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Abstract—We address the problem of model-based object recog-
nition. OQur aim is to localize and recognize road vehicles from
monocular images or videos in calibrated traffic scenes. A 3-D de-
formable vehicle model with 12 shape parameters is set up as prior
information, and its pose is determined by three parameters, which
are its position on the ground plane and its orientation about the
vertical axis under ground-plane constraints. An efficient local gra-
dient-based method is proposed to evaluate the fitness between the
projection of the vehicle model and image data, which is combined
into a novel evolutionary computing framework to estimate the 12
shape parameters and three pose parameters by iterative evolu-
tion. The recovery of pose parameters achieves vehicle localiza-
tion, whereas the shape parameters are used for vehicle recogni-
tion. Numerous experiments are conducted in this paper to demon-
strate the performance of our approach. It is shown that the local
gradient-based method can evaluate accurately and efficiently the
fitness between the projection of the vehicle model and the image
data. The evolutionary computing framework is effective for vehi-
cles of different types and poses is robust to all kinds of occlusion.

Index Terms—Evolutionary computing, fitness evaluation,
model-based vision, vehicle localization, vehicle recognition, visual
surveillance.

I. INTRODUCTION

ODEL-BASED object localization and recognition is a
M classical issue in computer vision over many years with
great potential for many real applications. Particularly in the
traffic-scene surveillance domain, model-based vehicle local-
ization and recognition from monocular images or videos plays
important roles not only in accurate vehicle detection, tracking,
and recognition but also in supplying intermediate information
for high-level trajectory analysis and semantic interpretation.
Since the pioneering work of Roberts [1] in the early 1960s,
prominent progress has been achieved from then on. In the
early days, most of the algorithms are based on fixed models
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and adopt a typical matching and recognition framework.
Two-dimensional geometric primitive features such as edge
points, edge lines, vertices, and conic sections are first extracted
from images as symbolic descriptions. Recognition is then
realized by establishing the matching between the fixed model
and extracted features. The tree search [2], the attributed graph
search [3], the generalized Hough Transform [4], the viewpoint
consistency constraints [5], and so on are adopted to achieve the
2-D-3-D correspondence and pose determination. However,
the extraction and matching of 2-D geometric primitives such
as lines and curves might be time-consuming and error-prone.
As a result, these algorithms can only deal with simple objects
such as polyhedrons and are not suitable for real applications.

Instead of direct 3-D-2-D matching, there is another strategy
to achieve model-based localization. With an initialized pose
confirmed, the 3-D model is projected first into an image plane
so that the fitness between projection and image data can be
evaluated directly in the image plane. This kind of method
avoids a bottom-up procedure and simplifies the problem into
an optimization framework. The common practice for fitness
evaluation is based on the distance error of 2-D geometric
primitives in the form of point-to-point [6], [7], point-to-line
[8]-[10], and line-to-line [11], [12]. Lou et al. proposed the
PLS method [9], which extracted edge points as primitive
features and evaluated fitness scores based on the distance
between each edge point and each projected line segment of a
wire-frame model. However, primitive extraction and distance
calculation are time-consuming and not robust to noise and
occlusion. Beveridge et al. [10] made use of key features for
matching between the 2-D line-segment model and image data.
The ICONIC method in [13] sampled pixels uniformly around
projected lines to estimate the directional derivatives of image
intensities and combined them into fitness evaluation in a sta-
tistical framework. However, the pixel-intensity-based method
is not stable and sensitive to noise. Liu et al. [14] proposed the
Bayesian classification error (BCE) method, which adopted
local region information and made use of a BCE to measure the
dissimilarity of local regions for fitness evaluation. However,
the assumption that image intensities satisfy Gaussian distribu-
tion is not always true in small regions.

Vehicle localization and recognition in traffic-scene surveil-
lance is a good platform to apply model-based vision methods.
The shapes of vehicles are approximately polyhedral, and much
prior information in traffic scenes is useful to simplify the
problem. Ground-plane constraints (GPC) [15] can decrease
the number of pose parameters from six to three, whereas
static cameras and calibrated scenes can make the projection
much easier. In the previous years, most work in this field
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was based on fixed vehicle models (e.g., in [9] and [14]-[16]).
In this case, vehicle localization is realized by determining
the pose parameters that can make the projection of the fixed
model best fit the image data, and vehicle recognition is based
on comparing evaluation scores of different vehicle models.
Evidently, this strategy has inherent disadvantages. Success
of the strategy depends strongly on how accurately the 3-D
model captures the geometry of real vehicles. Since there are
so many different makes of vehicles in reality, a large set of
fixed models are needed to capture accurately their geometries,
respectively. As we know, building so many different vehicle
models is a formidable task. Even worse, the processing time
of fixed-model-based methods is linearly proportional to the
number of vehicle models. As a result, fixed-model-based
methods are not efficient and limit the accuracy of model-based
recognition.

A deformable vehicle model seems to be a better choice to
overcome the disadvantages mentioned above. On one hand, it
can exert the advantages of model-based methods. On the other
hand, it can adapt itself to deal with most vehicles in reality. The
deformable vehicle model was mentioned firstin [11]. However,
their focus was on vehicle tracking instead of localization and
recognition. Ferryman et al. [17] presented a deformable model
with 29 parameters and made use of PCA coefficients as param-
eters for recognition. However, they needed to collect a large
sample of 3-D models from images interactively for training
and cannot recover accurate shape parameters. In addition, there
are studies focusing on 3-D triangle-based vehicle modeling
[18] and image-level representation [19], but they cannot deal
with vehicles of different types and poses effectively. A recent
progress has been proposed in [20] to achieve vehicle align-
ment based on a 2-D shape model, which can deal effectively
with different views, noise, and occlusion. The method made
use of redundant examples to learn a landmark-based 2-D shape
model and achieved vehicle alignment based on a hypothesis-
test strategy. Our proposed approach has some common fea-
tures with this method. Both of them adopt prior information
for fitness evaluation and solve the problem in an optimiza-
tion framework. The differences are that we make use of 3-D
models as prior information instead of redundant examples and
we adopt evolutionary computing instead of hypothesis-test-
based strategy. In the following, we will describe our approach
in detail.

In this paper, we propose a novel method for model-based
localization and recognition of road vehicles. A deformable ve-
hicle model containing 12 shape parameters is set up as prior
information and will be described in detail in Section II. As ve-
hicles move on the ground plane almost all the time, only three
parameters are needed to determine the vehicle pose, which are
position (X,Y’) on the ground plane and orientation 6 about
the vertical axis. The three pose parameters and two shape pa-
rameters form a combined 15-D parameter space. Each point
in the combined 15-D space can be imagined to be an indi-
vidual, which can determine completely its projection on the
image plane since we assume to use only one static calibrated
camera. An efficient fitness evaluation method is then proposed
to evaluate the fitness between the projection and image data.
Further, the fitness evaluation is combined into an evolutionary
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Fig. 1. Flowchart of the algorithm.

computing framework to select better individuals from the com-
bined parameter space based on an iterative population selec-
tion strategy. Here, better individuals correspond to those whose
projections on the image plane have higher fitness evaluation
scores (FESs). In this way, the population selection can select
iteratively better individuals and finally output the best indi-
vidual whose projection best fits image data. The pose parame-
ters of the best individual achieve vehicle localization, whereas
the 12 shape parameters are used for vehicle recognition. The
flowchart of our algorithm is shown in Fig. 1. As we can see,
evolutionary computing is a stochastic searching-based method,
which has already had good applications in human body-motion
analysis [21].

From one monocular image of calibrated scenes containing
vehicles, we can recover both pose and shape parameters to re-
alize the localization and recognition of vehicles. The contribu-
tions of this paper include a simple but distinctive deformable
model setup, an efficient local gradient-based method to eval-
uate the fitness between the projection of the vehicle model and
image data, and a novel evolutionary computing framework to
recover both pose and shape parameters.

The remainder of this paper is organized as follows. We
present a deformable 3-D vehicle model in detail in Section II.
Then, we address the pose parameters in Section III. In
Section IV, an efficient method based on local gradient image
features is proposed to evaluate fitness between the projection
of the 3-D model and image data. In Section V, we describe our
evolutionary computing framework to recover both pose and
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Fig. 2. Generic 3-D vehicle model that can be deformed to fit with different vehicles.

TABLE I
SHAPE PARAMETERS OF THE DEFORMABLE VEHICLE MODEL (IN MILLIMETERS)

Parameters Descriptions Value Range
w1 Distance from 1 to 2 [1500, 2100]
H1 Distance from 1 to 5 [400, 800]
H2 Distance from O to 4 [400, 800]
L Distance from O to 1 [3200, 4000]
H3 Distance from 8 to I [max(H1, H2),900]
X1 Distance from 8 to II [0,L/2]
X2 Distance from 9 to II [max(X1,L/2), L — 200]
X3 Distance from 12 to IT | [X 1, min(X2 — 1300, L/2)]
X4 Distance from 13 to II [X3 + 1000, X2 — 200]
w2 Distance from 13 to 14 [1000, W]
H4 Distance from 13 to | [1.5 x H3,1400]
A Distance from I to IV [150, 250]

shape parameters. Then, the experimental results and analysis
are presented in Section VI. Finally, we draw our conclusions
in Section VII.

II. SHAPE PARAMETERS OF THE DEFORMABLE VEHICLE
MODEL

In this section, we present our deformable vehicle model with
12 shape parameters, which is shown in Fig. 2.

It is a 3-D wire-frame model whose 12 shape parameters are
listed in Table I. As we know, most vehicles in reality should
belong to a very small subset of the 12-D shape parameter space.
To enhance the efficiency of the following shape recovery, we
have collected a set of fixed 3-D models, including most types
of vehicles in reality and mined rules from the set to reduce the
value range of each shape parameter. The mined rules are shown
in Table I, which are not unique and perfect but comply with
all the fixed 3-D vehicle models in the set. We can see that all
the shape parameters have respective value ranges and are not
self-independent. After recovering the 12 parameters, we can
determine totally the shape due to the symmetric property so
that we can use them for vehicle recognition.

Compared with previous vehicle models, our model has sev-
eral advantages, which are listed as follows.

1) Accurate. As we have described before, there are different
kinds of vehicles in reality, such as sedan, truck, wagon,
van, and hatchback. Even if the type is restricted to one, the
makes are still different from each other in detail. As a re-
sult, fixed-model-based methods may need a large number
of models and cannot capture accurately the geometry of
most vehicles in reality. In contrast, one deformable model
is adaptable to fit with most vehicles accurately.

2) Efficient. Fixed-model-based methods need a large number
of models. Since the computational time is linearly pro-
portional to the number of models, the fixed-model-based
method is not efficient to deal with large vehicle variations.
In contrast, deformable-model-based methods need only
one model with shape parameters to be more efficient.
Simple. Compared with previously used deformable
models, our model has only 12 shape parameters. As
vehicles somehow lack in texture and are rich in edge
lines, our model is wire-framed and composed of only 26
3-D line segments. It is robust to light and view changes
and also convenient for graphic operation. Furthermore,
we ignore some unstable structures such as wheels, side
windows, and lights since they are not discriminative for
localization and recognition.

General. As shown in Fig. 2, our deformable model can
capture accurately the geometry of most vehicles in reality
by variation of the 12 shape parameters.

3)

4)

III. POSE PARAMETERS UNDER GPC

With the GPCs adopted [15], the pose of a vehicle can be
determined only by its position (X,Y") on the ground plane
and its orientation ¢ about the vertical axis of the world coor-
dinate system (WCS). With these extra three pose parameters,
we can project the model into images. The projection relation
between the WCS and the model coordinate system (MCS) is
shown in (1), where M is the projection matrix from the WCS
to the image coordinate system and known by camera calibra-
tion. Points are represented by homogeneous coordinates, i.e.,

cos@ —sinf 0 X

T
I .

_ sinf  cosf 0 Y Ym
vI=Mil", 0 1 0| |z, M
z 0 0 0 1 1

In practice, for model-based vehicle localization and recog-
nition, we need to confirm first an initialized pose to project the
3-D model into the image plane for matching and optimization.
In this paper, the pose initialization of the 3-D model is achieved
from image-plane-based vehicle detection. For moving vehi-
cles, we can extract regions of interest by motion detection and
obtain vehicle regions by motion and shape information, which
is well illustrated in [22]. For static vehicles, many statistical
models can be used to detect vehicles, which have been well
summarized in [23]. The details of detection is not the emphasis
of this paper, and we assume that the bounding boxes of ve-
hicle regions have already been obtained, as illustrated in Fig. 3.
With the camera calibrated and the projection matrix M known,
we can obtain simply the homography correspondence between



Fig. 3. TIllustration of bounding-box extraction and pose initialization.

the image plane and the ground plane. The coordinates of the
point in the ground plane, which corresponds to the center of
the bounding box in the image plane, are taken as the initialized
value of X and Y.

Compared with the translation parameters (X, Y), the initial-
ization of 6 is more complicated. As we know, vehicles are ar-
tificial objects of prior shape information. Projections of a ve-
hicle in the image plane are rich in lines of the three orientations
(5{, O_;7 53) ), which correspond to three orthogonal directions
(1,0,0), (0,1,0), and (0,0,1) in MCS. We can estimate these
three orientations in the image plane based on image gradients
and use angles among them as constraints to estimate the ini-
tialization value of . Since the z axes of MCS and WCS are
coincident to be perpendicular to the ground plane, the projec-

— —_—
tion (O3) of (0,0, 1) can be estimated in the image plane based
on the calibrated camera. In this case, we can distinguish this
orientation from the others. One example is shown in Fig. 3.
There are only two peaks in the histogram of oriented gradients
(HOG). By comparing these two peaks to the calculated 53,), we

— —
can confirm that they are corresponding to O; and O,. With
a second-step HOG in the neighborhood of each peak, we can

— —
obtain further more accurate estimation of O; and Os. Then,

angles v between 5{ and 52) can be calculated simply, and the
initialization of # is achieved by

2

cosy =

!
L&l

|01]|O2|

With the pose parameters initialized, the 3-D vehicle model
can be projected into the image plane to match with image data.
An accurate and efficient method is required for fitness evalu-
ation between the projection of the 3-D model and image data,
which will be described in detail in the next section.

IV. FITNESS EVALUATION

Fitness evaluation between the projected vehicle model and
image data is proposed first in our previous work for fixed-
model-based vehicle localization [24] and tracking [25]. Owing
to its outstanding performance, we try to adopt it to deformable-
based approaches, which will be described in detail as follows.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 1, JANUARY 2012

(®)

Fig. 4. Principle of fitness evaluation. (a) Regions around a visible projected
line. (b) Regions around sampled points.

With shape and pose parameters initialized, we can project
the wire-frame vehicle model onto the image plane to form a
series of visible projected line segments.

For every visible projected line segment whose direction is
assigned as o with length of L in the image plane, we form
a L X 2w virtual rectangle, as shown in Fig. 4(a). If the line
fits the image data well, the gradient directions of pixels with
large gradient magnitude values in the rectangle should focus
on the perpendicular direction of the projected line. As a result,
we can estimate the fitness score from the gradient information
of all pixels within the rectangle. For pixel S; within the rec-
tangle, we can calculate simply its gradient magnitude m(z, y)
and orientation §(z,y) from pixel differences as follows:

A(:l’,’,y) = I(.Z‘-‘r lay) - I(.Z‘ - lay)
B(z,y) =I(x,y+1)—I(z,y — 1)
m(x,y) = /A(z,y)? + B(z,y)?

B(x,y) = tan~ ' (B(z,y)/A(z,y)) .

3)

Then, the fitness score Fg, contributed by S; is measured by
the vertical component of its gradient magnitude along the line
direction as follows:

ESi = |m(:p/y)sm(ﬂ(x/y)—a)| (4)

It is evident that not all pixels in the rectangle have the same
weight for fitness evaluation. For those closer to the projected
line segment, the pixels should give more contributions to the
FES. As a result, we give every pixel S; a weight value that
equals to G, »(d;). Here, d; is the distance between S; and the
projected line segment, and G, » is a standard Gaussian distri-
bution with ¢4 = 0 and 0 = w.

In this way, the fitness score of the projected line segment [ is
measured by the weighted sum of Eg, as

E = Z [Es, - Go,w(d;)] 5

Si
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and we calculate the whole FES between the projection of the
vehicle model and image data from all visible projected line
segments as

E =" [log(E)]. 6)
l

In addition to the above descriptions, our fitness evaluation
can be sped up in the following way. First, instead of taking one
L x 2w local region around every projected line, we can sample
points along the projected line to generate many subregions, as
shown in Fig. 4(b), for respective calculation. This adjustment
can still improve its ability to deal with static occlusion. In real-
ization, the number of sampling points of each project line with a
lengthof Lisn = 6x ((L—Ls)/(Li—Ls))+1.Here, L; and L
are the length of the longest and shortest projected lines, respec-
tively. Second, instead of calculating the contributions of every
pixel, we can set threshold 7" and only focus on those with gra-
dient magnitude above 1'. The performance of these two strate-
gies will be analyzed in Section VI.

Our approach performs efficiently and accurately for fitness
evaluation, which is demonstrated in Section VI. In fact, our
approach is not isolated but has many relations to other pio-
neering methods. Compared with ICONIC [13], we use gradient
information from every pixel in the local regions instead of
estimating directional derivatives from sampled image points.
This strategy keeps efficiency but adds robustness to noise and
occlusion. Compared with PLS [9], we avoid time-consuming
edge detection and distance calculation. Both BCE [14] and our
method make use of local region information, but our method
is free of inaccurate assumptions of data distributions. In
Section VI, we will compare our approach to other pioneering
methods to demonstrate its advantages.

V. PARAMETER RECOVERY BASED ON EVOLUTIONARY
COMPUTING

In this section, we combine our methods of model projection
and fitness evaluation with the estimation of distribution algo-
rithms (EDAs) to form a novel evolutionary computation frame-
work. This framework can select iteratively shape and pose pa-
rameters from the combined parameter space to make the pro-
jection fit the image data better and better.

EDAs were introduced first in the field of genetic computing
in [26]. Unlike traditional genetic algorithms, neither crossover
nor mutation operators are necessary in EDAs. Instead, it sam-
ples a new population of individuals from a probability distribu-
tion, which is estimated from a database containing selected in-
dividuals of the previous generation. The interrelations between
variables are expressed explicitly through a joint probability dis-
tribution.

There are several EDAs ([26], [27]) for optimization applica-
tions in continuous domains. One kind of the algorithms, which
is called a generic continuous EDA approach, is shown in algo-
rithm 1. Here, D denotes a data set, g denotes the generation,
and f(z) denotes the joint probability distribution of the data
set. EDAs have great advantages for optimization in high-di-
mensional space but have been used hardly in the computer-vi-
sion domain before.

Algorithm 1 Continuous EDA Approach

1: BEGIN
2: Dy «— Generate R individuals randomly; g «— 1
3: while The final stopping criterion is not met do

4: DY | «— Select N < R individuals from D,_; according
to a selection method

5: fq(x) «— Estimate the density function using D}’
6: Dy «— Sample R individuals from f,(z)

7. g— g+1

8: end while

9: END

Now, we see the problem of recovering the pose and shape
parameters of vehicle models. As we know, it is a very com-
plicated optimization problem, which has 15 parameters to be
optimized simultaneously. Furthermore, these parameters have
certain value ranges and are not independent to each other. It is
difficult to tackle this problem using conventional optimization
algorithms. Here, we combine the projection-fitting-optimiza-
tion strategy with EDAs to form our new framework, which has
been attempted with BCE-based fitness evaluation in our pre-
vious work [28].

In this framework, each individual in the population repre-
sents a point in the combined 15-D parameter space. All shape
parameters have their value ranges, as described in Section II.
With pose parameters initialized as (X;,Y;, 6;) by the method
described in Section III, we set the value range of pose param-
eters as (X; & 1000 mm, Y; + 1000 mm, §; + 5°), which is
enough to tolerate the initialization inaccuracy and contain the
correct pose. With the value range of pose and shape parame-
ters confirmed, the individuals are in fact selected from a very
small subset instead of the whole parameter space. Every indi-
vidual of the population can determine a unique projection on
the image plane, which is used to fit image data. Those individ-
uals who have higher evaluation scores are chosen from them
and applied to generate new individuals for the next generation.

As the parameter space is high dimensional and the param-
eters are not independent of each other, we choose a specific
continuous EDA approach called the estimation of multivariate
normal algorithm—global (EMNA|oba1) [27] to form our evolu-
tionary computing framework. In this framework, the joint dis-
tribution of parameters is assumed to be a multivariate normal
distribution, and the FES is used as a criterion for selection. The
flow of the algorithm is illustrated in algorithm 2 as follows.

Algorithm 2 EMNA .1 for deformable models

1: BEGIN

2: Dy «— Sample R individuals randomly from the 15-D
parameter space; g «— 1



Fig. 5. Two frames of PETS 2000 Database. (a) Frame 0137. (b) Frame 0157.

3: while the difference between two generations of average
fitness is less than a threshold do

4: Calculate the evaluation score of each individual using FES
and sort them.

5: Dév_l «—— Select N < R individuals which have higher
scores from Dg,_y

6: fo(z) = f(@|Dg"y) = N(z;pg,%g) «—
Estimate the multivariate normal density function using D;V_ 1

7: Dy «+— Sample R individuals (the new populations) from
fo()

8 g+—yg+1

9: end while

10: END

In the described algorithm, we have to estimate the multi-
variate normal density function at generation g. The means 1; 4
and the elements of the variance—covariance matrix a?j, g are es-
timated in the following way:

~ N .
u‘i:g:%Zr:lzir? 221727"'7'”’
~ N ~ 2

012,9 = % Zr;l (zf,r _Hi,g)

~ 1 n N

0.1'2]',9 =N Z’I’:l (:Eg,r _,Ufi,g) (x_?,r _,u’j,g) . (7)

In this section, we have proposed an evolutionary computing
framework based on EMNA 41,41 to Tecover iteratively the pose
and shape parameters of deformable vehicle models. The exper-
imental results and analysis of the framework for model-based
vehicle localization and recognition will be described in detail
in the next section.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

Numerous experiments have been conducted, and exper-
imental results are presented in this section to demonstrate
the performance of the proposed algorithm. Parts of the ex-
periments are conducted using the videos of the PETS 2000
database [29]. All experiments are carried out on a personal
computer with a P4 3.0G central processing unit and 512M
DDR. Two frames shown in Fig. 5 illustrate the scene of PETS
2000 database.
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A. Performance Evaluation of Fitness Evaluation

Fitness evaluation plays an important role in our evolutionary
computing framework. How accurately the approach selects
better individuals from the population determines the perfor-
mance of vehicle localization and recognition. Furthermore, the
fitness evaluation method also determines how fast the iterative
algorithm converges.

A good fitness evaluation algorithm should have the fol-
lowing desirable properties.

1) Accurate. The approach should be consisted with the
human’s perception of fitness between the projection and
image data. The point with the highest evaluation score
should correspond to the ground truth in reality.

2) Efficient. The approach should be efficient with low com-
putational cost. As we know, fitness evaluation is the most
frequent and time-consuming step in our evolutionary
computing framework. The efficiency of fitness evaluation
can boost greatly the global performance of localization
and recognition.

3) Convenience for optimization. The approach should be
convenient for optimization. That means the optimization
surface should be smooth with conspicuous peaks so
that the algorithm can converge with a small number of
iterations.

We assess the performance of our fitness evaluation method
according to the above three considerations. Since the shape
parameters are high dimensional and not independent of each
other, it is difficult to test fitness evaluation performance in the
entire shape parameter space. However, we can evaluate the per-
formance of fitness evaluation on the 3-D pose parameter space
by confirming manually the vehicle shape. The ICONIC [13],
PLS [9], and BCE [14] approaches are chosen for comparison
because all of them have already had successful applications in
model-based vehicle localization.

1) Optimization-Surface Analysis: The optimization-surface
property is an important metric to decide its convenience for
optimization, which is calculated as follows. For a monocular
image with regions of interest detected, we first adjust man-
ually the pose parameters to obtain (X*,Y* 6*) as “ground
truth” so that the projection can fit image data as closely as
one can visually make. Then, the model is moved in the neigh-
borhood of the “ground truth” to obtain the optimization sur-
face {E(Pi,j,k)7 =30 < 4,5,k < 30}, where Pi,j,k = (X* +
iIAY™S 4 GA 0% + k)). As we have discussed in Section III,
f can be determined quite accurately using motion and main
gradient direction information. For data visualization, we fix
6 = 6* to obtain the optimization surface. Almost all the frames
in PETS 2000 Database [29] show similar results. Frames 0137
and 0157 are chosen from them as examples for analysis, whose
optimization surfaces are shown in Figs. 6 and 7 using all the
four methods.

The comparison of optimization surfaces in these two frames
demonstrates very clearly the advantages of our approach. Our
approach performs best to show the smoothest surface and the
most conspicuous global extreme. In contrast, the surface of
ICONIC [13] is not smooth at all and has many local extremes;
the curve of the PLS [9] has no conspicuous global extreme,
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Fig. 6. Optimization-surface comparison of frame 0137. (a) Optimization sur-
face of ICONIC [13]. (b) Optimization surface of PLS [9]. (c) Optimization
surface of BCE [14]. (d) Optimization surface of our approach.

Fig. 7. Optimization-surface comparison of frame 0157. (a) Optimization sur-
face of ICONIC [13]. (b) Optimization surface of PLS [9]. (c) Optimization
surface of BCE [14]. (d) Optimization surface of our approach.

and BCE [14] can just perform well with a good initialized pose
near the “ground truth.” Compared with ICONIC, our approach
tried to extract more abundant information with region-based
organization, which lead to a more smooth optimization sur-
face. PLS are based on the sum of edge points to projected
lines. It cannot lead to sudden changes with a small parameter
change. As a result, PLS cannot supply a conspicuous global
extreme. BCE also makes use of region information. However,
BCE just estimates Gaussian distribution from regions, which
loses too much information. In summary, the redundant infor-
mation, the region-based organization, and the mechanism to
evaluate scores are the reasons why our approach supplies the
best optimization surface.
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Fig. 8. Comparison of localization accuracy of different methods in selected
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2) Accuracy: Accuracy is also an important metric for fitness
evaluation, which can be evaluated by the distance between the
global extreme of the surface and the “ground truth.” We as-
sign Pp = (vg,yE,0r)T as the extreme of the FEF curve, and
the localization accuracy is evaluated by these two metrics: the
translation error B = [|(X*,Y*)T — (2, ye)T|| and the rota-
tion error Ep = ||#* —fg||. In this experiment, we adopt further
the sampling-based strategy mentioned in Section IV for com-
parison. The video from frame 0127 to frame 0177 in PETS
2000 Database shows a vehicle running into a scene with dif-
ferent 3-D poses, which is processed to obtain the curve of trans-
lation and rotation errors, as shown in Fig. 8. As we can see, our
approach also has good performance with better accuracy and
stability in localization. The sampling-based strategy does not
decrease significantly the accuracy of fitness evaluation.

3) Efficiency: Efficiency is tested by computational cost for
fitness evaluation for video frames. For the same video pro-
cessed with the four methods, the curve of computational time
is shown in Fig. 9. Although our approach spends a slightly
more time than [13] and [14], it is still quite efficient. The sam-
pling-based strategy can enhance further the efficiency of our
approach to be even better than [14] with acceptable accuracy.

4) Summary: A good fitness evaluation approach should be
accurate for localization, which is efficient with low calculation
cost and convenient for optimization with a smooth optimization
surface and conspicuous global peaks. With these three factors
in mind, we find that our approach has clear advantages in global
performance. Good properties of fitness evaluation can boost
greatly the performance of our evolutionary computing frame-
work for model-based vehicle localization and recognition.
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Fig. 11. Tllustration of the iteration procedure of a sedan from all kinds of odd
structures of the first generation.

B. Parameter Setting of Evolutionary Computing

There are two parameters to be set in our evolutionary com-
puting framework. The first is the number of population R, and
the other is livability L, which is calculated as the ratio between
the number of selected individuals in every generation N and
population R. As has been researched, appropriate R and L
values are related to specific problems to be solved. The algo-
rithm may converge to a local extremum with too small popula-
tion but may increase the computation time if the population is
too large. Additionally, appropriate smaller livability facilitates
the evolutionary process. In practice, we first take some images
as validated examples and sample (R, L) from the 2-D param-
eter space to choose the best combination. We find that different
images give somehow similar results, and we illustrate one ex-
ample in Fig. 10.

The analysis of the surface shows that good results are given
when R is larger than 800, and L is between 10% and 30%.
Considering the tradeoff between effectiveness and efficiency,
we choose R = 1000 and L = 10%.

With the parameters confirmed, the evolutionary computing
framework can generate better and better individuals by itera-
tion until convergence. An illustration of the iteration procedure
is shown in Fig. 11. As we can see, all kinds of odd structures
are generated in the first generation but, at last, converge to the
best shape.
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Fig. 12. Illustration of fitting results and evolutionary curves of three kinds
of vehicles. (a) Fitting result of the red sedan. (b) Fitting result of the black
hatchback. (c) Fitting result of the white SUV. (d) Evolutionary curve of the red
sedan. (e) Evolutionary curve of the black hatchback. (f) Evolutionary curve of
the white SUV.

C. Illustration of Different Vehicle Types

Experiments are conducted to test the performance of our
approach using different kinds of vehicles. Three typical im-
ages are chosen first from the PETS 2000 database, [29] with
their regions of interest initialized. Good performance has been
achieved for all the vehicle, as shown in Fig. 12.

As we can see, the pose of each vehicle is estimated very
accurately, and the parameterized 3-D model is deformed au-
tomatically to fit image data very well. Furthermore, the itera-
tive curves of best fitness, average fitness, and the standard error
band for every vehicle are also shown. We can see that the fit-
ness scores increase very quickly and become stable after about
10-20 generations.

D. lIllustration of the Evolutionary Procedure

Furthermore, we take two frames from the above experiment
to illustrate the evolutionary procedure of recovering pose and
shape parameters. One frame contains a red sedan, whereas the
other frame contains a black hatchback. The regions of interest
are detected, and the 3-D model fits image data better and better,
as shown in Figs. 13 and 14.

E. Effectiveness to Vehicles of Different Poses

We also test the performance of our approach to the same
vehicle of different poses. A video of a red sedan passing by the
traffic scene is sampled as 12 frames with their fitting results
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Fig. 13. Evolutionary procedure of the red sedan. (a) One frame of a red sedan.
(b) Ilustration of evolutionary procedure.

Fig. 14. Evolutionary procedure of the black hatchback. (a) One frame of a
black hatchback. (b) Illustration of evolutionary procedure.

shown in Fig. 15, and the recovered shape parameters are listed
in Table II.

As we can see from Table II, although all these frames are
processed independently with temporal information discarded,
the recovered shape parameters of different poses just vary in a
less than 5% small range, which demonstrates the effectiveness
and stability of our approach.

F. Effect of the Threshold-Based Strategy

As we have described in Section IV, the threshold setting of
gradient magnitude has potential to speed up fitness evaluation,
enhancing the efficiency of the whole algorithm. However, an
inappropriate threshold may affect the accuracy of fitting results
and weaken the robustness to noise. We have conducted an ex-
periment to show the effect of threshold setting. As shown in
Fig. 16, we mark those pixels whose gradient magnitude below
T as black in the second row, and the corresponding fitting re-
sults are shown in the third row. It is shown that a small threshold
setting is acceptable (T = 2,4), but a higher threshold setting
has more significant effects on shape recovery.

We set T' = 4 to conduct computation time analysis on PETS
2000 videos. As shown in Fig. 17, the computation time has
an about 40% decrease based on the strategy of the threshold
setting, which demonstrates the effectiveness of the threshold-
based strategy. However, this strategy weaken the robustness of
our algorithm to noise and occlusion. In the occlusion cases,
we should set 7" = 0 to achieve better accuracy of robustness,
which will be described as follows.

G. Occlusion Reasoning

1) Static Occlusion: Static occlusion is the simplest case
with a part of objects out of the image border. The sampling
strategy can deal with it effectively. After projection of the 3-D

(@) (b)

(x)

Fig. 15. Results of different poses. (a) Pose 1 (Frame 0127). (b) Pose 2 (Frame
0132). (¢) Pose 3 (Frame 0137). (d) Pose 4 (Frame 0142). (e) Pose 5 (Frame
0147). (f) Pose 6 (Frame 0152). (g) Pose 7 (Frame 0157). (h) Pose 8 (Frame
0162). (i) Pose 9 (Frame 0167). (j) Pose 10 (Frame 0177). (k) Pose 11 (Frame
0187). (1) Pose 12 (Frame 0199).

model into the image and the removal of hidden lines, the sam-
pled points out of the image border are removed, and the itera-
tions are done in the visible area with normalization. We conduct
experiments in two situations. For the first case, vehicles are
parked with a part of which being occluded in the visual field.
The fitting results are shown in Fig. 18(a) and (b). For the second
case, one vehicle is running gradually into the scene with fitting
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TABLE I
RECOVERED SHAPE PARAMETERS OF DIFFERENT POSES (IN MILLIMETERS)

Shape w1 H1 H2 L H3 X1 X2 X3 X4 W2 H4 A
Pose 1 1624 482 442 3739 527 617 2811 1099 2252 1285 928 227
Pose 2 1607 505 446 3802 531 609 2781 998 2317 1305 918 229
Pose 3 1591 482 466 3679 537 619 2775 1017 2074 1268 916 190
Pose 4 1627 468 486 3695 529 607 2829 1047 2350 1286 933 212
Pose 5 1572 509 459 3592 556 612 2815 1014 2193 1277 911 174
Pose 6 1616 486 462 3733 577 575 2737 1047 2272 1301 914 209
Pose 7 1591 511 480 3669 542 621 2759 1062 2150 1274 929 212
Pose 8 1621 512 434 3761 567 615 2713 986 2221 1257 932 277
Pose 9 1529 504 433 3726 532 612 2906 973 2283 1175 911 231
Pose 10 1634 473 450 3731 576 599 2813 1005 2342 1214 917 242
Pose 11 1594 501 471 3652 544 609 2782 1053 2150 1244 923 189
Pose 12 1526 465 496 3588 597 607 3076 924 2383 1139 936 219
Average 1594 492 460 3697 551 609 2816 1018 2249 1252 922 218
Variance | 2.26% | 3.55% | 4.42% | 1.75% | 4.18% | 2.00% | 3.39% | 4.57% | 4.18% | 4.10% | 0.97% | 1.25%

Original Image

Threshold = 2 Threshold = 4 Threshold = 6 Threshold = 8 Threshold = 10

e o
B b

Result 1 Result 3 Result 4 Result 5 Result 6

Fig. 16. TIllustration of fitting in different threshold settings.
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Fig. 17. Comparison of computation time of 7 = 0 and T' = 4.

results shown in Fig. 18(c)—(f). As we can see, the whole shape
parameters of vehicles have been recovered, and the model fits
image data very well in the visible scene. Of course, the pa-
rameters that have no evidence from images are assigned some
random values within certain ranges evolved by evolutionary
computing. Fig. 18(c)—(f) shows a series of frames in which a
red sedan is driving into the scene. We can see that the model
also fits the frames as expected, and the shape parameters are
refined gradually with more and more image evidences.

2) Occlusion by Unrelated Structures: In addition to static
occlusion, it is very common that a part of the vehicle is oc-
cluded by other objects in images. The case is easier if the struc-
tures of other objects are not similar to that of vehicles. The
noise generated in the occluded parts would not affect signifi-
cantly the determination of the evolutionary computing result.

Fig. 18. Results of statistic occlusion. (a)Occluded Hatchback. (b)Occluded
car. (c¢) Frame 0114. (d) Frame 0116. (¢) Frame 0118. (f) Frame 0120.

One example is a hatchback passing by an artificial object (i.e.,
a white pillar). The series of images and results are shown in
Fig. 19. As we can see, the fitting results are overall acceptable,
except some errors occurring when the car’s rear end is occluded
(Frame 0560). Except for frame 0560, the recovered shape pa-
rameters of the other frames are within less than an 8% variance,
which demonstrates further the stability of our approach.

3) Occlusion by Related Structures: The occlusion of
vehicles by related structures, particularly other vehicles, are
the most complicated case. In this case, a part of image evi-
dences are from the vehicle of interest, whereas other image
evidences are from other vehicles, and the model may adapt
itself inaccurately to fit the inconsistent image evidences.
One example of this occlusion is shown in Fig. 20. With four
different bounding-box set (1, 2, 3, and 4), different fitting
results are obtained. As we can see, our algorithm can deal
with the occlusion of related structures to some extent based
on stochastic analysis (1, 2, and 3). However, it may fail in
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Fig. 19. Results of a black hatchback passing by an artificial object. (a) Frame
0500. (b) Frame 0510. (c) Frame 0520. (d) Frame 0530. (e) Frame 0540. (f)
Frame 0550. (g) Frame 0560. (h) Frame 0570.
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Fig. 20. Illustration of occlusion by related structures.

severe occlusion (4). This experiment also illustrates the effect
of bounding-box acquisition to fitting results.

H. Localization and Recognition

From one monocular calibrated image, we can take prior in-
formation of the 3-D model to recover the vehicle’s 3-D pose
parameters based on its 2-D position. The 3-D localization of ve-
hicles has great advantages in high-level computer-vision tasks
such as trajectory analysis and semantic interpretation.

With the 12 shape parameters recovered, vehicle recognition
becomes quite straightforward. A simple method is based on
the distance comparison in the 12-D shape parameter space. In
practice, we can collect a set of typical vehicles for each type

Testing example 1

Testing example 2 Testing example 3 Testing example 4

3 [5] (1435 [1684] [1460]
504 1 555 1 433 1 508
433 550 479 405
3726 3172 3881 3812
532 682 557 482
612 105 0.34 585
Shape = Shape = Shape = hape =
P¢=1 2906 P 2091 = 3068 Shape = rg5
973 340 27 981
223 1758 2290 2250
1175 1033 1358 1109
911 1168 1047 923
\_231_ 1_155_ l [ 228 | l | 160 |
Distance Example 1 Example 2 Example 3 Example 4
Sedan Model 154 1293 1221 263
SUV Model 1261 1489 301 1265
Hatchback Model 1257 245 177 1260
Di: between indivit and model indivi of each type
Sedan Hatchback Suv Sedan

Fig. 21. Tllustration of recognition by comparing distances to model individ-
uals of different types.

and calculate their average shape corresponding to the model
individual of that type in the shape parameter space. For ve-
hicle recognition, we can recover first the shape parameters of
the vehicle, which corresponds to an individual in the shape pa-
rameter space, and compare its distance to model individuals of
all types. The vehicle is recognized as the type whose model in-
dividual is closest to the recovered shape parameters. The four
testing examples with their shape parameters recovered are rec-
ognized using the Euclidian distance, as shown in Fig. 21.

In addition to the PETS database, we have tested our al-
gorithm for model-based vehicle recognition in our captured
image sets with part of which shown in Fig. 22. The set includes
vehicles of different types, different view angles, and occlusion
in the case of trees, bicycles, pedestrians, and other vehicles.
The scenes are calibrated practically based on the motion
and appearance information of moving objects in videos with
camera height measured as the only one user input. The details
of the calibration method refer to [30]. Compared with [28],
our algorithm can deal with all these conditions much better
to recover the shape and pose parameters of different kinds of
vehicles.

1. Discussion

Our method can be extended to vehicle tracking. With the
regions of interest detected in several frames, we can recover
the shape parameters of the vehicle from every frame to form
a more robust average shape, which can be used as a fixed 3-D
model. Then, the 3-D model-based tracking can be applied. One
of the methods was well illustrated in [9] and has advantages to
be more accurate and robust to occlusion. Furthermore, tracking
can then feedback to the 3-D modeling with temporal informa-
tion to recover more accurate and robust 3-D shapes.

As a stochastic-analysis-based method, our algorithm may
be affected by many factors. The acquisition of the bounding
box is a prior step in our method. Experiments are conducted to
test the performance of our algorithm to different bounding-box
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Fig. 22. Illustration of fitting and recognition in all kinds of cases in different views angles and occlusion. (a) Hatchback (sideview). (b) Minivan (occluded
by bicycles). (c) Truck (occluded by trees). (d) SUV (occluded by vehicles). (e) Van. (f) Minivan. (g) Pick-up (occluded by vehicles). (h) Pick-up (occluded by
vehicles). (i) Sedan (occluded by pillars). (j) SUV (occluded by vehicles). (k) Sedan. (1) Van (top—down view). (m) Truck (view 1). (n) Truck (view 2). (o) Truck
(view 3).

the context of vehicle recognition, the algorithm can be used for
many other vision problems.

Case 1 (before)  Case 2 (before) _ Case 4 (before)
= “ - ‘“ffz.
SSS~ | i*‘% o C

Case 2 (after)

1 Case I (after) Case 3 (after) Case 4 (after) Case 5 (after)

Fig.23. Illustration of fitting results with different bounding-box setting before
and after optimization.

settings with results shown in Fig. 23. For each bounding-box
setting, we show the fitting result of the best individual before
and after iteration for comparison. As we can see, our algorithm
has tolerance to deal with the inaccuracy of vehicle detection in
common situations (case 1, 2, 4, and 5) to achieve acceptable fit-
ting results with recovered shape parameters varying in less than
3% ranges, which demonstrates further the stability of the ap-
proach. However, in some extreme cases (Case 3) or occlusion,
different bounding-box setting may lead to different results or
may even fail, which has also been illustrated in Fig. 20. An-
other factor that may affect the performance is the initialization
of pose parameters. The algorithm described in Section III can
achieve successful initialization of vehicles in most cases but
may fail if the occlusion is too severe. Overall, our algorithm
has good tolerance to the inaccuracy of bounding-box acquisi-
tion and pose initialization.

VII. CONCLUSION

A novel algorithm has been described for the model-based lo-
calization and recognition of vehicles from monocular images.
A deformable model is set up with 12 parameters, and an effi-
cient method based on the image gradient is proposed to eval-
uate fitness between the projection of the vehicle model and
image data. An evolutionary framework is adopted to generate a
large number of models based on the deformable model and to
choose the best model and position by iterative evolution. The
algorithm cannot only realize vehicle localization and recogni-
tion but also recover the real shape of different kinds of vehicles.
Experimental results demonstrate the effectiveness, robustness,
and stability of the algorithm. It can deal with different vehicles,
different poses, and static occlusion. Although it is developed in
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