication with GEM
could already improve performance by reducing the communica-
tion overhead. An alternative is to store a global lock table (GLT)
in GEM that can be accessed by all nodes. Information on lock own-
erships and waiting (incompatible) lock requests of the entire sys-
tem has to be stored in this table to permit every node to decide
upon whether or not a lock request can be granted. Changing con-
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trol information in the GLT, e.g., for acquiring or releasing a lock,
requires (at least) two GEM accesses: one to read the lock entry
into main memory and another one to write the modified value
back to the GEM. In [Ra91a], we have described such a protocol in
detail. In the simplest approach, every lock request is processed
with the GLT in GEM. A refinement to reduce the number of GEM
accesses is to authorize the node’s local lock managers to locally
process certain lock requests.
Coherency control is required to avoid access to invalidated (obso-
lete) database pages cached in local main memory database buff-
ers. Fortunately, it is possible to detect these buffer invalidations
with no extra communication by using extended lock information
(e.g., page sequence numbers that are incremented for every mod-
ification) [Ra86, Ra91b]. If we use a global lock table in GEM for
concurrency control, the additional information for modified pages
can also be recorded in this table to support coherency control.
Coherency control further requires an appropriate update propa-
gation strategy to provide transactions with the current versions
of database pages. The solution to this problem closely depends on
whether a FORCE or NOFORCE scheme [HR83] is used for writ-
ing modified data to external storage (e.g., disk). With FORCE all
pages modified by a transaction are forced (written) to the perma-
nent database on external storage before commit. This approach
simplifies coherency control since it ensures that the most recent
version of a page can always be obtained from external storage.
However, FORCE introduces a high I/O overhead and significant
response time delays for update transactions when all force-writes
go to disk. Therefore, high performance systems usually adopt the
NOFORCE alternative which only requires writing log data at
commit. Since the permanent database is generally not up-to-date
for NOFORCE, coherency control has to keep track of where the
most recent version of a modified page can be obtained. Instead of
reading a page from disk, page requests may have to be sent to the
node holding the current page copy in its buffer. The modified page
may be returned across the shared disks or, preferably, across the
communication system to avoid the disk delays. Alternatively,
pages may be exchanged across GEM in a closely coupled system.
Our performance study for centralized systems has shown that
FORCE can approach the performance of NOFORCE when the
force-writes go to non-volatile semiconductor memory [Ra92a]. In
this study, we will investigate whether this also holds for closely
coupled database sharing systems and how the use of GEM affects
coherency control performance.

3. Simulation model
We developed a comprehensive simulation system to study the per-
formance of closely coupled database sharing systems and to carry
out a comparison with loosely coupled systems. In the closely cou-
pled configurations, we use GEM for global concurrency and coher-
ency control and to store database files. For loose coupling, we em-
ploy the primary copy locking protocol for concurrency and coher-
ency control [Ra86] which showed the best performance of several
alternatives in trace-driven simulations of loosely coupled data-
base sharing systems [Ra88]. For both coupling modes, we support
the FORCE as well as the NOFORCE strategy. The shared disks
may have a volatile or non-volatile disk cache to implement a glo-
bal database buffer. Our simulation model supports both synthetic
workloads and the use of database traces. Workload allocation can
be at random or affinity-based in order to support locality of refer-
ence. The simulation model has been implemented using the
DeNet simulation language [Li89].
Our simulation system consists of three major parts (Fig. 3.1): a
SOURCE which generates and distributes the workload of the sys-
tem, several processing nodes to execute the workload, and a set of
peripheral devices like GEM and magnetic disks with or without
disk cache. In subsection 3.1, we describe the SOURCE component
as well as our database model. Subsections 3.2 and 3.3 cover the
models for processing nodes and external storage devices, respec-
tively. For the sake of brevity, we omit a specification of all param-

eters. However, the major parameter settings used in the experi-
ments will be discussed in section 4.

3.1 Workload generation and allocation
To cover a wide range of applications, we have built several work-
load generators supporting synthetic workloads and the use of da-
tabase traces. In this paper, we consider two workload types name-
ly synthetically generated debit-credit workloads and the trace-
driven approach.
Debit-credit currently represents the most important workload
type for evaluating the performance of transaction and database
systems since it is the base for the widely used TPC-A and TPC-B
benchmarks [Gr91]. This well-known workload consists of a single
transaction type of a banking application that accesses/updates
four record types (ACCOUNT, BRANCH, TELLER and HISTO-
RY). In our model, each record type is stored in a separate data-
base partition. Partitions are primarily used to allocate the data-
base to external storage devices. A partition consists of a number
of database pages which in turn consist of a specific number of
records. The number of records per page is determined by the
blocking factor which can be specified on a per-partition basis. Dif-
ferentiating between records and pages is important in order to
study the effect of clustering which aims at reducing the number
of page accesses (disk I/Os) by storing related objects into the same
page.
There is a many-to-one relationship between ACCOUNT and
BRANCH records and between TELLER and BRANCH records.
While the BRANCH record is randomly selected for a transaction,
the TELLER record is (randomly) selected from the set of TELLER
records associated with the selected BRANCH record. As required
by the TPC benchmark definitions [Gr91], we ensure that 85% of
the ACCOUNT accesses are to an account associated with the se-
lected branch, while the remaining accesses go to an account of an-
other branch. The HISTORY partition is sequentially accessed by
all transactions. Our simulation system permits clustering of
BRANCH and TELLER records. In this case, TELLER records are
stored in the same page where their associated BRANCH record is
stored. This reduces the number of page accesses per transaction
to three and is likely to improve hit ratios; for page-locking the
number of locks per transaction is also reduced by one.
Every transaction references the four record types in the same or-
der so that no deadlocks can occur. The small TELLER and
BRANCH record types are accessed last to keep lock holding times
for them as short as possible.
In the trace-driven simulations, the database and load model is
largely determined by the trace information and the underlying
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application. A trace consists of a certain number of transactions of
different types. For every transaction, the transaction type and all
database (page) references with their access mode (read or write)
are recorded in the trace. Our workload generator simply extracts
the transactions from the trace and submits them to the processing
node according to a specified arrival rate. There may be a common
arrival rate for all transactions in the trace preserving the original
execution order of the workload. Alternatively, we can specify a dif-
ferent arrival rate per transaction type.
For both workload types, we support random routing as well as an
affinity-based routing for workload allocation. For random routing,
we merely ensure that every node is assigned about the same
number of transactions to support load balancing. Affinity-based
routing aims at supporting load balancing as well as a maximum
degree of node-specific locality [Ra92b]. This is easy to achieve for
debit-credit by a BRANCH-based partitioning of the workload so
that every node has to process transactions for the same number of
branches. Since a transaction always accesses TELLER and HIS-
TORY records associated with the respective branch, this routing
also results in a partitioned access to the HISTORY and TELLER
record types. For ACCOUNT, a maximum of 15% of the accesses
may be to a branch associated with another processing node. In the
trace-driven simulations, workload allocation can be defined by a
so-called routing table to achieve an affinity-based routing. The
routing table defines for every transaction type in the trace to
which node(s) transactions of this type should be routed. To deter-
mine the routing tables, we applied iterative heuristics that use
the reference distribution of the workload and the number of nodes
as input parameters to find an affinity-based workload assignment
[Ra92b].

3.2 Model of processing nodes
As indicated in Fig. 3.1, a processing node is represented by a
transaction manager, a buffer manager, a concurrency control
component, a communication subsystem and CPU servers. The
transaction manager controls execution of the transactions re-
ceived from the SOURCE. The maximal number of concurrently
active transactions is restricted by a specified multiprogramming
level (MPL). When all MPL "processing slots" are occupied, newly
arriving transactions must wait in an input queue until they can
be served. To account for the execution cost of a transaction, the
transaction manager requests CPU service at the beginning of a
transaction, for every record access and at the end of a transaction.
The actual number of instructions for each of these services is ex-
ponentially distributed over a mean specified as a parameter.
Processing a record access also entails requesting an appropriate
(read or write) lock from the concurrency control component and
asking the buffer manager to bring the corresponding database
page into the main memory buffer (if not there already). Commit
processing consists of two phases. In phase 1, the buffer manager
is requested to write log data and possibly to force modified data-
base pages to non-volatile storage. In phase 2, the concurrency con-
trol component is requested to release the transaction’s locks.
The buffer manager is responsible for caching database pages in
main memory and for logging. Furthermore, it implements coher-
ency control in conjunction with the concurrency control compo-
nent. The database buffer is managed according to a LRU (least re-
cently used) replacement strategy. Logging is modelled by writing
a single page per update transaction to the log file at commit. In
the case of a FORCE update strategy, all pages modified by a
transaction are also written out at commit time. In the case of NO-
FORCE, we have ignored the checkpointing overhead assuming a
fuzzy checkpointing scheme [HR83] which incurs little overhead
during normal processing. For every I/O, the buffer manager re-
quests CPU service to account for the I/O overhead. I/O operations
to files allocated in GEM are performed synchronously, i.e., the
CPU is kept busy until the read or write access is completed. Con-
currency control is based on strict two-phase locking (long read and
write locks) together with a deadlock detection scheme. Page-level
locking is employed to permit an integrated treatment of concur-

rency and coherency control. For comparison purposes, it is also
possible to switch off concurrency control for a database partition
(no lock conflicts). Switching off concurrency control may also be
appropriate for objects for which accesses are synchronized by us-
ing latches or tailored protocols incurring negligible data conten-
tion.
As mentioned above, two concurrency/coherency control schemes
for database sharing have been implemented. For close coupling,
we use a global lock table in GEM to process all lock requests and
releases. Entries of the global lock table are synchronously ac-
cessed and written back using a Compare&Swap operation. Detec-
tion of buffer invalidations is based on page sequence numbers
that are stored in the page header and in the global lock table. For
NOFORCE, we additionally record in the global lock table the cur-
rent "page owner", i.e., the node where the page was modified most
recently. When a buffer invalidation is detected during lock
processing (by comparing the page sequence number of the GLT
with the one of the cached page copy) or when no copy of the page
is locally cached, the page is requested from the current owner
rather than read from external storage. Pages are returned in a
"large" message across the communication system. After the owner
has written out a modified page, the GLT entry is adapted to indi-
cate that the most recent page version can be read from the perma-
nent database.
For loose coupling, primary copy locking (PCL) is employed for con-
currency/coherency control. In this distributed scheme, the data-
base is logically partitioned so that each node is assigned the syn-
chronization responsibility (or global lock authority, GLA) for one
partition. Lock requests against the local partition can be handled
without communication overhead and delay, while other requests
have to be directed to the authorized processor holding the GLA for
the respective partition. To reduce the number of remote lock re-
quests, GLA and workload allocation should be coordinated. Our
heuristics for determining routing tables also compute GLA as-
signments to achieve a maximum degree of local lock processing.
For debit-credit, each node is assigned the GLA for an equal
number of BRANCH records and their associated TELLER, AC-
COUNT and HISTORY records.
Coherency control for PCL also uses pages sequence numbers to
detect buffer invalidations without extra messages. For NOFOR-
CE, a special update propagation scheme is used that avoids extra
messages for page transfers as well. In this case, the GLA node ad-
ditionally functions as the owner for all pages of its partition.
Therefore, when a page is modified at a node not holding the GLA,
the new page version is returned to the GLA node at commit. This
does not require an extra message since the page transfer can be
combined with the lock release message. A consequence of this ap-
proach is that the current version of a page can always be obtained
from the GLA node or from the permanent database. This has the
advantage that the current version of a page can be supplied by the
GLA node together with the lock grant message, thereby avoiding
extra messages and delays for page requests. For more details of
the protocol, the reader is referred to [Ra86, Ra91b].
The communication subsystem processes send and receive opera-
tions for messages introduced by the concurrency/coherency con-
trol protocol. Messages are exchanged over an interconnection net-
work and cause CPU overhead at the sending and receiving node.
The CPU overhead for "long" messages (page transfers) is higher
than for "short" messages. The number of CPUs per node and the
capacity per CPU (in MIPS) are provided as simulation parame-
ters.

3.3 External devices
Database and log files can be allocated to a variety of external stor-
age devices. In this study, we consider allocation to conventional
disks, disks with volatile or non-volatile disk caches, and to GEM.
All storage units are modelled as servers to account for possible
queuing delays. Disk access times consist of three major compo-
nents: transmission delay for exchanging pages between main
memory and disk controllers, controller delay and disk delay. The
4



disk delay can be avoided in some cases when volatile or non-vola-
tile disk caches are used. For the management of these caches we
followed the realization of commercial (IBM’s) disk caches [Gr89].
In particular, LRU is used for page replacement. Volatile disk
caches avoid a disk access for reads that can be satisfied in the
cache (read hit). Non-volatile disk caches additionally try to satisfy
all write I/Os in the disk cache and to update the disk copy of a
modified page asynchronously.
The GEM implementation supports different service times for
page and entry accesses. The communication network is represent-
ed by a simple delay model characterized by a fixed transmission
bandwidth.

4. Performance Analysis
In this section, we present some results obtained with the de-
scribed simulation model. Response time will be the primary per-
formance metric in this study since our simulation system uses an
open queuing model. (Detailed statistics on the composition of re-
sponse time and device utilization, waiting times, queue lengths,
lock behavior, hit ratios, etc. are also available in order to explain
the results). Most of our experiments (subsections 4.2 through 4.5)
use the debit-credit workload. In 4.1, the parameter settings for
these runs are described. We first analyze closely coupled configu-
rations for different routing and update propagation strategies
(4.2), buffer sizes (4.3) and database allocations (4.4). In subsec-
tions 4.5 and 4.6, we present a performance comparison between
closely and loosely coupled database sharing systems for debit-
credit and a real-life workload represented by a database trace, re-
spectively.

4.1 Parameter settings
Table 4.1 shows the most important parameter settings for the
debit-credit experiments. The number of nodes (N) has been varied
from 1 to 10 with an arrival rate of 100 TPS (transactions per sec-
ond) per node. The database size grows proportionally with the ar-
rival rate as required by the TPC benchmarks [Gr91]. Thus we
have a 10-fold database size for 10 nodes (100 million ACCOUNT
records) compared to the central case. In all experiments, we used
clustering of BRANCH and TELLER records (see 3.1) so that
BRANCH and TELLER records reside in the same partition and
only three different pages are accessed by a transaction. The size
of the HISTORY partition is immaterial here since every transac-
tion adds a new record at the end of this sequential file.
The CPU capacity is 40 MIPS per node (4 processors of 10 MIPS)
leading to a utilization of at least 62.5% for 100 TPS and an aver-
age pathlength of 250.000 instructions per transaction (not includ-
ing I/O and communication overhead). The default buffer size per
node is 200 pages resulting in an aggregate buffer size that is twice

as large as the BRANCH/TELLER database partition. We did not
set locks for HISTORY assuming an implementation that synchro-
nizes accesses to the current end of this file by latches. Without I/
O queuing delays, the average access time per page is 50 µs for
GEM, 1.4 ms for disk cache, 6.4 ms for log disks and 16.4 ms for
disks storing database partitions. For log disks, a reduced access
time has been assumed since the log file is sequentially accessed
shortening disk seek times. The average GEM access time per en-
try is assumed to be 2 µs. The communication overhead is 5000
(8000) instructions for sending or receiving a short (long) message.
Thus a remote lock request for PCL costs at least 20.000 instruc-
tions, a page request 26.000 instructions. The multiprogramming
level has been chosen high enough to avoid queuing delays at the
transaction manager.
Parameters that are changed include the concurrency/coherency
control strategy (close vs. loose coupling), the number of nodes, the
routing strategy, the update strategy, buffer size, the allocation of
log and database files, and the workload type (debit-credit vs.
trace-driven).

4.2 Influence of workload allocation and update strategy
The first experiments concentrate on closely coupled database
sharing configurations using a global lock table in GEM for concur-
rency control. Fig. 4.1 shows the average transaction response
times for up to 10 nodes and different workload allocation (random
vs. affinity-based routing) and update propagation schemes
(FORCE vs. NOFORCE). All database and log files are allocated to
a sufficient number of disks (without disk caches) to avoid I/O bot-
tlenecks. While random routing may rarely be used for debit-credit
workloads in practice, considering this case illustrates the per-
formance implications when no affinity-based routing can be
found.
Fig. 4.1 shows that for both update strategies response times re-
main almost constant in the case of affinity-based routing when in-
creasing the number of nodes, despite the linear increase in
throughput by 100 TPS per node. This was possible although we do
not utilize locality of reference for locking in the closely coupled
configurations, but access the global lock table in GEM for every
lock. However due to the short entry access times of GEM, this re-
sulted in an almost negligible delay for concurrency control. Even
for 1000 TPS (10 nodes) GEM utilization was less than 2% so that
no significant queuing delays occurred.
Response times for FORCE are higher than for NOFORCE prima-
rily because of the I/O delays for the force-writes at commit. In con-
trast to affinity-based routing, response times for random routing
increase with more nodes. This was not because of concurrency
control since the cost of GEM locking is very low independent of the
workload allocation. Rather the response time increase for random
routing is due to a growing number of buffer invalidations and re-
duced effectiveness of main memory buffering. These effects are
exclusively caused by the small BRANCH/TELLER partition since

Parameter Settings
number of nodes N 1 - 10
arrival rate 100 TPS per node
DB size BRANCH: 100  records,   blocking factor 1
 (per 100  TPS) TELLER: 1.000  records, bl. factor 10 (clustered w. BRANCH)

ACCOUNT: 10.000.000   records, blocking factor 10
HISTORY: blocking factor 20

path length 250.000 instructions per transaction
lock mode page locks for BRANCH, TELLER, ACCOUNT;

no locks for HISTORY
CPU capacity per node: 4 processors of 10 MIPS each
DB buffer size 200 (1000) pages per node
GEM parameters 1 GEM server;

50 µs avg. access time per page;  2µs avg. access time per entry
communication bandwidth: 10 MB/s

5000 instr. per send or receive of "short" messages (100 B)
8000 instr. per send or receive of "long" messages (4 KB)

I/O overhead 3000 instructions per page (GEM: 300 instr. for initialization)
avg. disk access time 15 ms for DB disks; 5 ms for log disks
other I/O delays avg. controller service time: 1 ms;

avg. transfer time per page: 0.4 ms

Tab. 4.1:   Parameter settings for debit-credit workload

2 5 10
70

80

90

100

110

120

130

140

re
sp

on
se

 ti
m

e 
[m

s]

 FORCE, random routing

 FORCE, affinity-based routing

 NOFORCE, random routing

 NOFORCE, affinity-based routing

1

Fig. 4.1: Influence of workload allocation and update strategy for GEM
locking  (100 TPS per node)
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HISTORY pages are sequentially accessed1 and no hits could be
achieved for the huge ACCOUNT record type. With random rout-
ing the same BRANCH/TELLER pages are referenced and modi-
fied in all nodes so that with a growing number of nodes these pag-
es are redundantly cached and invalidated to an increasing extent.
This caused the hit ratios for BRANCH/TELLER accesses to drop
from 71% in the centralized case to 13% for 5 and merely 7% for 10
nodes. With affinity-based routing, we achieved in all database
sharing configurations the same hit ratios as for one node since
BRANCH/TELLER references occur completely partitioned in this
case (see 3.1).
For random routing, the drop in hit ratios led to a larger response
time increase for FORCE than for NOFORCE (Fig. 4.1). FORCE
results in a disk access for every buffer invalidation and buffer
miss to read in the respective page. For NOFORCE, on the other
hand, many BRANCH/TELLER pages could be obtained much
faster by sending a page request to another node2. Since the
number of page requests per transaction increased with the
number of nodes, the difference between the FORCE and NOFOR-
CE results also increased.

4.3 Influence of buffer size
To study the influence of the buffer size, we conducted simulations
with an increased buffer size of 1000 pages per node and compare
the results with those for buffer size 200 (Fig. 4.2). Since response
times remain largely unchanged for affinity-based routing when
increasing the number of nodes, we only consider random routing
in this experiment. The larger buffer could hold all BRANCH/
TELLER pages in the centralized case permitting an optimal hit
ratio. In the database sharing configurations however, the effec-
tiveness of the larger buffer decreases with more nodes since it
caused even more buffer invalidations than for the small buffer
size. This was particularly negative for FORCE which benefits
much less from the larger buffer than NOFORCE (Fig. 4.2). With
NOFORCE, almost all buffer misses for BRANCH/TELLER could
be satisfied by a page request while for the small buffer size this
was only partially possible. Thus the negative impact of buffer rep-
lication on hit ratios and the number of invalidations is reduced by
the fact that it also supports a fast update propagation between
nodes. On the other hand, page requests cause a higher CPU over-
head than disk I/Os causing increased CPU queuing delays and
lower throughput (see below).

4.4 Influence of database allocation
Due to the high access frequency to the "hot" BRANCH-/TELLER
partition this database file is largely responsible for the I/O and co-
herency control performance for debit-credit. Therefore, we com-
pletely allocated this partition to GEM in our next experiment (All
other files were still allocated to magnetic disks). Fig. 4.3 compares
the resulting response times with the disk-based allocation for
both routing and update strategies. Note that both diagrams in
Fig. 4.3 use the same scale to facilitate a comparison of the results.
Fig. 4.3a illustrates that allocating the BRANCH/TELLER parti-
tion to GEM has almost no effect on response times for NOFORCE:
with both routing strategies no significant improvements com-
pared to the disk-based allocation are achieved. For buffer size
1000 and affinity-based routing there are almost no I/Os on
BRANCH/TELLER for NOFORCE so that the GEM allocation did
not improve performance. With random routing, the GEM alloca-
tion also showed little impact on response times since almost all
buffer misses for BRANCH/TELLER are satisfied by page requests
and direct page transfers between nodes. Hence, for NOFORCE
the GEM allocation can only improve performance for small buffer
sizes when not all buffer misses can be avoided or satisfied by a
page request. GEM could also be used for implementing the page
transfers.
On the other hand, the GEM allocation of BRANCH/TELLER sig-
nificantly improved performance for FORCE, in particular with
random routing (Fig. 4.3b). One disk access is already saved by this
allocation for writing the modified BRANCH/TELLER page at
commit. In addition, all buffer misses can be satisfied very fast
from GEM rather than from disk. This was particularly helpful for
random routing with its high number of buffer invalidations and
misses. As a result, the decrease in hit ratios with more nodes had

1. Due to the blocking factor of 20, we have a hit ratio of 95% for HISTORY.
2. A page request caused an average delay of about 6.5 ms until the requested page

was received, compared to more than 16.4 ms for a disk access. Most of the de-
lay for a page request was due to CPU queuing and service times for message
processing.

21 5 10
50

60

70

80

90

100

110

120

130

140
 FORCE, 200 pages

 FORCE, 1000 pages

 NOFORCE, 200 pages

 NOFORCE, 1000 pages

Fig. 4.2: Influence of buffer size for random routing

re
sp

on
se

 ti
m

e 
[m

s]

N

6

a) NOFORCE
N

random  routing

affinity-based routing

21 5 8 10
60

70

80

90

100

110

120

130

140

21 5 8 10
N60

70

80

90

100

110

120

130

140

disk, random routing

disk, affinity-based routing

 GEM-resident, random routing

 GEM-resident, affinity-based routing

b) FORCE

Fig. 4.3: Influence of storage allocation for BRANCH/TELLER  (buffer size 1000 )
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Fig. 4.6: Throughput per node for PCL and GEM
locking  (buffer size 1000)
almost no impact on response times. Thus, GEM allocation of the
BRANCH/TELLER partition in combination with the fast GEM
locking achieved almost the same response times for random rout-
ing than for affinity-based routing in the case of FORCE! Further-
more, no significant response time increase compared to the cen-
tral case occur anymore.
Since I/O delays can also be reduced by disk caches, we additional-
ly considered allocation of the BRANCH/TELLER partition to
disks with volatile or non-volatile disk caches. The response time
results for these configurations in the case of FORCE are shown in
Fig. 4.4. For random and affinity-based routing, a non-volatile disk
cache achieved almost the same response times as with the GEM
allocation. This was because all BRANCH/TELLER pages could be
buffered in the shared disk cache. Hence, all misses in main mem-
ory could be satisfied from this global buffer saving the disk access.
In addition, the disk delay for the force-write at commit could be
avoided due to the non-volatility of the cache. In contrast, the vol-
atile disk cache can only avoid reading disk accesses. This helped
to achieve about the same response times for random routing than
with an affinity-based routing since all buffer invalidations could
be satisfied from the shared disk cache. For affinity-based routing,
a volatile disk cache is not useful because in this case no main
memory misses occur on BRANCH/TELLER for the chosen buffer
size (1000). Response times for FORCE could be further improved
by using a non-volatile disk cache for the HISTORY and AC-
COUNT disks to speed-up the force-writes for these files.
Our results illustrate that a close coupling via GEM permits a very
efficient solution for concurrency and coherency control. Even for
random routing and update-intensive workloads such as debit-
credit, the negative impact of buffer invalidations can largely be
avoided by allocating "hot" database partitions to GEM or using a
shared disk cache to hold frequently modified pages. Hence, such
a storage allocation permits the choice of simpler workload alloca-
tion strategies without sacrificing performance.

4.5 Loose vs. close coupling
To compare close with loose coupling we repeated most of the above
experiments for loosely coupled systems using PCL for concurren-
cy and coherency control. Fig. 4.5 shows the resulting response
time results for both PCL and GEM locking and for the different
buffer sizes, update and workload allocation strategies. All files
are allocated to magnetic disks without cache.
A first observation is that in the case of affinity-based routing, PCL
always achieved virtually the same response times than GEM
locking. This was because the coordination between workload and
GLA allocation permitted a local concurrency control for PCL for
almost all accesses3. Furthermore, the same I/O behavior than
with close coupling was achieved without replicated caching of

pages and buffer invalidations. These results underline that the
debit-credit workload permits an ideal partitioning for distributed
systems supporting a linear throughput increase without signifi-
cant response time deterioration.
Significant differences between the loosely and closely coupled con-
figurations occur for random routing. In this case, PCL is always
worse than GEM locking because of the communication overhead
for concurrency control. While GEM locking does not incur a signif-
icant overhead and delay, the communication overhead for PCL
grows with the number of nodes leading to increasing response
time differences compared to close coupling. While 50% of the lock
requests could be locally processed for two nodes with PCL, this
share is reduced to 10% in the case of 10 nodes. However, the max-
imal number of messages is still comparably small since there are
at most two remote lock requests per transaction (for ACCOUNT
and BRANCH/TELLER).
As can be seen from Fig. 4.5, the difference between PCL and GEM
locking is smaller for NOFORCE than for FORCE and for NOFOR-
CE it is further reduced for buffer size 1000 compared to buffer size
200. This is because PCL supports a more efficient update propa-
gation for NOFORCE than with GEM locking. For GEM locking
buffer invalidations cause extra messages for page requests and
transfers, while PCL always combines these messages with regu-
lar concurrency control messages (see 3.2). As a result, page trans-
fers only cause a slight increase in communication overhead for
PCL which was particularly helpful for a larger buffer. Of course,
the total communication overhead is still higher for PCL since the
number of global lock requests is more than twice as high than the
number of page requests (for ACCOUNT lock requests but no page
requests occur).
The communication overhead limits the achievable transaction
rates for PCL compared to GEM locking. This is illustrated by Fig.
4.6 depicting the transaction rates per node for a CPU utilization
of 80%. For affinity-based routing there is almost no communica-
tion overhead permitting a linear throughput increase. With ran-
dom routing, the maximal throughput is about 15% lower for the
message-based PCL protocol compared to close coupling. FORCE
supports higher transaction rates than NOFORCE for random
routing since the overhead per I/O is much smaller than for page
transfers. For GEM locking the page requests/transfers introduce
a notable overhead since they cannot be combined with other mes-
sages as for PCL.

3. Communication may only be needed for up to 15% of the ACCOUNT accesse
Hence, at most 0.15 global lock requests (0.6 messages) per transaction a
needed for PCL and affinity-based routing.
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4.6 Results for rea l-lif e wor kload
For a further evaluation of closely coupled database sharing sys-
tems we conducted a number of trace-driven simulation runs. We
present the results for one of the traces with a high share of read
accesses. The trace consists of more than 17.500 transactions of
twelve transaction types and about 1 million database accesses.
There are significant variations in transaction size; the largest
transaction (an ad-hoc query) performs more than 11.000 accesses.
The database size is about 4 GB, but merely 66.000 different pages
in 13 files were referenced during the trace period. Access distribu-
tion is highly non-uniform even within transaction types making it
difficult to support an affinity-based routing. About 20% of the
transactions perform updates, but only 1.6% of all database access-
es are writes.
Fig. 4.7 shows the response time results obtained for this workload
for GEM locking and PCL with random and affinity-based routing.
Response times refer to an artificial transaction performing the av-
erage number of database accesses. The parameter settings have
largely been chosen as for debit-credit (Table 4.1), in particular the
CPU and device characteristics. The number of nodes has been
varied only between 1 and 8. We selected an arrival rate of 50 TPS
per node and a local buffer size of 1000 pages. We only consider the
NOFORCE results for the real-life workload since FORCE did not
cause much differences due to the low update activity.

Fig. 4.7 shows that for both workload allocation strategies close
coupling clearly outperforms loose coupling and that the response
time differences increase with the number of nodes. As for the deb-
it-credit workload, GEM locking did not cause a significant delay
for global concurrency control. Therefore, the results for close cou-
pling are largely influenced by the I/O behavior and thus by the
workload allocation. With affinity-based routing, we achieved bet-
ter response times for the closely coupled database sharing config-
urations than in the central case. This is because the aggregate
buffer size in the system increases with the number of nodes while
the database size remains constant in the trace-driven simulations
(in contrast to debit-credit). This supported better hit ratios for da-
tabase sharing than in the central case. With random routing, on
the other hand, response times for database sharing are higher
and deteriorate with increasing number of nodes despite the high-
er buffer capacity. Buffer effectiveness for random routing is low-
ered by a high degree of replicated caching. Furthermore, random
routing apparently caused a lower degree of inter-transaction lo-
cality than in the central case. Due to the low update frequency,
buffer invalidations as well as lock conflicts had no significant im-
pact on performance for the real-life workload.
While the loosely coupled configurations experienced a similar I/O
behavior, their performance suffered from the communication
overhead for concurrency control. For PCL, the number of global
lock requests increased with more nodes, even in the case of affin-
ity-based routing. This was caused by the non-uniform access dis-
tribution for the real-life workload and its limited "partitionabili-

ty". Furthermore, since the database size remains constant the av-
erage GLA partition size decreases with the number of nodes
almost inevitably leading to more global lock requests. Thus the
share of locks that could be locally processed dropped from 63% for
2 to 35% for 8 nodes with affinity-based routing (for random rout-
ing from 50% to 12.5%). These shares could be improved by a read
optimization permitting a node in many cases to locally process
read locks even without GLA [Ra86, Ra91b]. This optimization
which is already reflected in Fig. 4.7 allowed a local processing for
78% (65%) of the locks for 2 nodes and 65% (33%) for 8 nodes with
affinity-based (random) routing.
In the loosely coupled configurations, CPU utilization was sub-
stantially higher and more unbalanced than for close coupling
thereby reducing the achievable throughput. With GEM locking
CPU utilization was balanced and merely about 45% for 50 TPS
per node. The communication overhead for PCL caused an average
CPU utilization of 78% for 8 nodes and random routing with some
nodes utilized by more than 85%. This led to significant queuing
delays and increased delays for remote lock requests. For 8 nodes
the achievable throughput for loose coupling is about 30% lower
than with GEM locking, with random routing even by more than
40%. Close coupling supports a linear throughput increase for the
real-life workload even with random routing.

5. Related Work
Numerous papers have studied concurrency and coherency control
in loosely coupled database sharing systems. A discussion of these
studies is beyond the scope of this paper, but can be found in our
survey of the field [Ra91b]. Here, we will only discuss papers that
have considered a close coupling and are therefore directly related
to this study.
In [Yu87], the performance of database sharing systems using a
centralized lock engine for concurrency control was analyzed. De-
tails of the lock engine realization were not discussed. In the eval-
uation, lock service times between 100 and 500 µs were assumed
so that much smaller transaction rates than with GEM locking
could be supported. Performance was largely determined by lock
contention and an inefficient coherency control approach requiring
a broadcast message for every update transaction to detect buffer
invalidations. Furthermore, a disk-based FORCE scheme was
used for update propagation.
In [DIRY89, DDY91, YD91], a global semiconductor store called
Shared Intermediate Memory (SIM) was considered for use in da-
tabase sharing systems. In contrast to GEM, SIM is assumed to be
managed by a central controller and is purely page-oriented. The
only usage form of SIM is for caching database pages to improve
the I/O behavior as it can already be achieved by a shared disk
cache. All three studies assumed a FORCE strategy for update
propagation and used analytical performance models. The studies
found that the SIM-based configurations support much better re-
sponse times than without such a memory. This was primarily be-
cause the response time delay of FORCE could be avoided by up-
dating the disk asynchronously from SIM. However, such an im-
provement is not a database sharing-specific optimization but can
already be achieved in centralized systems, e.g., by a non-volatile
disk cache [Ra92a].
[DDY91] also found that response time increases due to buffer in-
validations can be kept very low when frequently modified pages
are cached in SIM. This corresponds to our observations for using
shared disk caches or a GEM allocation of those files in the case of
FORCE. The focus of [DDY91], however, was on comparing differ-
ent choices of which pages are cached in the shared buffer. Limita-
tions of the study (besides the restriction to FORCE) include the
assumption of random routing and the use of broadcast invalida-
tion for coherency control.

6. Conclusions
We have presented a performance evaluation of closely coupled da-
tabase sharing systems using Global Extended Memory (GEM).
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GEM is a fast, non-volatile semiconductor memory that can be syn-
chronously accessed by all processing nodes. Its access interface
consists of read and write operations to pages and so-called entries
as well as operations for access synchronization (Compare&Swap).
GEM can be used to improve I/O performance (reduce the number
of disk accesses), to implement a fast message transfer between
nodes, and to store global data structures, e.g., a global lock table
for concurrency control.
We compared the performance of closely coupled database sharing
systems using a global lock table in GEM with loosely coupled sys-
tems applying primary copy locking. We found that GEM locking
introduces an almost negligible delay and overhead for concurren-
cy control leading to significantly better response times and trans-
action rates than with loose coupling. This was particularly signif-
icant for real-life workloads for which it is often difficult to deter-
mine an affinity-based workload allocation supporting a high
degree of local lock processing and balanced system utilization.
With GEM locking high performance could even be achieved for
random routing since the cost of global locking is independent of
the routing strategy and reference distribution of the workload.
Hence, GEM locking reduces the need for affinity-based routing
making it easier to effectively utilize the processing capacity of dis-
tributed systems.
However, the routing strategy also affects I/O performance so that
considering the workload’s reference characteristics for transac-
tion routing may still be important. In particular, random routing
leads to many buffer invalidations for update-intensive workloads
thereby lowering hit ratios. As our study has shown, the perform-
ance implications of these buffer invalidations largely depend on
the update strategy and the chosen database allocation. For a con-
ventional, disk-based database allocation NOFORCE supports sig-
nificantly better performance than FORCE. With FORCE, each
buffer miss results in a disk access while NOFORCE frequently
permits requesting the page much faster from another node, in
particular for larger buffers and with a higher number of nodes. On
the other hand, allocating frequently modified files in non-volatile
semiconductor memory like GEM or using a global database buffer
for them (e.g., a shared disk cache) results in a more efficient co-
herency control for FORCE than for NOFORCE. This is because
accessing the shared semiconductor memory is much faster and
causes less CPU overhead than requesting and transferring pages
across the communication system. Using GEM for implementing
the page transfers would also improve coherency control perform-
ance for NOFORCE. Thus even for random routing, the negative
performance impact of buffer invalidations can largely be avoided
by utilizing shared semiconductor memory.
For the real-life workload, hit ratios were significantly lower for
random routing than for the (sub-optimal) affinity-based workload
allocation even so almost no buffer invalidations occurred. This
was because a lower degree of inter-transaction locality than in the
central case could be preserved and because the higher amount of
replicated caching reduced the buffer effectiveness. Without affin-
ity-based routing, these effects can only be compensated by paying
the extra cost for increased buffer sizes (larger main memory).
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