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Abstract. Monte Carlo simulations are a very powerful way to demonstrate the basic

sampling properties of various statistics in econometrics. The commercial software package

Stata makes these methods accessible to a wide audience of students and practitioners.

The purpose of this paper is to present a self-contained primer for conducting Monte Carlo

exercises as part of an introductory econometrics course. More experienced econometricians

that are new to Stata may find this useful as well. Many examples are given that can be

used as templates for various exercises. Examples include linear regression, confidence in-

tervals, the size and power of t-tests, lagged dependent variable models, heteroskedastic and

autocorrelated regression models, instrumental variables estimators, binary choice, censored

regression, and nonlinear regression models. Stata do-files for all examples are available

from the author’s website http://learneconometrics.com/pdf/MCstata/.

1. Introduction–Using Monte Carlo Simulations in Econometrics

Kennedy (2003, p. 24) defines a Monte Carlo study as “a simulation exercise designed to shed

light on the small-sample properties of competing estimators for a given estimating problem.”

More importantly, it can provide “a thorough understanding of the repeated sample and

sampling distribution concepts, which are crucial to an understanding of econometrics.” The

basic idea is to model the data generation process, generate sets of artificial data from that

process, estimate the parameters of the model using one or more estimators, use summary

statistics or plots to compare or study the performance of the estimators. Monte Carlo

methods are used extensively by econometricians to study the finite sample performance

of statistics, compare the power of tests, and to determine the effects of various statistical

designs on the statistical properties of estimators that are commonly used.

Davidson and MacKinnon (2004, p. ix) are enthusiastic proponents of simulation methods

in econometrics. In 2004 they state:
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Ten years ago, one could have predicted that [personal computers] would

make the practice of econometrics a lot easier, and of course that is what has

happened. What was less predictable is that the ability to perform simulations

easily and quickly would change many of the directions of econometric theory

as well as econometric practice.

It has also changed the way we teach econometrics to undergraduates and graduate students

(e.g., see Barreto and Howland, 2006; Day, 1987; Judge, 1999). Kiviet (2012) has written a

thorough discussion of Monte Carlo methods that is suitable for classroom use, employing

EViews as the computing vehicle. In this paper, the use of Monte Carlo simulations to

learn about the sampling properties of estimators in econometrics will be discussed and the

usefulness of Stata will be demonstrated using a number of examples. As such, this paper

can serve a tutorial suitable for classroom use.

Stata 12 (StataCorp, 2011) provides a powerful means of conducting Monte Carlo studies.

Stata contains many estimators and its programming structure allows functions to be looped

rather easily, which greatly expands the types of things that can be studied via simulation.

For the most part, programming simulations in Stata is not difficult, but there are a few

tricks and idiosyncracies to contend with. Many of these are documented below.

The best introduction to simulations using Stata is found in Cameron and Trivedi (2009, ch.

4). They concentrate on the use of Stata’s simulate command due to its simplicity. Stata’s

simulate command runs a specified command or user written function (which Stata refers

to as a program) a given number of times. The results can be output to another dataset.

However, when the simulation finishes, the Stata dataset that is currently in memory is

overwritten with the results of the simulation. This may not always be desirable, for instance

you may want to conduct additional loops of the simulation using different model parameters

and collect the simulated statistics into a single dataset.

In this paper, the slightly more basic, but versatile postfile command is used. The

postfile command in Stata allows users to write the value of a computed statistic (or

set of statistics) at each iteration of a simulation to a dataset. This allows one to loop

through various experimental designs and collect the results in a single data file (see section

6).

There are some advantages of doing it this way rather than with simulate. Although

simulate allows one to write the statistics from a Monte Carlo to a specified file, it does not

allow that file to be appended with the results of subsequent runs of the simulation. That

means if you change the value of one or more parameters in the simulation and rerun it, the
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results have to be written to a new dataset; joint analysis of the different parameterizations

requires manually changing filenames and parameters, rerunning the simulation, and then

merging the differently named datasets. That requires a lot of user intervention. With

postfile no user intervention is required until the joint results are analyzed.

In addition, the syntax of postfile routines are more transparent. In most cases you do not

have to write separate functions as you do with simulate; this allows you to avoid creating

return class objects1 and to minimize the use of Stata’s macro structure. In Stata, a macro

permits the transport of data and results in and out of functions (and loops); inexperienced

programmers find their use confusing and programming errors within them are more difficult

to diagnose.2 It should be said, however, their use cannot be avoided altogether because they

are the principal way Stata moves objects (data and computations) in and out of functions.

We find the postfile and loop method no more difficult to use than simulate for most

problems, and it is more versatile and slightly faster in execution. Evidence of this is pre-

sented in section 7. In order to compare the two ways of simulating in Stata, the first

example below is developed using both methods.

In the next section, we briefly review the concept of a fully specified statistical model as laid

out by Davidson and MacKinnon (2004) and present their basic recipe for using it in a Monte

Carlo exercise. In section 3 we review some of the basics of Stata. In section 4 the basics

of Monte Carlo simulations are summarized. Then in section 5 we go through a complete

example of using Stata to study the coverage probability of confidence intervals centered at

the least squares estimator. In subsequent subsections, we outline how to generate simulated

models for some of the estimators used in a first econometrics course. In section 6 an example

is presented that automates the changing of model parameterizations. Finally, our conclusion

includes a few remarks on speed and a comparison of Stata to the free software gretl, version

1.9.9 (Cottrell and Lucchetti, 2012).

2. Fully Specified Statistical Model

The first step in a Monte Carlo exercise is to model the data generation process. This requires

what Davidson and MacKinnon (2004) refer to as a fully specified statistical model. A fully

specified parametric model “is one for which it is possible to simulate the dependent

variable once the values of the parameters are known” (Davidson and MacKinnon, 2004, p.

1These are functions that return the result of a computation.
2Experience programmers love them because they conserve computer memory and when properly used,

reduce the chances of making inadvertent programming errors, especially in very long programs.
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19). First you need a regression function, for instance:

(1) E(yt|Ωt) = β1 + β2xt

where yt is your dependent variable, xt is the dependent variable, Ωt is the current information

set, and β1 and β2 are the parameters of interest. The information set Ωt contains xt as well

as other potential explanatory variables that determine the average of yt. The conditional

mean of yt given the information set could represent a linear regression model (e.g., as in

equation (1)) or a discrete choice model (e.g., as in E(yt|Ωt) = F (β1 + β2xt) where F is a

cumulative distribution function).

The actual values of yt|Ωt will differ from the mean by some amount, ut, i.e., yt|Ωt−E[yt|Ωt] =

ut.

(2) yt|Ωt = β1 + β2xt + ut

To complete the model requires a description of how the unobserved or excluded factors, ut,

behave.

A fully specified model requires an “unambiguous recipe” for simulating the model on a

computer (Davidson and MacKinnon, 2004, p. 17). This means one needs to specify a

probability distribution for the unobserved components of the model, ut, and then use a

pseudo-random number generator to generate samples of the desired size. Again following

Davidson and MacKinnon (2004) the recipe is:

• Set the sample size, n.

• Choose the parameter values β1 and β2 for the deterministic conditional mean func-

tion (1).

• Obtain n successive values xt, t = 1, 2, . . . , n, for the explanatory variable. You can

use real data or generate them yourself.

• Compute β1 + β2xt for each observation.

• Choose a probability distribution for the error terms, ut and choose any parameters

that it may require (e.g., the normal requires a mean, usually zero, and a variance,

σ2).

• Use a pseudo-random number generator to get the n successive values of the errors,

ut.

• Add these to your computed values of β1 + β2xt to get yt for each observation.

• Estimate the model using the random sample of y, the given values of x, and the

desired estimator.

• Save the statistics of interest.

• Repeat this a large number of times.
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• Print out the summary statistics from the preceding step.

In the last step it is common to evaluate the mean of the sampling distribution, bias, variance,

and the mean square error. Kennedy (2003, pp. 26-27) gives explicit formulae for these.

3. Stata Basics

Stata is a statistical package for managing, analyzing, and graphing data. It is available for

a variety of computing platforms. It can be used either as a point-and-click application or as

a command-driven package. Stata’s system of windows and dialog boxes provides an easy

interface for newcomers to Stata and for experienced Stata users who wish to execute a

command that they seldom use. The command language provides a fast way to communicate

with Stata and to communicate more complex ideas. For Monte Carlo studies, the command

language is a necessity.

3.1. Common Conventions. In the few instances when the pull-down menus are employed

the convention used will be to refer to menu items as A>B>C which indicates that you are

to click on option A on the menu bar, then select B from the pull-down menu and further

select option C from B’s pull-down menu.

An important fact to keep in mind when using Stata is that its language is case sensi-

tive. This means that lower case and capital letters have different meanings in Stata. The

practical implication of this is that you need to be very careful when using the language.

Since Stata considers x to be different from X, it is easy to make programming errors. If

Stata gives you a programming error statement that you cannot decipher, make sure that

the variable or command you are using is in the proper case.

A very powerful, but often confusing, feature of the Stata programming language is the

macro concept. In Stata, macros can be thought of as the variables in a Stata program.

A macro is a string of characters, called the macroname, that stands for another string

of characters, called the macro contents. These can either be defined locally (exist only

temporarily within a Stata program ) or globally (permanently defined within the entire set

of commands, which Stata calls a do-file). To access the contents of a macro, special syntax

is required that identifies the name of the macro and tells Stata whether it is locally or

globally defined. To substitute the macro contents of a global macro name, the macro name

is typed (punctuated) with a dollar sign ($) in front. To substitute the macro contents of

a local macro name, the macro name is typed (punctuated) with surrounding left and right
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single quotes (‘’). The main problem inexperienced users have with Stata macros is knowing

when it is necessary to use them and then figuring out how to get the syntax correct–the

ability to nest macros can make getting it right quite a trick. Since our paper is intended

to serve the less-experienced user, we try to limit their use in this paper (though it is not

entirely possible).

3.2. Ways to Work in Stata. There are several different ways to work in Stata. One

can use the program through its built-in graphical user interface (GUI) where Stata collects

input from the user through dialogs boxes, delivered by mouse clicks and a few keystrokes, to

generate computer code that is executed in the background. The output is sent to the Re-

sults Window. After estimating a model one can access a set of postestimation commands

that will perform various functions on the output of your estimation The postestimation

commands give one access to various graphs, tests, analyses and a means of storing the re-

sults. Commands executed through the GUI are listed in the Review window, where they

can be debugged and rerun using a few mouse clicks.

Stata commands can be collected and put into a file that can be executed at once and saved

to be used again. Stata refers to these collections of code as do-files because they have .do

filename extensions (e.g., MC.do). Even though you can run do-files from the command line,

the do-file editor is the easiest way used to do Monte Carlo simulations in Stata. Start

by opening a new do-file from the file menu. Select Window>Do-file Editor>New Do-file

Editor from the pull-down menu to open the do-file editor. You can use “CRTL+8” as a

keyboard shortcut.

One of Stata’s great strengths is the consistency of its command syntax. Most of Stata’s

commands share the following syntax, where square brackets mean that something is optional

and a varlist is a list of variables.

1 [prefix:] command [varlist][if][in][weight][, options]

Some general rules:

• Most commands accept prefix commands that modify their behavior. One of the more

common prefix commands is by, which tells Stata to repeat the given command on

subsets of the data. See the example in section 6.

• If an optional varlist is not specified, all the variables are used.

• if and in restrict the observations on which the command is run.

• options modify what the command does.
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• Each command’s syntax is found in the online help and the reference manuals.

Type the commands you want to execute in the tabbed editor box using one line for each

command. If you have a very long command that exceeds one line, use the triple backslash

(\\\) as a continuation command.3 Then, to save the file, use the “CRTL+S.” If this is

a new file, you will be prompted to provide a name for it.

4. Monte Carlo Basics

There are two main tools that can be used to do Monte Carlo simulation in Stata. It includes

a special simulate command that will execute a program a given number of times and collect

the outcomes in a dataset. It is specifically designed to make model simulation of the type

suggested here very easy to do. The other method uses the postfile set of commands,

which opens and posts observations to a dataset one at a time. Thus, with postfile one

computes a statistic at each iteration of the Monte Carlo and adds it to a specified dataset.

Used in conjunction with Stata’s flexible loop constructs it is both versatile and powerful.

We find the postfile and loop method just as easy to use as simulate and it is slightly

more versatile; it is the main method used below in the series of examples. Cameron and

Trivedi (2009) provide a very nice chapter on the use of simulate and the discussion of its

use here is limited. For purposes of comparison, though, two examples are repeated using

simulate.

Using the postfile command to run Monte Carlo experiments requires the programming

of loops. There are three ways to loop in Stata. The fastest uses the syntax:

1 forvalues lname = range {

2 commands referring to ‘lname’

3 }

The braces that appear in lines 1 and 3 must be specified in the forvalues loop (as well as

in each of the methods used for looping), and

(1) the open brace must appear on the same line as forvalues;

3If you are used to using software that requires explicit punctuation to indicate the end of a line of computer

code, then you can set Stata to operate this way using the #delimit command. SAS programmers will be

familiar with the convention that a line ends with a semi-colon. To accomplish this in Stata, use #delimit

; on the first line of your do-file and end each line with ;.
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(2) nothing may follow the open brace except, of course, comments; the first command

to be executed must appear on a new line;

(3) the close brace must appear on a line by itself.

Notice that ‘lname’ in line 2 is enclosed in single quotes. It is a local macro that contains

the values of lname in the proceeding line.

The forvalues loop has its limitations. If you need to create loops within loops (referred

to as nested loops), you have to use the while looping construct.

1 while lname = range {

2 commands referring to ‘lname’

3 }

There is also a foreach loop construct that can be used to loop over the elements of a list.

1 foreach var of local varlist {

2 do something based on ‘var’

3 }

You can use lists of numbers rather than variables (numlist), which proves to be especially

useful in section 6 below.

Each simulation follows a similar recipe. The basic structure is:

(1) Open a dataset to use as a basis for the simulation or create values of the regressors

using random numbers.

(2) Set a seed

(3) Define global variables for the number of monte carlo trials (nmc) and sample size

(nobs). For instance, using a samples of size 100 and doing a 1000 simulations

global nobs = 100

global nmc = 1000

(4) Set the values of the parameters

(5) Initialize data that may need starting values in the loop, e.g., errors and conditional

mean

(6) Create a temporary name, in this case we use the local macro name sim, using the

tempname command. sim will hold statistics as they accumulate in the simulation.

tempname sim
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(7) Initiate the postfile command. Put the macro name ‘sim’ in single quotes. Assign

variable names to the statistics that are being posted to sim and give a file name for

placing the entire contents of sim once the simulation finishes. The replace option

permits the results.dta file to be overwritten each time the simulation is executed.

postfile ‘sim’ vname1 vname2 .... vnamek using results, replace

(8) 8 Start a quietly block to enclose the loop. This suppresses output to the screen

and speeds things up.

quietly {

(9) start the forvalues loop, indicating the desired number of samples ($nmc).

forvalues i = 1/$nmc {

(10) Replace random errors

(11) Replace conditional mean, y

(12) Estimate the model

(13) Compute the desired statistics (e.g., b, se, pv)

(14) Post the statistics into the local macro ‘sim’ using variable names. The name of

each computed statistic that is to be posted is contained within parentheses.

post ‘sim’ (b) (se) (pv)

(15) Close the loop with a right bracket

}

(16) Close the temporary storage, ‘sim’, using the postclose command

postclose ‘sim’

(17) Close the quietly block with a right bracket

}

The quietly command suppresses the printing results to the screen at each iteration of the

loop. In the forvalues command that appears in step 9, notice that the macro $nmc has a

dollar sign in front. Assuming that the number of Monte Carlo simulation to use is stored

in the global macro nmc as in step 3, it must be referred to by its global macro name, $nmc.

Once the samples of your statistics from the Monte Carlo experiments have been obtained,

what do you do with them? For instance how can you tell whether an estimator is biased?

The simple answer is to use statistics. The Monte Carlo mean, x̄, for a statistic should be

approximately normally distributed, e.g., x̄
a∼ N(µ, σ2/n). Therefore z =

√
NMC(x̄ − µ)/σ̂

should be a standard normal. The statistic σ̂ is simply the standard deviation that Stata

prints for you when you use the summarize command; now, compute z and compare it to

the desired critical value from the standard normal.
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5. Examples

In this section of the paper, a series of examples is given. Each example illustrates important

features of model specification and estimation and is typical of models taught in introductory

econometrics courses. The first example is based on the classical normal linear regression

model. One thousand (NMC=1000) samples are generated using Engel’s food expenditure

and income data (Koenker and Bassett, 1982) included with gretl (Cottrell and Lucchetti,

2012) and available from http://www.learneconometrics.com/pdf/MCstata/engel.dta.

The slope and intercept parameters with each simulated set of data are computed using

least squares, and 95% confidence intervals are constructed. The number of times the actual

values of the parameters falls within the interval is counted. We expect that approximately

95% will fall within the computed intervals.

Subsequent examples are given, though with less explanation. These include estimating

a lagged dependent variable model using least squares (which is biased but consistent).

Autocorrelated errors are then added, making OLS inconsistent. A Breusch-Godfrey test to

detect first order autocorrelation is simulated and can be studied for both size and power.

Heteroskedasticity Autocorrelation Consistent (HAC) standard errors are compared to the

inconsistent least squares standard errors in a separate example.

Issues associated with heteroskedastic models are studied as well. The simple simulation

shows that least squares standard errors are estimated consistently using the usual for-

mula when the heteroskedasticity is unrelated to the model’s regressors. The final examples

demonstrate the versatility of the exercises. An instrumental variables example is used to

study the error-in-variables problem, instrument strength, and other issues associated with

this estimator. A binary choice example is given and censored regression are given. The

final example explores the properties of a nonlinear least squares estimator.

Although the errors in each of the examples are generated from the normal distribution,

Stata offers other choices. These include uniform, Student’s t, chi-square, beta, binomial,

hypergeometric, gamma and Poisson.

5.1. Classical Normal Linear Regression and Confidence Intervals. We start with

the linear model:

(3) ln(yt) = β1 + β2ln(xt) + ut
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where yt is total food expenditure for the given time period and xt is income, both of which

are measured in Belgian francs. Let β1 = .5 and β2 = .5 and assume that the error, ut iid

N(0, 1).

The model’s errors take into account the fact that food expenditures are sure to vary for

reasons other than differences in family income. Some families are larger than others, tastes

and preferences differ, and some may travel more often or farther making food consumption

more costly. For whatever reasons, it is impossible for us to know beforehand exactly how

much any household will spend on food, even if we know how much income it earns. All of

this uncertainty is captured by the error term in the model.

Stata is used to generate sequences of random normals to represent these unknown errors.

Distributions other than the normal could be used to explore the effect on coverage proba-

bilities of the intervals when this vital assumption is violated by the data. Also, it must be

said that computer generated sequences of random numbers are not actually random in the

true sense of the word; they can be replicated exactly if you know the mathematical formula

used to generate them and the ‘key’ that initiates the sequence. This key is referred to as

a seed. In most cases, these numbers behave as if they randomly generated by a physical

process.4

A total of 1000 samples of size 235 are created using the fully specified parametric model by

appending the generated errors to the parameterized value of the regression. The model is

estimated by least squares for each sample and the summary statistics are used to determine

whether least squares is biased and whether 1− α confidence intervals centered at the least

squares estimator contain the known values of the parameters the desired proportion of the

time.

The (1− α) confidence interval is

(4) P [b2 − tcse(b2) ≤ β2 ≤ b2 + tcse(b2)] = 1− α

where b2 is the least squares estimator of β2, and that se(b2) is its estimated standard error.

The constant tc is the α/2 critical value from the t-distribution and α is the total desired

probability associated with the “rejection” area (the area outside of the confidence interval).

The complete do-file is found below. Start by opening a dataset. In the second line, a seed

is chosen to initialize the stream of pseudo-random numbers. This ensures that the results

can be replicated as shown here. In the next part of the do-file, the values of the parameters

are set and then the natural logarithm of income, which is used as the independent variable

4If a seed is not specified, then Stata initializes it to be 123456789 each time the software is started.
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in the simulation, is taken. In line 12 the systematic portion of the model is created. In lines

13 and 14 the error terms and the dependent variable are initialized and filled with missing

values. This will allow us to use the replace statements in lines 20 and 21 to generate each

new sample of y to use in the simulation. A temporary name called sim is created in line

15. This is the name that will hold the results posted in line 28 by the post command.

Performance of Confidence Intervals
1 use "http://www.learneconometrics.com/pdf/MCstata/engel.dta", clear

2 set seed 3213799

3

4 * Set the values of the parameters

5 scalar constant = .5

6 scalar slope = .5

7 scalar sigma = 1

8 scalar alpha = .05

9

10 * Take the natural log of income to use as x

11 gen x = log(income)

12 gen Ey = constant + slope*x /* mean function */

13 gen u =. /* initiate u -- all missing values */

14 gen y =. /* initiate y -- all missing values */

15 tempname sim

16

17 postfile ‘sim’ b se coverage using results, replace

18 quietly {

19 forvalues i = 1/1000 {

20 replace u = rnormal(0,sigma)

21 replace y = Ey + u

22 reg y x

23 scalar b = _b[x]

24 scalar se = _se[x]

25 scalar lb = b - se*invttail(e(df_r),alpha/2)

26 scalar ub = b + se*invttail(e(df_r),alpha/2)

27 scalar pv = slope<ub & slope>lb

28 post ‘sim’ (b) (se) (pv)

29 }

30 }

31 postclose ‘sim’

32

33 use results, clear

34 summarize

The heart of the simulation begins in line 17 with the postfile command. The set of

postfile commands5 was created to assist Stata programmers in performing Monte Carlo-

type experiments. The postfile command declares the variable names and the filename of

5postfile, post, and postclose
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a (new) Stata dataset where results will be stored. In order to use the postfile construct,

a temporary name has to be created that will store the returns generated by the program.

In line 17 the postfile command tells Stata the names to be given to the computations

being posted to the file in line 28 and provides the filename into which the temporary file

will be written.

The postclose command in line 31 declares an end to the posting of observations. After

postclose, the new dataset contains the posted results and may be loaded using use.

The loop itself uses the forvalues loop construct. The counter is given the name i which

is instructed to loop from 1 to 1000 using the syntax 1/1000. Any subsequent references to

the counter i must be via its (local) macro name ‘i’ (that is it must be enclosed in quotes).

As a local macro the name ‘i’ is temporary and exists only as long as the loop is executing.

It becomes empty once the loop finishes. This allows you to reuse the name ‘i’ in other

loops. In order to suppress the output from all of the iterations, the loop is actually initiated

using the quietly command. Just as in the template given in the preceding section, notice

how the loop actually sits within the quietly command.

The remainder of the program is very simple. The samples are created, the regression is

estimated and the desired results are computed using scalar computations. The logical

statement in line 27 takes the value of 1 if the statements to the right of the equality are

true. The ampersand (&) is the union of the two sets given on both of its sides. Therefore

to be true, the slope must be less than the upper bound and greater than the lower. If not,

pv is zero. Thus, the number of times the parameter falls within the interval can be counted

and later averaged to estimate the coverage probability.

Running the do-file loads the data, initializes the parameters and simulates the model. The

results are stored in the dataset called results. Be sure to issue the clear option or the

current dataset won’t be cleared from memory and the new one containing the simulated

values cannot be loaded. The summarize command will give you summary statistics. At

this point you could do additional analysis, like test for normality or plot a kernel density.

When writing a do-file, it is always a good idea to add comments. In Stata the star sign

(*) at the beginning of a line can be used to make comments, e.g., lines 4 and 10. To insert

comments after a Stata command, you can enclose it in \* *\, e.g., lines 12-14.

The results from the simulation appear below:
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. summarize

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

b | 1000 .5023573 .1497425 -.0332597 1.021356

se | 1000 .1488163 .0069646 .1289464 .1706571

coverage | 1000 .956 .2051977 0 1

Note that the average value of the slope is about 0.502, which is very close to the true value

set in line 6. If you were to repeat the experiments with larger numbers of Monte Carlo

iterations, you will find that these averages get closer to the values of the parameters used

to generate the data. This is what it means to be unbiased. Unbiasedness only has meaning

within the context of repeated sampling. In your experiments, you generated many samples

and averaged results over those samples to get closer to the truth. In actual practice, you do

not have this luxury; you have one sample and the proximity of your estimates to the true

values of the parameters is always unknown.

The bias of the confidence interval (or coefficients) can be tested using z =
√

NMC(x̄−µ)/σ̂

which in this case of p1 is
√

1000(.956− .95)/0.2052 = 0.9246. This is less than 1.96 and not

significantly different from zero at 5%. The two-sided p-value is 0.36, which just confirms

this. Increasing the number of Monte Carlo samples to 4000 produced z =
√

4000(0.9485−
.95)/0.2205 = −0.3584; this shows that increasing the number of samples increases the

precision of the Monte Carlo results. Of course, we could let Stata do the arithmetic using:

Monte Carlo test for size distortion of the 95% confidence interval
1 summarize coverage

2 scalar t = (r(mean)-.95)/(r(sd)/sqrt(r(N)))

3 scalar pval = 2*ttail(r(N),abs(t))

4 scalar list t pval

The saved results can be analyzed statistically or visualized graphically. From the command

line typing

histogram b, normal kdensity

produces a histogram with a normal density plot. The kdensity option also adds a kernel

density plot.
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The kernel density plot and the normal plot are virtually indistinguishable.

Large sample properties like consistency and convergence in distribution can likewise be

studied by increasing the number of observations, nobs.

5.2. Using simulate. In many cases you can use the simulate command to make things

a bit easier. With simulate, you do not have to create loops and simple return statements

are used to write results to the desired dataset. Otherwise, the two ways of working are very

similar. Consider the confidence interval example done using simulate:

1 program drop _all

2 use "http://www.learneconometrics.com/pdf/MCstata/engel.dta", clear

3 set seed 3213799

4

5 * Set the values of the parameters

6 scalar constant = .5

7 scalar slope = .5

8 scalar sigma = 1

9 scalar alpha = .05

10 global scalar nmc = 1000

11

12 gen x = log(income)

13 gen Ey = constant + slope*x /* mean function */

14 gen u =. /* initiate u -- all missing values */
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15 gen y =. /* initiate y -- all missing values */

16

17 program regCI, rclass

18 replace u = rnormal(0,sigma)

19 replace y = Ey + u

20 reg y x

21 return scalar b = _b[x]

22 return scalar se = _se[x]

23 scalar lb = _b[x] - _se[x]*invttail(e(df_r),alpha/2)

24 scalar ub = _b[x] + _se[x]*invttail(e(df_r),alpha/2)

25 return scalar pv = (slope<ub) & (slope>lb)

26 end

27

28 simulate b=r(b) s=r(se) pv = r(pv), reps($nmc) \\\

29 saving(results, replace) nolegend nodots: regCI

30

31 use results, clear

32 summarize

33

34 summarize pv

35 scalar t = (r(mean)-.95)/(r(sd)/sqrt(r(N)))

36 scalar pval = 2*ttail(r(N),abs(t))

37 scalar list t pval

The top part of the program is unchanged. The data are loaded, a seed chosen, and pa-

rameters for the simulation set. We also initialized the variables that will be used in the

simulation. The simulate command requires a program to host the set of commands to be

simulated. In this example we create a program called regCI. The loop is no longer needed

and there are no postfile and post commands. The loop is handled by simulate when

the regCI function is called.

The post command is replaced by a series of return scalar commands in the body of the

function. Each statistic that is to be sent to the dataset must be specified by a return

statement. One thing requires caution, however. Notice that in lines 23 and 24 the accessors

b[x] and se[x] were used rather than b and se that had been returned as scalars in the

previous two lines. This is not accidental and it must be done this way. The command

return scalar b does not leave a copy of b in memory; subsequent uses of b must

refer to the accessor (or you need a separate line to define the scalar and then return it).

Running the simulation requires special syntax that can be tricky. Each of the statistics you

want to collect in the simulation must be referred to by its rclass name; for instance, the

return command in line 21 creates a return class object, a scalar named b, that is stored in

r(b). The simulate command in line 28 writes the r(b) object to a series called b. This
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is done similarly for the objects returned in r(se) and r(pv). The options to simulate

include the number of repetitions, reps(), a dataset name to which results are saved, a

couple of options to reduce output to the screen, and finally a colon followed by the program

name that is to be simulated.

Whether simulate is easier to use or more transparent then postfile is debateable. The

fussiness of the postfile commands, which requires defining a temporary filename, postfile,

post, the formal setup of a loop, and postclose, is replaced by another fussiness. With

simulate one must write a program, include the properly named returns, call the program

properly with simulate and its options, and populate the desired returns to match those in

the program. The command simulate essentially collects decisions made when setting up a

postfile and loop and puts those into the simulate calling function.

The postfile and loop commands can also be set up to use functions and in the examples

below this is done. As you can see from the preceding examples, this is not necessary. For

repeated use of the loop portion of the do-file, this can make things easier though.

5.3. Antithetic Variates. For the estimation of means and regression coefficients, anti-

thetic draws from the desired distribution can reduce the number of simulations needed to

demonstrate unbiasedness. Some care has to be used though as Davidson and MacKinnon

(1992) point out, antithetics can be harmful if one’s interest lies elsewhere, e.g., to study

the variance of an estimator. See Train (2003, pp. 219-221) for an excellent discussion of

antithetic variates and why they work.

Antithetic draws are perfectly negatively correlated with one another. For a symmetric

distribution centered at zero like the standard normal, one simply draws a set of normal

errors, u, and use these once to generate y. Then, reverse their signs, and use them again to

generate another sample of y. The residuals in successive odd and even draws, u and -u, will

be perfectly negatively correlated. This ensures that the regression errors are symmetrically

centered around zero.

To use antithetic draws in the study of the least squares estimator of intercept and slope,

replace line 22 of the preceding example with

Generating Antithetic Normal Samples
22 if mod(‘i’,2) != 0 {

23 replace u = rnormal(0,sigma)

24 }

25 else {
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26 replace u = -u

27 }

First, notice that a new if command is used. This use of if should not be confused with the

qualifier of the same name that is used in model statements (e.g., as in the syntax example

in section 3.2). In this use, if evaluates the expression that appears to its right. If the

result is true (nonzero), the commands inside the braces are executed. If the result is false

(zero), those statements are ignored, and the statement (or statements if enclosed in braces)

following the else is executed. The statement that is being checked is mod(‘i’,2) != 0. It

uses the modulus command to produce the remainder of the division of the index i by 2.

For odd integers the statement is true and the errors are generated and placed in u. When

false (even integers), u is replaced by its negative value. u and -u are perfectly negatively

correlated and hence make perfect antithetic variates for this example.

. summarize

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

b | 10000 .5 .1492158 -.0806312 1.080631

se | 10000 .148489 .0068318 .1252936 .174046

coverage | 10000 .9486 .2208233 0 1

You can see that the least squares estimator has a mean equal to its theoretical value, 0.5.

5.4. Autocorrelation and Lagged Dependent Variables. In a linear regression with

first order autocorrelation among the residuals, least squares is consistent provided there are

no lags of the dependent variable used as regressors. Now, if the model contains a lagged

dependent variable, least squares is inconsistent if there is autocorrelation. This is easy to

demonstrate using a simple simulation.

Let the model be

yt = β1 + β2xt + δyt−1 + ut t = 1, 2, . . . , n(5)

ut = ρut−1 + et(6)

where ρ is a parameter and et is random error with mean zero and variance, σ2
e . This model

encompasses several possibilities. If δ = 0 the model is the usual AR(1) model. If ρ = 0

then it is a lagged dependent variable model. If both δ = 0 and ρ = 0 the model reduces to

the classical linear regression implied by equation (2). Stability requires |ρ| < 1. If |δ| = 1,
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then the dependent variable is nonstationary and should be modeled as a change (yt− yt−1)

rather than a level. A partial adjustment model is implied when |δ| < 1.

The complete model can be written as an ARDL(2,1):

(7) yt = β1(1− ρ) + β2xt + (δ + ρ)yt−1 − (ρβ2)xt−1 − (ρδ)yt−2 + et

There are many questions that can be answered by simulating this model. Among them,

how biased is least squares when the LDV model is autocorrelated? Does this depend on

the degree of autocorrelation? Suppose the model is autocorrelated but δ is small. Is least

squares badly biased? Does HAC work effectively using standard bandwidth computations

in various parameterizations? How powerful is the Breusch-Godfrey test of autocorrelation?

How accurate is the approximation implied by use of the Delta theorem? and so on.

We have also introduced the ability to autocorrelate the independent variable, xt = θxt−1+vt.

This is useful because otherwise, xt and yt−1 will not be contemporaneously correlated;

hence, omitting the lagged dependent variable in the model will not create inconsistency in

estimation of β2. This can be verified quite easily by setting θ = 0 in the simulation. As we

have done in most of these simulations, we have set the value of the intercept paramter to

be zero in the simulation, which can be done without losing any generality.

The do-file in Stata is shown below.

generating samples from LDV model with Autocorrelation
1 global nobs = 200

2 global nmc = 1000

3 set seed 10101

4 set obs $nobs

5 gen time = _n

6 tsset time

7

8 scalar theta = .8 /* autocorrelation in x */

9 scalar beta = 10 /* slope for x */

10 scalar sigma = 20 /* variance of y */

11 scalar delta = .5 /* coeff for lagged y */

12 scalar rho = .8 /* autocorrelation in errors */

13

14 gen x = rnormal()

15 replace x = theta*L.x + rnormal() in 2/$nobs

16 gen u = 0

17 gen y = 0

18

19 program regLDV, rclass

20 tempname sim

21 postfile ‘sim’ b1 b2 b3 b4 se1 se2 se3 se4 using results, replace

22 quietly {
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23 forvalues i = 1/$nmc {

24 * generate errors and samples of y

25 replace u = rho*L.u + rnormal(0,sigma) in 2/$nobs

26 replace y = beta*x+delta*L.y + u in 2/$nobs

27 * run the regression

28 reg y x /* b1 OLS, w/o LDV */

29 * save the estimated slopes and its std error of b

30 scalar b1 = _b[x]

31 scalar se1 = _se[x]

32 * repeat for other estimators

33 reg L(0/1).y x /* b2 LDV w/o Prais */

34 scalar b2 = _b[x]

35 scalar se2 = _se[x]

36 prais L(0/1).y x, twostep /* b3 LDV w/Prais */

37 scalar b3 = _b[x]

38 scalar se3 = _se[x]

39 reg L(0/2).y L(0/1).x /* b4 ARDL(2,1) */

40 scalar b4 = _b[x]

41 scalar se4 = _se[x]

42 post ‘sim’ (b1) (b2) (b3) (b4) (se1) (se2) (se3) (se4)

43 }

44 }

45 postclose ‘sim’

46 end

47

48 regLDV

49 use results, clear

50 summarize

There are a couple of new things in this example. First, on lines 1 and 2 global macro

variables are created; nobs allows you to set the number of observations each sample will

contain and nmc the number of simulated samples to draw. Recall that reference to a global

variable contained in a macro requires the $ prefix as shown. In line 4 the set obs $nobs

command opens an empty dataset with room for nobs observations. The autoregressive

independent variable is created in lines 14 and 15. Rather than initialize the errors and

dependent variables using missing observations, they are populated with zeros in lines 16

and 17. Essentially, this allows the initial values of the time series to be set to zero.

A program is created named regLDV and given a return classification using the rclass

option; this allows something calculated within the regLDV program to be carried outside of

regLDV. It is required in order to post the calculations of the coefficients and standard errors

to the designated dataset.
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The replace command makes it easy to construct the sequences of time series without

resorting to recursion. However, some care must be exercised to limit the observations to

those available. Hence in lines 24 and 25 the in 2/$nobs qualifier is required. In this

example u1 = 0 and y1 = 0 due to the way these series were initialized above. Subsequent

values will be computed using the formulae in 25 and 26. It is simple and elegant.

The rest of the example is straightforward. A model is estimated and statistics collected

and posted to a temporary memory location called sim. The model is estimated in several

ways: 1) least squares with yt−1 omitted 2) least squares with yt−1 included, but ingnoring the

autocorrelation in the errors 3) the LDV model with a two-step Prais-Winsten transformation

and 4) the correctly specified ARDL(2,1) model. Even though we did not include a constant

in the data generation, one is estimated (the estimate of which should be not statistically

significant from zero). When finished the contents of sim are written to permanent storage

in the file results.dta, which is available for subsequent analysis.

The simulation reveals

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

b1 | 1000 15.01713 9.167224 -12.40116 44.45594

b2 | 1000 5.307263 1.72269 -.9130358 10.61727

b3 | 1000 8.235005 1.635338 2.534937 12.85917

b4 | 1000 9.96528 1.445586 5.661244 14.54532

Based on 1000 simulations, it is pretty clear that only the ARDL(2,1) estimator (b4) is

getting anywhere near the correct value of 10. The high variance associated with b1 is due

to the high value of ρ in the simulation.

5.4.1. Breusch-Godfrey Test. To study the size or power of the Breusch-Godfrey test a few

more statements have to be added. These are shown in below. Note, Stata can perform

this test using estat bgodfrey, lags(1), which is an rclass function. One of the results

written to memory is the p-value of the test statistic and it is held in a return class object

r(p). The return, r(p), is classified as a matrix rather than a scalar because additional

lags may be specified when the function is called. If so, these will appear in a vector of

results. The logical statement simply takes the value 1 when the p-value is less than α and

zero otherwise. The mean will give you the overall rejection rate of the test. When ρ = 0

this should be close to α.
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Size and Power of the Breusch-Godfrey Test for AR(1)
reg y x L.y

estat bgodfrey, lags(1)

matrix p1 = r(p)

scalar rej1 = (p1[1,1]<alpha)

reg L(0/2).y L(0/1).x

estat bgodfrey, lags(1)

matrix p2 = r(p)

scalar rej2 = (p2[1,1]<alpha)

post ‘sim’ (p1[1,1]) (rej1) (p2[1,1]) (rej2)

The errors of the ARDL(2,1) model are not autocorrelated, and the second use of the test

verifies this. Letting ρ = .4 the rejection rate for the test for the regression yt = β1 + β2xt +

δyt−1 + ut is compared to that of the ARDL(2,1). The result is:

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

p1 | 1000 .0192006 .0658037 4.69e-10 .8686352

rej1 | 1000 .913 .2819761 0 1

p2 | 1000 .4883838 .2947545 .0012266 .9998515

rej2 | 1000 .057 .2319586 0 1

When the residuals are autocorrelated, the null hypothesis is rejected 91.3% of the time. The

power is quite high. The residuals of the correctly specified ARDL(2,1) are not autocorrelated

and the rejection rate is 5.7%, which is very close to the nominal level of the test.

5.4.2. HAC Standard Errors. The experimental design of Sul et al. (2005) is used to study

the properties of HAC. They propose a model yt = β1 +β2xt +ut, where ut = ρut−1 + et and

xt = ρxt−1 + vt with β1 = 0 and β2 = 1 and the innovation vector (vt, et) is independently

and identically distributed (i.i.d.) N(0, I2) for n = 10000. The do-file appears below.

Coverage probabilities of HAC and the usual OLS confidence intervals
1 global nobs = 10000

2 global nmc = 1000

3 set seed 10101

4 set obs $nobs

5

6 * Set the values of the parameters

7 scalar beta = 1

8 scalar sigma = 1

9 scalar rho = .8

10 scalar alpha = .05

11

12 * generate n observations on x and time. Set as time-series

13 gen x = rnormal()
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14 gen u = 0

15 gen y = 0

16 gen time = _n

17 tsset time

18 global nwlag = ceil(4*($nobs/100)^(2/9))

19

20 program regLDV_hac, rclass

21 tempname sim

22 postfile ‘sim’ b1 se1 b2 se2 c_ls c_nw using results, replace

23 quietly {

24 forvalues i = 1/$nmc {

25 * generate errors and samples of y

26 replace u = rho*L.u + rnormal(0,sigma) in 2/$nobs

27 replace x = rho*L.x + rnormal(0,1) in 2/$nobs

28 replace y = beta*x + u

29 * run the regression

30 reg y x

31 * save the estimated slope and its std error of b

32 scalar b1 = _b[x]

33 scalar se1 = _se[x]

34 * Confidence Interval

35 scalar lb = b1 - se1*invttail(e(df_r),alpha/2)

36 scalar ub = b1 + se1*invttail(e(df_r),alpha/2)

37 scalar pv = beta<ub & beta>lb

38 * run the regression

39 newey y x, lag($nwlag)

40 * save the estimated slope and HAC std error of b

41 scalar b2 = _b[x]

42 scalar se2 = _se[x]

43 * HAC Confidence Interval

44 scalar lb2 = b2 - se2*invttail(e(df_r),alpha/2)

45 scalar ub2 = b2 + se2*invttail(e(df_r),alpha/2)

46 scalar pv2 = beta<ub2 & beta>lb2

47 post ‘sim’ (b1) (se1) (b2) (se2) (pv) (pv2)

48 }

49 }

50 postclose ‘sim’

51 end

52

53 regLDV_hac

54 use results, clear

55 summarize

The commands are very similar to the ones in the preceding example. A notable difference

is the creation of the global constant in line 18 to specify the desired lag length for the HAC

kernel. The replace command is used as before, and once again the independent variable
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is autoregressive. Also, the newey command is used to estimate the model by least squares

with the HAC standard errors in line 39.

Although some patience is required while the simulation runs, the results based on samples

of size 10,000 are revealing.

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

b1 | 1000 1.000417 .0215846 .9309496 1.068051

se1 | 1000 .0100025 .0002108 .0094095 .0108052

b2 | 1000 1.000417 .0215846 .9309496 1.068051

se2 | 1000 .0194082 .0007425 .0173165 .0216077

c_ls | 1000 .633 .4822277 0 1

-------------+--------------------------------------------------------

c_nw | 1000 .924 .2651307 0 1

Even with a very large sample (n = 10, 000), the confidence interval based on the HAC

standard error is still too small on average to cover the slope at the nominal rate. It only

covers the parameter 92.4% of the time. The usual least squares confidence interval is

terrible, only covering the slope in 63.3% of the simulated samples. You can also see that

the standard deviation of the least squares estimator, b1 or b2, is 0.0215846. The average

value of the HAC standard error is slightly smaller, 0.0194982, which is consistent with

coverage at less than the nominal rate. When n=1000, still a large sample in most people’s

minds, the coverage rate is only 0.9. The HAC standard errors are certainly an improvement

over the usual ones, but one needs very large samples for them to closely approximate the

actual LS standard error. This is essentially the same finding as Sul et al. (2005).

5.5. Heteroskedasticity. The data generation process is modeled yt = β1+β2xt+ut, where

ut iid N(0, σ2
t ) with σ2

t = σ2 exp (γzt), zt = ρxzxt + et, et iid N(0, 1) and β1 = 0 and β2 = 1

and the innovation vector (ut, et) is independently distributed for n = 100.

In this example one can demonstrate the fact that heteroskedasticity is only a ‘problem’

for estimating least squares standard errors when the model’s error variances are correlated

with the regressors. Setting ρxz = 0 leaves the errors heteroskedastic, but not with respect

to the regressor, x. One can verify that the standard errors of OLS are essentially correct.

As ρxz deviates from zero, the usual least squares standard errors become inconsistent and

the heteroskedastic consistent ones are much closer to the actual standard errors.

Standard Errors Using HCCME
1 * set numbers of observations and number of MC samples

2 global nobs = 200

3 global nmc = 1000
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4 set obs $nobs

5 set seed 10101

6

7 * Set the values of the parameters

8 scalar slope = .5

9 scalar sigma = 1

10 scalar rho_xz = .99

11 scalar gam = .5

12 scalar alpha = .05

13

14 * generate n observations on x and a correlated variable z

15 gen x = 10*runiform()

16 gen z = rho_xz*x+rnormal(0,sigma)

17 gen y =.

18 gen sig =.

19

20 program regHET, rclass

21 tempname sim

22 postfile ‘sim’ b se se_r p_ls p_r using results, replace

23 quietly {

24 forvalues i = 1/$nmc {

25 replace sig = exp(gam*z)

26 summarize sig

27 replace sig = (1/(r(mean)))*sig

28 replace y = slope*x + rnormal(0,sig)

29 reg y x

30 scalar b = _b[x]

31 scalar se = _se[x]

32 scalar lb = b - se*invttail(e(df_r),alpha/2)

33 scalar ub = b + se*invttail(e(df_r),alpha/2)

34 scalar pv = slope<ub & slope>lb

35

36 reg y x, vce(hc3)

37 scalar ser = _se[x]

38 scalar lb = b - ser*invttail(e(df_r),alpha/2)

39 scalar ub = b + ser*invttail(e(df_r),alpha/2)

40 scalar pvr = slope<ub & slope>lb

41 post ‘sim’ (b) (se) (ser) (pv) (pvr)

42 }

43 }

44 postclose ‘sim’

45 end

46

47 regHET

48 use results, clear

49 summarize
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The only trick used here comes in line 27. As the parameter, γ changes, the overall variance

of the model will change. Hence in this line the overall variance in the model is normalized

around the mean.

Stata has options for the different versions of the Heteroskedasticity Consistent Covariance

Matrix Estimator (HCCME). In line 36, vce(hc3) scales the least squares residuals ût/(1−
ht)

2.

The parameter ρxz controls the degree of correlation between the regressor, x, and the variable

z that causes heteroskedasticity. If ρxz = 0 then the degree of heteroskedasticity (controlled

by γ) has no effect on estimation of least squares standard errors. That is why in practice z

does not have to be observed. One can simply use the variables in x that are correlated with

it to estimate the model by feasible GLS. This would make an interesting extension of this

experiment. Whether this is more precise in finite samples than least squares with HCCME

could be studied.

5.6. Instrumental Variables. The statistical model contains five parameters: β, σ, σx, γ,

and ρ. The data generation process is modeled yt = θ + βxt + ut, where ut iid N(0, σ2
t ),

xt = γzt + ρut + et, et iid N(0, σ2
e) and the innovation vector (ut, et) is independently

distributed for n = 100. Without loss of generality, the intercept is set to zero, θ = 0. The

γ controls the strength of the instrument zt, ρ controls the amount of correlation between

xt and the errors of the model ut, σ
2
e can be used to control the relative variability of xt and

ut as in an error-in-variables problem.

Instrumental Variables
1 global nobs = 200

2 global nmc = 1000

3 set seed 10101

4 set obs $nobs

5

6 scalar slope = 1 /* regression slope */

7 scalar sigma = 10 /* measurement error in y */

8 scalar sige = .1 /* amount of measurement error in e */

9 scalar gam = 1 /* instrument strength */

10 scalar rho = .5 /* correlation between errors */

11 scalar alpha=.05 /* test size */

12

13 gen z = 5*runiform()

14 gen y = .

15 gen x = .

16 gen u = .

17

18 program regIV, rclass
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19 tempname sim

20 postfile ‘sim’ b biv se se_iv p_ls p_iv using results, replace

21 quietly {

22

23 forvalues i = 1/$nmc {

24 replace u = rnormal()

25 replace x = gam*z+rho*u+rnormal(0,sige)

26 replace y = slope*x + u

27 reg y x

28 scalar b = _b[x]

29 scalar se = _se[x]

30 scalar lb = b - se*invttail(e(df_r),alpha/2)

31 scalar ub = b + se*invttail(e(df_r),alpha/2)

32 scalar pv = slope<ub & slope>lb

33

34 ivreg y (x=z)

35 scalar biv = _b[x]

36 scalar seiv = _se[x]

37 scalar lb = biv - seiv*invttail(e(df_r),alpha/2)

38 scalar ub = biv + seiv*invttail(e(df_r),alpha/2)

39 scalar pvr = slope<ub & slope>lb

40

41 post ‘sim’ (b) (biv) (se) (seiv) (pv) (pvr)

42 }

43 }

44 postclose ‘sim’

45 end

46

47 regIV

48 use results, clear

49 summarize

5.7. Binary Choice. The statistical model contains only two parameters: β and σ. The

latent variable is modeled y∗t = µ+ βxt + ut, where ut iid N(0, σ2
t ). The observed indicator

variable yt = 1 if y∗t > 0 and is 0 otherwise. By changing the parameters µ and β one can

alter the proportion of 1s and 0s in the samples. Changing σ should have no effect on the

substance of the results since it is not identified when the other two parameters are.

This simulation is designed to illustrate two things. First, parameter significance tests from

ML estimation of a probit and least squares estimation of the the linear probability model

usually agree. The exceptions occur, as Horrace and Oaxaca (2006) point out, if the least

squares estimated index for any observation lies outside of the 0/1 interval. This is easy

to check. If the only goal is to determine whether x affects the probability of observing

y = 1, then the least squares estimator of the linear probability model may have better
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small sample properties than the probit MLE. Second, if estimating the average marginal

effect is of interest, least squares of the LPM offers a close approximation, is much easier to

produce, and unambiguous in interpretation. The following experiment demonstrates their

similarity.

The do-file is:

Probit and Linear Probability Model
1 global nobs = 200

2 global nmc = 500

3 set seed 10101

4 set obs $nobs

5

6 scalar slope = 0 /* regression slope */

7 scalar sigma = 1 /* measurement error in y */

8 scalar alpha=.05 /* test size */

9

10 gen x = runiform()

11 gen u = .

12 gen y = .

13

14 program regBC, rclass

15 tempname sim

16 postfile ‘sim’ t t_p pv pv_p b ame prop using results, replace

17 quietly {

18 forvalues i = 1/$nmc {

19 replace u = rnormal(0,sigma)

20 replace y = slope*x + u

21 replace y = (y>0)

22 summarize y

23 scalar prop = r(mean)

24 reg y x, vce(hc3)

25 scalar b = _b[x]

26 scalar t = _b[x]/_se[x]

27 scalar pv = abs(t)>invttail(e(df_r),alpha/2)

28 probit y x

29 scalar tp = _b[x]/_se[x]

30 scalar pv_p = abs(tp) > invnormal(1-alpha/2)

31 margins, dydx(x)

32 matrix m = r(b)

33 scalar m = m[1,1]

34 post ‘sim’ (t) (tp) (pv) (pv_p) (b) (m) (prop)

35 }

36 }

37

38 postclose ‘sim’

39 end

40
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41 regBC

42 use results, clear

43 summarize

In this exercise the data generation process is handled easily in lines 19, 20, and 21. The

proportions of 1s to 0s is saved as a scalar in line 23 after computing its summary statistics

in line 22. Then both least squares and the probit MLE are used to estimate the parameters

of the binary choice model. In most econometrics courses great effort is made to discuss the

fact that marginal effects in probit models are different at each observation. This creates

angst for many. In lines 31-32 the average marginal effects are computed and saved for the

regressor, x. The results show that in fact the AME of the probit model (ame) and the slope

from least squares (b) are nearly identical.

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

t | 500 .0205409 .9701433 -3.010698 2.827217

t_p | 500 .0209067 .9692976 -2.921262 2.780452

pv | 500 .044 .2053005 0 1

pv_p | 500 .044 .2053005 0 1

b | 500 .0026487 .123441 -.3727096 .3533991

-------------+--------------------------------------------------------

ame | 500 .0026391 .1229774 -.3691716 .3499526

prop | 500 .49916 .0348859 .4 .61

In 500 samples the size of the t-test is the same for the two estimators. The marginal effect

in the LPM is 0.00265 and for probit it is 0.00264. There is slightly more variation in the

t-ratio for the LPM than for probit, but the difference is very small. For this design, it is a

toss-up. Increasing the slope to equal 1 increases the proportion of 1s in the sample to 0.69.

The power of the t-test is the same to two decimal places, 0.87. The slope and AME are

0.3497 and 0.3404, respectively. The more unbalanced the sample, the larger the divergence

in these estimates of the marginal effect. Still, with nearly 70% of the sample being observed

as a 1, the two are very close (as are their standard deviations and range). Also, one could

confirm the superiority of using the MLE when the index of the LPM strays outside of the

logical (0,1) interval.

5.8. Tobit. To generate samples for tobit estimation requires an additional line in the probit

code. Recall that in the tobit model, all of the latent variables that are less than zero are

censored at zero. The continuous values above the threshold are actually observed. Therefore

the probit do-file can serve as a basis for this model. Lines 19-21 of the probit example are

replaced by:
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19 replace ystar = const + slope*x + rnormal(0,sigma)

20 replace y = (ystar>const)

21 replace y = y*ystar

The constant in this model serves as the threshold for tobit. Computing the proportions of

1s in this model enables you to keep track of how much censoring occurs. Experiments could

be conducted by changing the distance between actual threshold and zero and the tobit

estimator could be compared to least squares. This is another poorly understood feature of

this model. Choosing the proper threshold is critical for proper performance of the MLE.

For instance, add a constant of 20 to the right-hand side of the equation in line 19, which

generates the latent variable y∗t (ystar), and change the actual threshold in line 20 from 0 to

20. Increase the value of sigma, to 10 for instance, to create more variation in y. Re-run the

simulation and see that least squares is now far superior to the tobit MLE, which erroneously

assumes that the threshold is 0.

5.9. Nonlinear Least Squares. Stata can also be used to estimate more complicated

models in a simulation. It includes generic routines for estimating nonlinear least squares

and maximum likelihood estimators, the properties of which can also be studied in this way.

In the following example, nonlinear least squares is placed within a loop and the estimates

are collected in matrices and output to a data set. This simple example could be used as a

rough template for more advanced problems.

Consider the nonlinear consumption function

(8) Ct = α + βY γ
t + ut

where Ct is consumption and Yt is output. Using data from Greene (2000), the model is

estimated to obtain starting values, parameters are set, and simulated samples are drawn.

In the first snippet of code, the data are opened in line 1, the parameter values set in lines

3-6, starting values are acquired by least squares (12-15). The nl command is used in lines

23 and 24 (using the /// line continuation). Parameters are enclosed in braces { } and given

starting values using the assignment operator, =. The parameters in nonlinear models are

accessible in postestimation, but the syntax is a little different. The _b[varname] convention

used in linear models has been replaced by _b[paramname:_cons]. The coeflegend option

can be used after the nl command to find the proper names for the parameters. To verify

that you have identified the parameters correctly, run the nonlinear least squares regression

again using the coeflegend option. This suppresses much of the output that you ordinarily

want, but it does produce a legend that identifies Stata’s names for each of the parameters.
30



1 use "http://www.learneconometrics.com/pdf/MCstata/greene11_3.dta", clear

2

3 scalar A = 180

4 scalar B = .25

5 scalar G = 1

6 scalar sigma = 2

7

8 global nmc = 1000

9 gen c0 = A + B*y^G

10

11 * Starting values

12 reg c y

13 scalar alpha0 = _b[_cons]

14 scalar beta0 = _b[y]

15 scalar gamma0 = 1

16

17 program regNLS, rclass

18 tempname sim

19 postfile ‘sim’ alpha beta gamma using results, replace

20 quietly {

21 forvalues i = 1/$nmc {

22 replace c = c0 + rnormal(0,sigma)

23 nl (c = {alpha=alpha0} + {beta=beta0} * y^{gamma=gamma0}), ///

24 variables(c y)

25 post ‘sim’ (_b[alpha:_cons]) (_b[beta:_cons]) (_b[gamma:_cons])

26 }

27 }

28 postclose ‘sim’

29 end

30

31 regNLS

32 use results, clear

33 summarize

The results of 1000 iterations from the simulation are:

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

alpha | 1000 179.8951 6.768631 157.7997 199.7664

beta | 1000 .2527278 .0389655 .1565982 .4028383

gamma | 1000 1.000128 .0183172 .9431589 1.056078

The results indicate that the nonlinear least squares estimator has done quite well, on aver-

age. It is statistically unbiased.
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6. Changing the design using loops

In some circumstances one wants to study the properties of an estimator or test statistic

under different parameterizations of the model. The methods discussed here can easily

be adapted to this and this is where the benefits of using the postfile commands can

really be seen. Consider the instrumental variables example in section 5.6 and suppose one

wants to examine how instrument strength affects the bias of the IV estimator. One design

consideration is to keep the overall variability in the endogenous regressor constant. This is

desirable because it keeps the overall fit between y and x relatively constant as instruments

get stronger. Note, var(x) = γ2var(z) + ρ2var(u) + var(e). The revised program now

includes a extra loop over which the simulation will execute.

In this version we add a computation for the F -statistic used to test the strength of the

instruments, saving it as a scalar in line 11, and save the overall fit of the reduced form

regression, R2, as a scalar in line 14. The program follows.

1 program regIV, rclass

2 tempname sim

3 postfile ‘sim’ gam r2 F b biv se se_iv p_ls p_iv using results, replace

4 quietly {

5 foreach gam of numlist 0.025 0.0375 0.05 0.1 0.15 0.2 0.5 {

6 forvalues i = 1/$nmc {

7 replace u = rnormal()

8 replace x = ‘gam’*z+rho*u+rnormal(0,sige)

9 replace y = slope*x + u

10 reg x z /* reduced form */

11 scalar F = (_b[z]/_se[z])^2 /* instrument strength */

12

13 reg y x

14 scalar r2=e(r2) /* overall fit */

15 scalar b = _b[x]

16 scalar se = _se[x]

17 scalar lb = b - se*invttail(e(df_r),alpha/2)

18 scalar ub = b + se*invttail(e(df_r),alpha/2)

19 scalar pv = slope<ub & slope>lb

20

21 ivreg y (x=z)

22 scalar biv = _b[x]

23 scalar seiv = _se[x]

24 scalar lb = biv - seiv*invttail(e(df_r),alpha/2)

25 scalar ub = biv + seiv*invttail(e(df_r),alpha/2)

26 scalar pvr = slope<ub & slope>lb

27

28 post ‘sim’ (‘gam’) (r2) (F) (b) (biv) (se) (seiv) (pv) (pvr)
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29 }

30 }

31 }

32 postclose ‘sim’

33 end

The parameter gam changes instrument strength and we add it to the postfile statement

in line 3; the reason for this will become apparent below. A foreach loop is initiated and

populated in line 5. This type of loop is quite handy for this use. It will loop over the

elements of the numlist (the numbers that follow numlist, i.e., 0.025, 0.0375, 0.05, 0.1,

0.15, 0.2 , and 0.5). The loop is closed on line 30. Any reference to the contents of the

local macro gam in the program must be enclosed in the now familiar single quotes. Also,

note that line 28 now includes (‘gam’) (r2) and (F) which matches the declaration in the

postfile command and ensures that the current values related to instrument strength are

written to the results.dta file.

First, the output from the simulation can be summarized by the design parameter, γ.

regIV

use results, clear

by gam, sort: summarize r2 F biv b se_iv p_iv

by gam, sort: summarize p_ls p_iv

This produces the following set of summary statistics. Recall, that β = 1 and that the

nominal coverage rate for the confidence interval is 95%.

-----------------------------------------------------------------------

-> gam = .025

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

r2 | 1000 .7551756 .0127816 .7209752 .8055412

F | 1000 2.027093 2.507469 4.73e-06 18.04113

biv | 1000 .6928968 14.1146 -275.4101 126.6003

b | 1000 1.401108 .0254189 1.30706 1.468426

-----------------------------------------------------------------------

-> gam = .0375

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

r2 | 1000 .7539033 .0136158 .7106823 .7929032

F | 1000 3.646357 3.672428 .0000266 23.84322

biv | 1000 .7281356 6.266472 -108.6397 41.78983

b | 1000 1.400052 .0254246 1.323858 1.478802
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-----------------------------------------------------------------------

-> gam = .05

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

r2 | 1000 .7538432 .0138031 .712468 .790554

F | 1000 5.195976 4.309673 .0000954 32.33922

biv | 1000 1.02068 4.401356 -37.72792 92.09246

b | 1000 1.398645 .0251742 1.310623 1.47523

-----------------------------------------------------------------------

-> gam = .1

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

r2 | 1000 .7535283 .0142405 .6980119 .7988308

F | 1000 18.21511 8.546679 .7164295 55.45287

biv | 1000 .969141 .2596705 -.4665824 1.800038

b | 1000 1.39171 .0252075 1.280399 1.468121

-----------------------------------------------------------------------

-> gam = .15

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

r2 | 1000 .7551459 .0131145 .7074705 .7903711

F | 1000 39.52843 12.62963 8.662003 95.4943

biv | 1000 .9862381 .1514629 .2889033 1.502262

b | 1000 1.385531 .0236149 1.313096 1.467276

-----------------------------------------------------------------------

-> gam = .2

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

r2 | 1000 .7560955 .0132708 .7115782 .7941926

F | 1000 70.0239 16.88823 22.88008 136.5724

biv | 1000 .9928045 .113901 .4058512 1.355679

b | 1000 1.375369 .024529 1.297485 1.458363

-----------------------------------------------------------------------

-> gam = .5

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

r2 | 1000 .7723736 .0122313 .7272431 .8121825

F | 1000 432.9301 45.91504 304.8695 603.1799

biv | 1000 .9993733 .0428512 .8498048 1.14667

b | 1000 1.27941 .0201706 1.218947 1.355316

It is clear that one design goal has been met; r2 is not changing as γ increases in value.

The mean of the instrumental variable estimator is getting closer to 1 as the instrument
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strengthens. We can also see that least squares actually outperforms the instrumental vari-

able estimator in terms of bias when instruments are very weak. Also, notice the very high

standard deviation associated with the instrumental variable estimator when instruments

are weak (F < 18). This is also supported by theory.

The coverage rate of the confidence intervals could likewise be studied. Below is a table that

contains the coverage rates of 95% confidence intervals centered at the least squares and IV

estimators, respectively.

Coverage rates for 95% confidence intervals

-----------------------------------------------------------

gam

Estimator |0.025 |.0375|0.05 |0.10 |0.15 |0.20 |0.50

-------------+------+-----+-----+-----+-----+-----+----

OLS | 0 | 0 | 0 | 0 | 0 | 0 | 0

IV |.983 |.966 |.974 |.965 |.959 |.945 |.956

-----------------------------------------------------------

n=1000 and 1000 simulations per design point

Bias and precision of least squares may be lower when instruments are weak, but that does

not translate into acceptable performance in the coverage rate of confidence intervals. Least

squares never covers the parameter. The IV estimator may be erratic, but it’s confidence

interval is doing a better job of covering the parameter. As instrument strength improves,

it gets very close to the 95% nominal coverage rate.

Finally, we can explore the relationship between instrument strength and bias via the mech-

anism suggested by (Stock and Watson, 2011, p. 464). They suggest a rule of thumb that

bias of and instrumental variable estimator is roughly proportional to the inconsistency of

least squares scaled by the average F statistic minus 1, e.g., E[β̂IV ] − β ≈ [plim(β̂OLS) −
β]/(E(F )− 1), where we take F to be the average for a given design.

1 use results, clear

2 by gam: egen Fbar = mean(F) /* Average F by gamma */

3 by gam: egen tslsbar = mean(biv) /* Average biv by gamma */

4 by gam: egen olsbar = mean(b) /* Average b by gamma */

5 by gam: egen r2bar = mean(r2) /* Average r2 by gamma */

6

7 gen tsls_bias = tslsbar-1 /* IV bias */

8 gen ols_bias = olsbar-1 /* OLS bias */

9 gen relb = tsls_bias/ols_bias /* relative bias */

10 gen rot = 1/(Fbar-1) /* rule of thumb */
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This requires the use of the extended generation functions egen to populate the dataset with

the average values of the F -statistic, R2, and the averages of the IV and OLS estimators.

With 1000 observations in our sample, the average of the OLS estimator is hopefully close

to its probability limit as required by the Stock and Watson result; increasing sample size

will improve the approximation.

Based on our design with sample size n = 1000 and on 1000 simulations for each design, the

results are:

F

Variable | 2.03 3.64 5.19 18.21 39.52 70.02 432.9

-----------------------------------------------------------------------

rule-of-thumb| .97362 .37787 .23832 .05809 .02595 .01449 .00232

relative bias| -.76564 -.67957 .05188 -.07878 -.03569 -.01917 -.00224

Keep in mind that the rule-of-thumb is always positive; the bias can be negative as is

the case here. So, the magnitudes of the two indicators is what we are comparing. The

approximations are reasonable, though the rule-of-thumb is much better when F > 10 it

appears. A regression of relative bias onto the rule-of-thumb should yield a coefficient of −1.

There are only 7 actual design points, therefore we need to eliminate all of the redundant

observations.

1 gen t = _n /* obtain observation numbers */

2 keep if mod(t,1000) == 0 /* keep 1 observation per design */

A regression that includes the rule-of-thumb squared is used to test whether the relationship

is actually linear. The coefficient on the squared term is not significant (t = 0.72) and we

conclude that the relationship is linear. Next, we test whether the proportional relationship

is one-to-one; the simple regression relative bias = β(rule-of-thumb) + residual is estimated

and β = −1 is tested against β 6= −1. The t-ratio is approximately equal to 0.8, which is

not significant at any reasonable level of significance.

. reg relb rot, noconst

Number of obs = 7

R-squared = 0.8131

---------------------------------------------------------------------------

relative bias: Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+----------------------------------------------------------------
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rule-o-tmb| -.864443 .1692116 -5.11 0.002 -1.278489 -.450397

---------------------------------------------------------------------------

7. Conclusion

In this primer the basics of conducting a Monte Carlo experiment are discussed and the

concepts are put to use in Stata. As many authors have noted, Monte Carlo methods

illustrate quite clearly what sampling properties are all about and reinforce the concepts

of relative frequency in classical econometrics. The Stata software is well-suited for this

purpose. The postfile construct makes it relatively easy to collect statistics of interest and

to output them to a dataset. Once there, they can be recalled for further analysis without

having to rerun the simulation.

A series of examples is given. These include linear regression, confidence intervals, the size

and power of t-tests, lagged dependent variable models, heteroskedastic and autocorrelated

regression models, instrumental variables estimators, binary choice, censored regression, and

nonlinear regression models. Do-files and data for all examples are provided in the paper and

are available from the author’s website, the address for which can be found in the references.

The large library of built-in estimators and tests makes Stata a rich platform for Monte

Carlo analysis. The biggest drawback is that it can be relatively slow (see the discussion and

table below), at least in the single processor versions of the software. For serious simulation

work, one would want to consider a multiprocessor version. However, as demonstrated in the

last example, Stata provides a fine tool for developing prototypes for eventual translation

to a faster computing platform. The huge library of built-in estimators and test statistics

makes preliminary analysis a breeze.

Stata’s simulate command allows you to put whatever you want to compute within a

program and makes simulating the contents quite simple. The desired results are output to

a Stata dataset, allowing for subsequent analysis. The advantages of using the postfile

construction is that it gives you more control over what gets computed and saved. It also

makes it easier to loop over different designs and have all of the output placed into the

resulting dataset.

Below we compare time required to compute the first confidence interval example using three

methods. The computations were performed using Windows 7 64-bit, equipped with an Intel

i7 2600K processor (not overclocked). The system has 16 gigabytes of RAM. A total of 4000

Monte Carlo iterations were used in each example. These times were based on version 11.2
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of Stata.6 For purposes of comparison, we also used gretl (a native 32-bit program) to run

comparable simulations. The gretl code appears in the appendix and examples similar to

the ones in this paper can be found at Adkins (2011a,b). The simulation was repeated using

the postfile commands and then using simulate. The numbers reported are cpu seconds.

Smaller is faster.

Table 1. Speed comparison of Stata’s simulate and

postfile commands to gretl measured in cpu seconds

based on 4000 Monte Carlo samples.

Stataa

Program gretl b postfile simulate

Confidence Interval 0.608 2.86 3.26

Nonlinear Least Squares 1.81 50.01 52.35c

a Stata 11.2
b gretl 1.9.9
c The do-file for the simulate version can be found at

http://www.learneconometrics.com/pdf/MCstata/index.htm.

As one can easily see, gretl is 4 times faster than Stata 11.2 in simulating the regression

model and confidence interval coverage rates. The simulate command adds extra overhead

that costs about a second. This extra time is not proportional to the number of iterations

performed; the gap remains fairly constant as the number of simulations increases. If speed

is important, gretl is an excellent choice. For nonlinear least squares, things get worse for

Stata. Gretl manages to run 4000 iterations of the simulation in less than 2 seconds while

Stata takes over 50. Stata may not be very quick, but it contains a vast number of routines

that can be easily simulated either via the postfile method or via the simulate command.

Because of its wide availability and ease of use, it is an excellent vehicle for teaching sampling

theory in econometrics and for exploring the properties of a wide variety of estimators.
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Appendix A. hansl Scripts

To give the reader an idea about the speed of Stata, we compared it to a free software called

gretl. Gretl’s matrix language is called hansl and hansl refers to a collection of code as a

script. The hansl scripts for studying confidence intervals and nonlinear least squares are

found below in sections A.1 and A.2, respectively.

A.1. Confidence Intervals.

1 open engel.gdt

2 # set a seed if you want to get same results each time you run this

3 set seed 3213799

4

5 # Set the values of the parameters

6 scalar constant = .5

7 scalar slope = .5

8 scalar sigma = 1

9 scalar alpha = .025 # (size of one tail of a 2 sided CI)

10

11 # Take the natural log of income to use as x

12 genr x = log(income)

13

14 # start the loop, indicating the desired number of samples.

15 # --progressive is a special command for doing MC simulations (necessary)

16 # --quiet tells gretl not to print the iterations (highly recommended)

17 set stopwatch

18 loop 4000 --progressive --quiet

19 # generate normal errors

20 genr u = normal(0,sigma)

21 # generate y, call it y1

22 genr y1 = constant + slope*x + u

23 # run the regression

24 ols y1 const x

25 # save the estimated coefficients

26 genr b2 = $coeff(x)

27 # save the estimated standard errors

28 genr s2 = $stderr(x)

29 # generate the lower and upper bounds for the confidence interval

30 genr c2L = b2 - critical(t,$df,alpha)*s2

31 genr c2R = b2 + critical(t,$df,alpha)*s2

32 # count the number of instances when coefficient is inside inverval

33 genr p2 = (slope>c2L && slope<c2R)

34 # print the results

35 print b2 p2

36 # store the results in a dataset for future analysis is desired

37 store cicoeff.gdt b2 s2 c2L c2R
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38 endloop

39 scalar t = $stopwatch

A.2. Nonlinear Least Squares.

1 open "greene11_3.gdt"

2 setobs 1 1 --cross-section

3 # Set the actual values of the parameters

4 scalar A = 180

5 scalar B = .25

6 scalar G = 1

7

8 # Starting values

9 ols C 0 Y

10 genr alpha0 = $coeff(0)

11 genr beta0 = $coeff(Y)

12 genr gamma0 = 1

13

14

15 # Set the number of Simulated Samples

16 scalar NMC = 4000

17

18 # Create an empty matrix to store results

19 matrix coeffs = zeros(NMC, 3)

20 matrix vcvs = zeros(NMC, 6)

21

22 # Create systematic portion of the model and log(y)

23 series C0 = A + B*Y^G

24 series lY = log(Y)

25

26 set stopwatch

27 # The loop

28 set warnings off

29 loop i=1..NMC --quiet

30 # generate new sample

31 genr C = C0 + normal(0,10)

32 # Initialize parameters

33 alpha = alpha0

34 beta = beta0

35 gamma = gamma0

36

37 # Estimate parameters via NLS

38 nls C = alpha + beta * Y^gamma

39 deriv alpha = 1

40 deriv beta = Y^gamma

41 deriv gamma = beta * Y^gamma * lY

42 end nls --quiet
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43

44 # Collect the coefficients into a vector and matrix

45 matrix coeffs[i,] = {alpha, beta, gamma}

46 matrix vcvs[i,] = vech($vcv)’

47 endloop

48

49 # open a new, empty dataset

50 nulldata NMC --preserve

51

52 # Convert the columns of matrix to data

53 series a = coeffs[,1]

54 series b = coeffs[,2]

55 series c = coeffs[,3]

56

57 # Print the summary Statistics

58 summary a b c

59 scalar t = $stopwatch

60 printf "Monte Carlo vcv vs average estimated vcv\n"

61

62 MCV = mcov(coeffs)

63 AEV = unvech(meanc(vcvs)’)

64

65 print MCV AEV
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