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Abstract

We outline the design of an optimal, efficient, infinite impulse response
edge detection filter. We compute the optimal filler based on Canny’s
SNR - Localization product criterion and a constraint on the spuri-
ous noise response. However, we incorporate an appropriate spatial
width measure for infinite impulse responses directly in the expres-
sion for spurious response. The three crileria are then mazimized
using the variational method and non-linear constrained optimization.
We tabulate the optimal filter parameters for various performance cri-
teria and present a complete methodology for implementation using
approzimating recursive digital filiering. The approzimating filter is
separable into two linear fillers operating in two orthogonal directions.
The implementation is very simple and compuiationally efficient, hav-
ing constant time ezecution with respect to scale, facilitating real time
hardware implementation.

I. Introduction

The value of edge detection as a starting point for many computer
vision and image analysis paradigms is well known. Of the existing
approaches [1, 2, 3], detecting edges by linear filtering is one of the
most common. Canny [4] approached it by formulating three criteria
desired in any edge detection filter: good detection, good localization,
and low spurious response. He maximized the product of the first
two criteria while keeping the spurious response criterion constant.
Using the variational approach, he derived a set of finite extent step
edge detection filters corresponding to various values of the spurious
response criterion (or multiple response criterion, as we call it). Canny
approximates the finite extent filter derived for step edges by the first
derivative of a Gaussian. As Deriche [5] points out, nio analysis was
done in this approximating stage. The derived filter was of finite
extent, but was approximated by an infinite extent filter.

Our approach is more direct; we formulate the three criteria as appro-
priate for a filter of infinite impulse response and, using the calculus
of variations, optimize the composite criteria. Although the filter we
derive is also well approximated by first derivative of a Gaussian, we
are able to achieve a superior recursively implemented approximation
directly. We do not recommend using the first derivative of a Gaus-
stan.

We proceed directly to infinite impulse response (IIR) filters. An IIR
filter can be approximated by a recursive digital filter which is spatially
scaled by a change of coefficients, not the filter order. Hence, these
filters exhibit constant run time with respect to scale. For FIR filters,
scaling induces a change in the convolution mask producing a corre-
sponding change in the number of computations required at the time
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of execution. IIR filters are storage efficient and so are very amenable
to sequential hardware implementation. The filter we present is sepa-
rable, i.e. it can be decomposed into separate row and column convo-
lutions, so we can process all the columns and the rows simultaneously,
making the edge detection process parallelizable.

II. Optimal Edge Detection Criteria

‘We derive the operator for a 1D edge and then extend to the 2D case.
Let the impulse response of the desired filter be f(z), and denote the
edge itself by G(z). The edge is assumed to be centered at z = 0.
Noise is assumed to be additive, white, and Gaussian with variance
o2, The three optimality criteria are as follows, the first two being

those proposed by Canny [4].

Good Detection: In white Gaussian noise the probability of false de-
tection decreases with increasing signal to noise ratio. The expression
for signal to noise ratio (SN R) at the edge location is:
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Good Localization: This criterion is expressed as the inverse of the
variance of the position of the maximum of the filter response about
the correct location. A Taylor series expansion of the filter output
yields the mean-squared value of the deviation, E[z2):
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Localization is defined as the reciprocal of E[z2):

o 2, G (=2)f(z)dz
Localization =
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Low Multiple Response: This criterion constrains the number of
spurious maxima within the operator’s spatial spread. The expected
distance between maxima, of the output noise is set to some constant,
k, times the operator width, W. An expression for the mean distance
between maxima of the filter output in response to noise is found [4],
using a result due to Rice [6), to be of the form:
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It is desirable that k is as large as possible so that the distance between
spurious maxima is as great as possible.



The multiple response criterion must be modified to apply to filters of
infinite extent. Canny and Deriche [5] each set £mar = kW, where W
is the width of the operator and k is a constant. In Canny’s case, W
was well defined, so he sought to maximize Zmaz. But for an operator
of infinite extent, we need an alternate expression for the width of tl{e
operator. It is easy to argue that the optimal filter for a sym‘metnc
edge will be symmetric while the operator for an anti-symmetric edge
will be anti-symmetric [4]. Given that G(z) is either purely symmetric
or purely anti-symmetric, the filter f(z) will be purely syrm.netr.ic or
purely anti-symmetric, respectively, about ¢ = 0. Thus, in either
event, f2(z) will be symmetric about z = 0. We can therefore fief?ne
the width of the filter as the normalized root mean square deviation
of the function f?(z) about the origin:
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Since this expression, the RMS spatial width, leads to the right scaling
properties for the multiple response criterion, its use is justlﬁfed. Note
that this is analogous to the expression for the RMS bzmdwld.th of a
filter. Torre and Poggio used the same expression for spatial wn'lth [7
(their Equation 3.10). We substitute this expression for W in the
righthand side of Equation (3) and change the limits on the integrals
to oo and our modified multiple response criterion (M RC) becomes:
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As this criterion is increased (numerically), the resulting filter will
exhibit fewer spurious responses. Note that the multiple response
criterion is invariant with respect to spatial scale, i.e., M RC[f(z/a)] =
M RC[f(z)] producing a multiple response criterion which is a function
of the filter’s inherent shape and not its scale.

MRC=27r(

III. Design of the Optimal IIR Step Edge Detector

A. Optimality criterion for step edges

Although these criteria can be used to derive detectors for various
types of edges, we restrict the remainder of the discussion to step
edges. For a step edge G(z) = Au(z), where u(z) is the unit step
and A is the amplitude of the edge. Following Canny, we modify the
signal to noise ratio and the localization so that they are invariant to
signal amplitude and noise power by defining A and I in the following
manner: & = £SNR A = % Localization.

Substituting for G(z) in the expressions for SN R and Localization, we
have the product £A, Equation (8), which is invariant with respect to
spatial scale. We then maximize this product, subject to the multiple
response constraint given by Equation (5).
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B. The Variational Approach

We now seek a function, f(z), which maximizes LA, subject to mul-
tiple response criterion (M RC). The calculus of variations [8] of-
fers perhaps the most elegant solution. To maximize XA we appro-
priately extremize its integrals. Following Canny, we transform the
maximization of (6) to constrained minimization involving only the
integral functionals. One integral is chosen to be extremized while
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the rest are held constant. Since jfw f?(z)dz is in the denomi-
nator of the multiple response criterion, Equation (5), we choose to
minimize it holding the rest constant with the boundary conditions:
f(0) =0, f(—00) = 0, f/(0) = 5, f/(—o0) = 0. The solution is then
a function of those undetermined constants which are in turn chosen
to maximize our optimality criterion. By reciprocity, we could have
chosen to extremize any of the other integrals while keeping the rest
constant, and the solution would be the same. Since the optimality
criterion is now a function of the reduced set of constants, it is specified
by them.

Using the fact that the integrals over oo will be twice the value of the
integrals over —oo to 0 and the isoperimetric constraint [8], we form a
composite functional ¥(z, f, f', f) using Lagrange multipliers:

Uz, £, f, ") = £2(2)+0f2 (@) Ao f P (2)+daz? F(2) +2af (=) (7)

We want to minimize the integral of this functional, ¥(z, f, f', f"),
denoted by J[f], over all admissible functions f(z).
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A necessary condition for a minimum is given by the Euler equation
corresponding to the functional ¥ [8]:
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Any solution of this equation is a function of the unknown X's. There-
fore, before actually solving for f we have to identify the constraints
on the Ms. Ag > 0 and A4 < 0 because their associated functions are
to be minimized and maximized, respectively. Other constraints can
be found by considering the second variation, 62J, of ¥, which leads
to:

0
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Equation (9) must hold for all admissible functions g(z). Note that (9)
is always true if A, and ), are positive because g is always positive
(is associated with the integral which is to be minimized) and the
rest of the terms are squares. For the case when either A; or Az is
negative, the following conditions must hold for the variation to be
always positive.

{ A <4y

for Ay >0and A, <0
A< dads

for A >0 and A; <0 (10)
Notice that both A; and A; being negative does not assure that the
second variation, 62J, is always positive. We constrain our solution
using (10). Again, when both \; and A, are positive, the second
variation is positive; in that case we impose no further constraints.

C. Constrained Optimization

The solution, f, to the differential equation (8) is a function of five
parameters, A1, Az, Az, A¢, and f/(0). f’(0) has to be considered be-
cause of the unknown boundary condition, f/(0) = ¢5, which can be
set to some a priori value because optimality is unaffected by filter
amplitude. However, the constrained optimization (discussed later)
goes faster if we let the slope of the filter at £ = 0 be unknown.

Thus, our composite criterion, consisting of the product, LA, subject
to M RC, was a function of f(z) but is now a function of five variables.
Values for the variables must be found which maximize the compos-



ite criterion. Since direct evaluation of the integrals appears difficult,
we find a numerical solution to Equation (8) and then do a nonlin-
ear constrained optimization of the composite criterion as a function
of the five variables. This constrained optimization problem can be
transformed into an unconstrained problem by the penalty method [9],
which introduces penalties for violating each constraint. This forms a
new function of the A’s and f’(0), p(f), to be optimized:

N
p(f) = EA"ZI‘iPi

P;, the penalty for the i** constraint, is nonzero if the constraint is
violated. For greater y;, the corresponding constraint is satisfied more
strictly. The complete paradigm is illustrated in Fig. 1. At each
cycle we find the A's for which p(f) is a maximum. For the next
cycle we increase the u’s and use the A's of the previous step as the
initial conditions, continuing until the constraints are satisfied within
acceptable error.

D. Optimal Operators

Table 1 tabulates the optimum values of the A parameters, LA, and
MRC. Using Table 1 one can pick the A's corresponding to one’s
edge detection filter requirements in terms of ZA and M RC, and solve
Equation (8) for the optimal filter. Notice that the filter corresponding
to M RC of 2.685, for which we present results below, has the highest
value for the product of LA and M RC.

Plots of the optimal filter responses for various M RC are shown in
Fig. 2. Notice the optimal filter decays more slowly for lower M RC
than for higher M RC. Asthe M RCincreases, the operator gets tighter
in spatial spread; the M RC term forces the solution to decay faster.
As M RC approaches zero the filter tends to a signum function, or an
infinite difference of boxes, which is to be expected because that max-
imizes the XA product and produces the matched filter (use Schwarz’s
inequality).

IV. Recursive implementation

One of the most important criteria for an edge detector, from a prac-
tical viewpoint, is computational efficiency. We use the fact that IIR
digital filters have infinite response to design a recursive approxima-
tion to our optimal detector because an IIR implementation requires a
fixed (and reasonable) number of multiplications independent of scale.
The filter with M RC, the mean distance between spurious maxima in
units of rms filter width, equal to 2.685 is chosen to be approximated.

A. 1D Approzimation

Our filter is obviously non-causal. We achieve full non-causal filtering
by using two causal filters as defined below. The total filter response is
a sum of two halves, f_(z) and fi(z). The one dimensional convolu-
tion of a signal, s(z), by f(z) can be realized by summing the response
of a causal IIR filter, having impulse response fi(z), to the signal,
s(z), and its time (or space, really) reversed counterpart, s(—z). The
sampled version, f(n), is to be approximated by an IIR filter. f(z)
is well approximated by (see Fig 3), in the minimum squared error
sense:

h(z) = Ae™**(cos(¢) — cos(fazx + ¢)) for o > 0 (11)

Although there is no theoretical justification for this expression, it
forms a nice fit and involves the fewest number of terms we could
reasonably expect. Introducing more exponentially damped sinusoids
would improve the fit, but the increased complexity is unwarranted.
This approximation has a squared error of 0.051, while the first deriva-
tive of a Gaussian has an error of 0.4. Roughly speaking, this approx-
imation has an order of magnitude less residual error and is more eas-
ily implemented than the Gaussian derivative. In fact, the Gaussian
derivative itself would then have to be approximated.

B. Design Procedure

We implement a discrete version of the filter A(z), denoted by h(n):
h(n) = Ae™*""(cos(¢) — cos(Bont + ¢)) forn >0 (12)

where 7 is the sampling interval. The unit pulse response, h(n), can
be realized by an IIR digital filter having two zeros and three poles
with the recursive form as:

y(n) = b1y(n—1)+boy(n—2)+bsy(n—3)+a1z(n—1)+asz(n-2) for n > 0

(13)
where y(n) is the output sequence in response to input sequence z(n)
and

by = e (14 2cos(Bar)) ; by = —b1e™*"; by=e 3T

ay = h(1) = Ae™*"(cos(¢) — cos(Bar + ¢))
az = h(2) — b1ay = Ae~2*"(cos(¢) — cos(2Bar + 1)) — bray

Finally, non-causal filtering of the input sequence, {z(n)}, is achieved
as follows. Denote the time-reversed input sequence as {z,(n)}, the
output in response to the input sequence as {y4(n)}, and the response
to the time-reversed part as {y-(n)}. The final output sequence {y(n)}
is given by y(n) = y4(n) — y_r(n) for every n, with {y_,(n)} the
time-reversed version of {y_(n)} and the subtraction due to the odd-
symmetry of the filter.

C. Exztension to 2D

The 1D filter can be extended to 2-D by applying the optimal filter
perpendicular to the edge and a low-pass projection function, which
will average (and so lower the variance of) the noise, parallel to the
edge. This is easy if we choose the projection function to be the integral
of the edge detection filter. Observing that the slope of a surface in any
direction can be determined from its slope in two orthogonal directions,
we apply a 2-D separable filter for the z and y directions, f,(r,c) and
Jy(r,c) respectively, which are separable and can be expressed in the
form g(r)h(c) and g(c)h(r), respectively. g(z), the lowpass projection
function, is the integral of h(z) and has a shape very similar to a
Gaussian (see Fig. 4). The sampled version g(n) is given by:

_ —aln|r [c05($)  acos(afn|r + ¢) — afsin(afln|r + ¢)
glln)) =e - 2 P)
o a? + a?p?
As before the non-causal filter can be realized as the sum of two iden-
tical causal filters operating in opposite directions. The filter, g(n),

with z-transform G(z), can be realized by a recursive filter having
three poles and two zeros:

_ ag+ajz+ agz2
OO = 1y - b

where

by = e~ (1+ 2cos(Bar)) ; by=—b1e " ; by =e 37

ap = g(0) = cozf¢) — (acos(qS) - &ﬂsi"(@)

a? + o232

a1 = g(1) — biag ; @z = g(21) — byg(7) — baag

With {z(n)} and {z,(n)} the input sequence and its time-reversed
counterpart, respectively, let the outputs bé {y;(n)} and {y_(n)},
respectively. Then the final output is y(n) = y1(n)+y-.(n) —2(n) for
every n, where {y_.(n)} is the time reversed version of {y_(n)}. The
input value is subtracted because otherwise the value of the effective
impulse response is twice its value at n = 0.

To summarize, our overall edge detection filter operates as follows. We
first apply the non-causal projection filter, G(z), to the rows of the
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image and the non-causal edge detection filter, H(z), to the columns.
This estimates a smoothed image gradient in the row direction. Sim-
ilarly, we apply G(2) to the columns and H(z) to the rows, to get
an estimate of the smoothed gradient in the column direction. The
number of multiplications per pixel is 40, and is independent of the
size (scale) of the filter used.

From the two gradient directions we can estimate the maximum gra~
dient direction, which is the direction perpendicular to the edge. We
then use non maximum suppression on the gradient magnitude in the
maximum gradient direction. Hysteresis thresholding based on a prob-
ability of error criterion can then be performed (see [10] for more de-
tails) to clean up the resulting edges.

V. Results

Because of space restrictions the number of illustrations has been
severely cut. For a more detailed performance analysis the reader
is referred to [11].

A. Operator Performance

To demonstrate quantifiable results, we created synthetic images with
various signal to (zero-mean, white, Gaussian) noise ratios. Figure 5
shows a sequence of noisy images and the corresponding edge detection
filter output. No thresholding has been done; we have plotted all the
local maxima. Note how well the operator performs in the presence
of very adverse noise. Using lower values of the scale parameter, a,
flags fewer spurious edges, but the localization of the edges detected
is impaired by the increased width of the operator. Higher values of
« will produce more edges, but the true edges will be located more
precisely.

The performance of the operator on a Magnetic Resonance Image
(MRI) of a coronal slice of a human brain is shown in Fig. 6 with
« = 0.5525. The next test image is shown in Fig. 8. This is a very
difficult image from an edge detection standpoint because it exhibits
several different edge signatures. The edges due to the hair are cer-
tainly not step like, while the stripes on the coat represent line edges.
The background exhibits many ridge and ramp edges. The result with
o = 0.55248 is shown in Fig. 8(b). Most edges are detected and lo-
cated with good precision, even when not step like. Post processing in

the form of hysteresis thresholding based on the operator response es-
timate reduces the number of spurious responses drastically as shown
in Fig. 8(c).

B. Performance Comparison with Other Operators

We now compare the performance of our operator with that of Deriche
and with the first derivative of a Gaussian. The first derivative of a
Gaussian is implemented as a truncated Gaussian convolution followed
by central differencing. The algorithm for the Gaussian convolution
used is due to Sotak and Boyer [12] in their implementation of the
Laplacian-of-Gaussian operator. It should be pointed out that the
Gaussian derivative as implemented is necessarily an approximation,
suggesting that we may find some difference between expected and
observed performance.

Our operator has £A = 1.21 and M RC = 2.8. To construct the most
meaningful comparison, we choose the Deriche operator having the
same TA product. The Deriche operator is given by

d(z) = —e~**lsin(we)

Letting & = mw we have
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The shape of the Deriche operator is characterized by m alone. The
maximum value of M RC for the Deriche operator is about 2.6. Max-
imum TA achievable is 2.0, as m — oo, when MRC = 1.623. The
value of m required for our purposes is 0.763, and the corresponding
MRC is 2.48. The scaling constants are chosen so the operators have
the same rms width. Equating the widths of the two filters, we find
that « of our operator and w of the Deriche operator are related by
2 =1.03336.

(15)

The filter performance measures $A and M RC can be plotted to pro-
vide insight into their behavior. For this we refer to Fig. 7. The solid
line corresponds to our operator, the dashed line corresponds to the
Deriche operator, and the dotted line is the Canny operator using the
r.m.s. width of the filter to calculate the MRC criterion. The “dot
and dash”ed line corresponds to Canny’s optimal filters using the fi-
nite extent of the filter as its width in the expression of the MRC!.
The curve for the Deriche operator terminates at XA = 2., the max-
imum EA possible for that filter. Our filter characteristic lies above
that of the Deriche operator and Canny’s operator for all values of
the multiple response criterion. This means that ours has highest ZA
product, and hence is the best of them. The dot in Fig. 7 corresponds
to the first derivative of a Gaussian as an infinite length filter with
-‘E- = 0.9255092. The similarity of our optimal operator to the Gaus-
sian derivative is also reflected in the performance of the two operators
(see Figs. 9c and 9b).

Although there is not a marked difference between our operator and
the first derivative of a Gaussian, the same cannot be said about the
Deriche operator, which in some instances exhibits two responses to a
single edge. Note the double response to the lake edge in Fig. 9(d). The
same can be said about other prominent edges; the Deriche operator
marks as edge points some which the other operators do not?.

It is evident from the edge images that our operator outperforms the
other two. Theoretically, the first derivative of a Gaussian should have
the fewest number of spurious responses because it has M RC = 3.245,
whereas our operator has MRC = 2.8 and the Deriche operator has
MRC = 2.43. Of course, since all of our implementations (except the
Deriche operator) are approximations to the theoretical filters, there
are some performance penalties. Nonetheless, our filter is both supe-
rior theoretically and more easily approximated, than the Gaussian
derivative.

VI. Conclusion

We derived an optimal infinite impulse response filter for detecting
step edges. The filter was approximated by an IIR digital filter, the
implementation of which is simple, computationally efficient (constant
time), and amenable to hardware realization. We presented results
with extremely noisy images, indicating the excellent performance of
our operator.

1'We can not really compare the Canny operator with the other filters because it
is a finite filter while the other two are infinite length filters. We include it for
completeness.

2We should point out that the first derivative of a Gaussian performs better at

the image boundaries because the algorithm of Sotak and Boyer incorporates
d.c. padding [12] to prevent border erosion. Thus, the poor performance of
both our operator and that of Deriche along the image border is an artifact of
the finite size of the image, and not a drawback of the operators per se.

3We compare our operator with MRC = 2.8 to the Gaussian derivative on the

basis of equivalent rms width. We should note, however, that our operator for
MRC = 3.245, the same as the Gaussian derivative, has TA = 1.024, while the
Gaussian derivative has ZA = 0.92.
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Figure 1: Flowchart followed in deriving the operator.

Figure 4: Perspective plot of the optimal 2-D edge operator.
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Figure 5: Performance of the operator derived in this paper in the
presence of various level of noise (a) SNR=0.35 with o = 0.13822 (b)
SNR=0.707 with & = 0.230 (¢) SNR=:1.0 with o = 0.230.

i

0]
<

AR SRSy

ZA
—_—
N W a

0 05 1 15 2 25 3 3s 4

MRC

Figure 7: Plot of TA vs. M RC for (1) Deriche operator (dashed line),
Canny operator (2) (dotted line) using the r.m.s. extent to evaluate
the MRC (3) (“dot and dash”ed line) using the extent of the finite
filter to evaluate the MRC (4) The operator derived in this paper
(solid line). The dot corresponds to the first derivative of Gaussian.
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Figure 8: (a) Picture of Albert Einstein. (b) Edges detected with the
optimal operator detected in this paper, @ = 0.55248. (c) Edges after
hysteresis thresholding.
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Figure 9: (a) Aerial image used. (b) Edges detected with
the first derivative of a Gaussian, 0=3.13. (c) Edges de-
tected with the operator proposed in this paper, with parame-
ters & = 0.3453058,4 = 1.201178310 and ¢ = 0.770567179.(d)
Edges detected by Deriche operator using the following parameters,
m = 0.763,w = 0.334162.
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