
Monitoring User Interactions for Supporting Failure
Reproduction

Tobias Roehm, Nigar Gurbanova, Bernd Bruegge
Technische Universität München

Munich, Germany
{roehm, bruegge}@in.tum.de, nigarkurbanova@yahoo.com

Christophe Joubert
Prodevelop

Valencia, Spain
cjoubert@prodevelop.es

Walid Maalej
University of Hamburg

Hamburg, Germany
maalej@informatik.uni-hamburg.de

Abstract—The first step to comprehend and fix a software bug
is usually to reproduce the corresponding failure. Reproducing a
failure requires information about steps to reproduce, i.e. the
steps necessary to make a failure occur in the development
environment. In case of an application with a user interface, steps
to reproduce consist of the interactions between a user and the
application that precede the failure. Unfortunately, bug reports
typically lack this information. Users are either unaware of its
importance to developers, are unable to describe it, or simply do
not have time to report it.

In this paper, we present a simple but effective and resource
efficient approach to monitor interactions between users and
their applications selectively at a high level of abstraction, e.g.
editing operations and commands. This minimizes the monitoring
overhead and enables developers to analyze user interaction
traces. We map monitored interactions to a taxonomy of user
interactions to help developers comprehend user behavior. Fur-
ther, we present the Timeline Tool that visualizes monitored
interaction traces preceding failures. To evaluate our approach
we conducted an experiment with 12 participants and asked
them to reproduce bug reports from an open-source project.
We found that developers are able to derive steps to reproduce
from monitored interaction traces. In particular, inexperienced
developers profit from the Timeline Tool, as they are able to
reproduce failures that they cannot reproduce without it. The
monitoring overhead is rather small (approx. 5 % CPU and 2-
5% memory) and users feel it does not influence their work in
a negative way.

Index Terms—Bug fixing, Failure reproduction, Steps to repro-
duce, User monitoring, Application instrumentation, Trace anal-
ysis, Program comprehension, Software maintenance, Software
evolution

I. INTRODUCTION

The first step for a developer fixing a bug is usually to
reproduce the corresponding failure1. Reproducing a failure
allows to confirm the existence of the corresponding bug,
helps to comprehend the bug and identify its cause, and
gives developers directions which artifacts to explore in their
comprehension process, e.g. which part of source code to
analyze or which part of the application to debug [18].

To reproduce a failure, developers need information about
steps to reproduce, i.e. the steps necessary to make the failure
occur on their development machines. In the case of an
application with a user interface, steps to reproduce are the

1We use the term “failure” to denote a crash, an exception, or other wrong
application behavior and the term “bug” to denote an algorithmic or coding
mistake.

user interactions preceding a failure. Studies by Zimmermann
et al. [23] and Laukkanen et al. [11] have shown that steps
to reproduce represent important information for developers
during maintenance tasks. These studies also found that steps
to reproduce are often incomplete or incorrect in bug reports
submitted by users, which makes failure reproduction difficult
and time consuming.

We present an approach to monitor high level user interac-
tions with meaning using application instrumentation. Exam-
ples of such interactions are editing operations or commands
issued. As those types of user interactions are less frequent,
the monitoring overhead is small and developers can manually
“read” and analyze collected information. We map moni-
tored user interactions to a taxonomy of interactions, giving
monitored events a semantic meaning helping developers to
comprehend user behavior. Further, we present the Timeline
Tool that visualizes monitored user interaction traces. Our
hypothesis is that developers can elicit steps to reproduce from
traces of monitored, high level, meaningful user interactions
that precede a failure. Our approach is complementary to
existing record & replay approaches.

We investigated the impact of our approach on bug fixing
tasks through an experiment comparing failure reproduction
with and without our tool. Additionally, we evaluated the
performance overhead introduced by our instrumentation by
simulating user actions in a plain and instrumented version of
a real world application. Further, we conducted a user study
to collect user feedback on performance overhead.

The contribution of this paper is threefold. First, it intro-
duces an approach to monitor high level user interactions,
map them to a taxonomy, and exploit them for supporting
failure reproduction. Second, it presents the Timeline Tool that
visualizes monitored interactions . Third, it presents the design
and results of an evaluation for the impact of our (and possibly
other’s) failure reproduction approaches using a combination
of experiment, simulation, and user survey.

This paper is organized as follows. In Section II we discuss
some background information. In Section III we describe our
approach and the Timeline Tool. In Section IV and Section V
we evaluate our approach from a developer perspective and the
performance overhead introduced. After discussing important
findings in Section VI, we review related work in Section VII
and conclude in Section VIII.

978-1-4673-3092-3/13 c© 2013 IEEE ICPC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

73

II. FAILURE REPRODUCTION SPECTRUM

Before describing our approach in detail, we compare
different perspectives of users and developers on failures and
sketch a granularity spectrum of user interactions as reference
framework.

A. Comparing User and Developer Perspectives
Users employ a software application in order to accomplish

a certain task such as preparing slides for a presentation. Tasks
consist of activities such as creating the slide structure, design-
ing a slide, or checking the spelling. In order to conduct each
activity, users interact with the user interface multiple times.
When users encounter a failure, they theoretically know their
current task, their current activity, and the UI elements they
interacted with. Consequently, they can report this knowledge
in bug reports like “Application crashed while designing a
slide” or “Application crashed when clicking ’Save’ button”.

On the other hand, developers are interested in bugs as they
want to fix them. Developers reproduce and analyze failures
to confirm the existence of a bug and locate it in source
code. Developers need information about the application and
its execution in order to locate the code that should be changed.

When comparing the perspective of users and developers we
observe a mismatch. Users cannot provide information needed
by developers as they usually do not have information about
internals of the application and its execution. In contrast, de-
velopers do not know how a user exactly used the application
to trigger a failure. Developers usually close this gap in a
time-consuming comprehension process. For instance, they try
to reproduce a failure by interacting with the UI [18]. They
are usually guided by steps to reproduce, i.e. the interactions
that the user performed before the failure occurred. After
reproducing the failure in the debugging environment, they
analyze the code triggered by user interactions in order to
locate the bug. The interactions of users with the user interface
represent a “bridge” between user and developer perspective.

B. User Interaction Granularity Spectrum
We identified several granularity levels of user actions (see

Table I). On the left hand side there are interactions with the
hardware periphery such as “mouse click at position [237,
25]” or “key ’M’ pressed”. The next level of granularity is an
interaction with a single widget such as entering text in a text
field or clicking a button. A single widget interaction consist
of multiple interactions with UI hardware such as multiple
key presses on the keyboard to enter a text in a text field.
Also, more detailed information about a user interaction is
available on widget level. For example, a mouse click can
now be distinguished to be a click on a button or the selection
of a window part because the clicked artifact is known. The
next level of granularity is an aggregation of several single
widget interactions, which we call multi widget interaction,
e.g. creation of a new presentation using a wizard. Several
single widget or multi widget interactions represent a user
activity such as designing a slide, which in turn is a step of a
user task.

Table I
USER INTERACTION GRANULARITY SPECTRUM

Granu-
larity

UI
hardware

interaction

Single
widget

interaction

Multi
widget

 interaction

User
activity

User task

Descrip-
tion

Interaction
betw. user

and UI
hardware

Interaction
betw. user
and single

widget

Aggregation
of single
widget

interactions

A step of
a user
task

A task a
user wants

to
accomplish

Exam-
ples

Mouse
action,

keyboard
action

Click
button,

selection,
enter text

Complete
wizard, fill
and submit

form

Design a
slide,
check

spelling

Create
presentation

Level of abstraction, Meaning

Frequency and monitoring overhead

III. OUR APPROACH

In this section we describe how we monitor user interactions
and application events, map them to an interaction taxonomy,
and visualize interaction traces in the Timeline Tool. We
monitor interactions on single widget interaction level. They
can be monitored directly in contrast to user activities and user
tasks. Their frequency is much smaller than that of interactions
with UI hardware. Hence, we hypothesize that developers can
analyze them manually.
We implemented and tested our approach using a modeling
and diagram-editing application, which we use as running
example in this section.

A. Monitoring of User Interactions
We follow a general user involvement framework as pre-

sented in [12], [13]. Figure 1 gives an overview how we collect
user interactions. Users interact with an application. Their
interactions are detected and recorded by software sensors.
Sensors are framework specific, live inside the application pro-
cess and can monitor detailed user interactions. After detecting
a user interaction, a sensor gathers all relevant information
and sends it to the Client component. The Client component
allows users to control the sensors, collects additional context
information that is not specific to a particular sensor, and
obfuscates monitored information to deal with privacy issues.
Then, it passes the interaction information to the Server
component running on a central server machine. The server
component stores the information in a database. Finally, the
Timeline Tool fetches a trace of events preceding an excep-
tion from the database, displays it, and allows developers to
analyze the trace and navigate through it. This architecture
allows minimizing computation and data storage on the user’s
machine by delegating to a central server.

We implemented the following sensors:
• Command Sensor

This sensor monitors user commands such as Open, Close
or Save diagrams and files by hooking as listener into the
graphical user interface framework.

• GUI Part Sensor
This sensor monitors the activation of a particular part

74

User Machine Server Machine

Application

Sensor Client DB Server

Timeline
Tool User Developer

Figure 1. Overview of our Monitoring Approach

of the current window by hooking as listener into the
window system.

• Diagram Sensor
As we study a modeling and diagram-editing tool, this
sensor monitors diagram manipulations such as adding
or deleting nodes, adding or deleting edges, or entering
text into diagram elements or their properties. It hooks
as listener into the diagram modeling framework used.

• Application Sensor
This sensor monitors start and shutdown of the applica-
tion as well as exceptions occurring by hooking as listener
into the application framework.

If a sensor observes a user interaction or an application
event, it collects the following context information for each
event:

• Event Type
The type of event, e.g. NodeAdded or ActivateGuiPart. It
corresponds to an event type in the taxonomy (see Section
III-B).

• Timestamp
The local system time when the event occurred.

• Artifact Type
The artifact represents the object of a user interaction.
For example when a user enters text, the artifact is the
text field in which the text is entered. The artifact type
thereby denotes the type of artifact.

• Artifact Id
The artifact id uniquely identifies the specific artifact
instance. In our text field example, it identifies the text
field in which the user entered text.

• Machine Id
The MAC address of the machine on which an event
occurred. It allows distinguishing between events from
different machines on the server side.

Additionally to this generic information, other information
pieces that are specific for the type of event are collected.
For example, the type of node in case of a NodeAdded event.

B. Taxonomy of User Interactions and Application Events
We developed a taxonomy of user interactions and appli-

cation events that is shown in Figure 2. User interactions
are divided into three subgroups. First, GuiNavigation inter-
actions with the purpose to navigate within the user inter-
face. For example, the ActivateGuiPart interaction represents

activation of a certain part of the current window. Second,
ExecuteCommand interactions denote execution of menu or
shortcut key commands. Examples are saving a file, importing
a file or creating a new diagram. Third, DiagramingEvents
represent adding nodes, removing nodes, adding edges, or
removing edges. The last interaction type is domain specific
for diagram-editing applications. While GuiNavigation and
ExecuteCommand interactions are single widget interactions,
DiagramingEvents are usually multi widget interactions. Start,
close, crash and exception events can occur in the application.
Every sensor instantiates this taxonomy by assigning the
corresponding event type to a monitored user interaction or
application event.

C. Visualization of Interaction Traces in the Timeline Tool
The purpose of the Timeline Tool is to visualize traces of

monitored user interactions together with application events.
Figure 2, left side, shows a screenshot of the tool interface.
A trace of monitored user interactions is shown in a timeline
(Figure 2: 1) and single events are represented by diamonds
placed on the timeline at the point in time when they occurred.
Next to the diamond, the event type is rendered. The color of
the diamond depends on the category of event. Each event
is categorized as one of two categories: user interaction (i.e.
an interaction between user and user interface) or application
event (i.e. an event happening in the application). These
categories correspond to the most abstract level in our event
taxonomy and developers can filter to display or hide events
from particular categories (Figure 2: 2). Further, developers
can zoom in and out to inspect particular subparts of the trace
in more detail. When a developer clicks on an event, detailed
information about that particular event is displayed (Figure 2:
3 and 4). The information displayed is the information that was
collected by software sensors. On the left side (Figure 2: 3),
general event properties are displayed, while on the right side
(Figure 2: 4) properties that are specific for the current event
type are displayed in a key-value fashion. In the interaction
trace shown in Figure 2, the NodeAdded interaction occurring
at 10:20:27 is selected by the developer and its properties are
shown on the bottom.

Overall, developers trying to reproduce a failure can inspect
the user interactions preceding the failure and derive steps to
reproduce by manually replaying all or a subset of monitored
user interactions.

IV. EVALUATION OF DEVELOPER PERSPECTIVE

In order to evaluate our approach and the Timeline Tool
from the developer perspective, we conducted an experiment.
We investigate in the following research questions:

• Can developers elicit steps to reproduce from monitored
interaction traces visualized in the Timeline Tool (RQ1)?

• Does our approach enable developers to reproduce fail-
ures that could not be reproduced with textual bug reports
because steps to reproduce are missing (RQ 2)?

• What is the difference between failure reproduction with
the Timeline Tool and textual bug reports? (RQ 3)

75

1

3 4 <REMOVED>

<REMOVED>

2

Figure 2. User Interface of Timeline Tool (Left) and Taxonomy of User Interactions and Application Events (Right)
Events in trace correspond to event types in taxonomy
1: Chronological view, 2: Event type filtering, 3: General event properties, 4: Event type specific properties

A. Experiment Design
We studied MOSKitt2, an open-source modeling and

diagram-editing tool, in our evaluation. MOSKitt is an RCP-
based desktop application that supports modeling UML,
BPMN, and Entity Relationship diagrams as well as capturing
and managing textual software requirements. MOSKitt is
constantly developed since 2007 by 27 contributing developers
and has a size of 2 millions lines of code, which are mostly
written in Java.
The sensors described in Section III-A were implemented
as framework extensions of the Eclipse, RCP, SWT, or
GMF frameworks and hook into the corresponding processing
chains. This enables to install the sensors easily via the
RCP update mechanism and to reuse the sensors for other
applications using the same framework.
The main idea of our experiment is to give participants
real bug reports from the MOSKitt bug repository and ask
them to reproduce the corresponding failures in an appli-
cation instance that we provided. We divided bug reports
in two categories: bug reports that lack steps to reproduce
(BugReportMissingSteps) and bug reports that contain steps to
reproduce (BugReportWithSteps) (see Section IV-A for details
on bug report selection). If steps to reproduce were not given
in the bug report, we asked a developer to provide them to us.

Experimental Setting: We conducted two sub-
experiments. Experiment 1 was conducted to investigate
RQ1 and RQ3, i.e. to see if it is possible for developers to
elicit steps to reproduce from the information presented in
the Timeline Tool and compare failure reproduction with bug
reports and interaction traces. Participants had to reproduce
bug reports of the category BugReportWithSteps. To avoid a

2http://www.moskitt.org/

dependency of the results on the order of tasks, the order was
chosen randomly. Members of experiment group were given
the Timeline Tool with corresponding interaction traces while
members of control group were given traditional, textual bug
reports.

Experiment 2 was conducted to investigate RQ1 and RQ2,
i.e. to see if developers working with the Timeline Tool
can reproduce failures that are lacking steps to reproduce in
their textual bug reports. Each participant had to reproduce
bug reports from category BugReportMissingSteps. Members of
control group were given traditional, textual bug reports while
participants from experiment group had both traditional, tex-
tual bug reports and the Timeline Tool with the corresponding
interaction trace.

We used a within subject design and divided participants
into an experiment group and a control group randomly.
After Experiment 1, the groups of participants were switched.
Participants in the control group for Experiment 1 were
assigned to the experiment group in Experiment 2 and vice
versa. This design ensures that each participant works with
the Timeline Tool. An overview of the experiment procedure
and the failures and bug reports used is given in Table II.

At the beginning of each session, we introduced participants
to the UML modeling feature of MOSKitt and the Timeline
Tool by a short tutorial video. Then, each participant had to
explore an example trace and answer seven questions about
it to make sure that participants understood how to use the
Timeline Tool.

Bug Report Selection and Trace Generation: In order to
find suitable bug reports for our experiment, we analyzed the
MOSKitt bug repository which contains around 19 000 bug
reports. Developers of MOSKitt report that around 90 % of

76

Table II
EXPERIMENT SETTING

FAILURES TO BE REPRODUCED AND MATERIAL PROVIDED
ORDER OF FAILURES IN EXPERIMENT 1 IS DETERMINED RANDOMLY

Failure Material for
Experiment Group

Material for
Control Group

Experiment 1
F1

(from
BR1)

Timeline Tool with
interaction trace

Traditional, textual
bug report

F2
(from
BR2)

Timeline Tool with
interaction trace

Traditional, textual
bug report

Experiment 2
F3

(from
BR3)

Timeline Tool with
interaction trace and
traditional, textual bug
report

Traditional, textual
bug report

the tickets do not contain information about steps to reproduce.
We used the following inclusion criteria for selecting suitable
bug reports. First, the reported failure had to be reproducible
in single MOSKitt version, namely in MOSKitt 1.3.7. Sec-
ond, the reported failure had to concern the UML modeling
feature of MOSKitt to minimize the familiarization effort for
participants not familiar with MOSKitt. Third, the reported
failure had to trigger an exception that is visible to the user
in form of an error dialog message or an entry in the error
log. This requirement ensures that we can clearly determine
if the failure was reproduced. Fourth, the bug report had to
be in English language. After application of those criteria
only four bug reports remained. There were two main reasons
limiting suitable bug reports for our experiment. First, the
bug repository is not only used for bug reports but also to
capture feature requests and other information. Second, most
bug reports were written in Spanish.

The four suitable bug reports were divided into two cat-
egories, namely BugReportWithSteps and BugReportsMissingSteps.
When we could reproduce a failure based on the description
in the bug report, it was categorized as BugReportWithSteps. In
other cases, it was categorized as BugReportMissingSteps and a
developer of MOSKitt was asked to provide steps to reproduce.
As one of the bug reports triggered several exceptions, it was
used as example in the Timeline Tool tutorial and the other
three bug reports BR13, BR24 and BR35 were used in our
experiments (see Table III for details about the bug reports).

Unfortunately, we had no possibility to integrate our sensors
into MOSKitt in a real usage setting. Therefore, we simulated
the occurrence of each failure by executing the steps to
reproduce in Table III and created an interaction trace using
the MOSKitt sensors. This trace was shown to participants
using the Timeline Tool.

Participants: We conducted the experiment with 12 par-
ticipants (see Table IV for details). The participants were eight
master students, two researches and two developers from the

3https://moskitt.gva.es/redmine/issues/165
4https://moskitt.gva.es/redmine/issues/138
5https://moskitt.gva.es/redmine/issues/139

MOSKitt development team. Students and researchers did not
have previous experience with MOSKitt. The self-assessment
of UML experience - in our case domain knowledge of end
users - differed between beginner and advanced with mode
Intermediate (on a Beginner-Intermediate-Advanced scale).
The frequency in which participants fix bugs in their daily
work differed between daily to never with mode daily (on a
Never - Once a month - Once a week - Daily scale).

B. Quantitative Results

The quantitative results of the experiment are summarized
in Table V and we present the most important results in this
section.

In Experiment 1, six of six members of the experiment
group could reproduce the failures based on information from
the Timeline Tool, as well as six out six participants from
control group given textual bug reports. The average time
needed by members of experiment group to reproduce failure
1 and failure 2 was 3:30 and 3:08 minutes, respectively. For
members of the control group the time needed was 2:49 and
2:05 minutes, respectively. Further, four of six members of the
experiment group in Experiment 2 were able to reproduce the
failure with information from the Timeline Tool and textual
bug reports.
We conclude that developers can elicit steps to reproduce from
the information presented by the Timeline Tool. As we did
only a brief introduction of the Timeline Tool, a possible
explanation for the additional time needed by members of
experiment group could be that they needed some time to
familiarize with the Timeline Tool. This effect has to be further
investigated.

In Experiment 2, four of six members of the experiment
group were able to reproduce the failure with interaction traces
visualized in the Timeline Tool and textual bug reports. The
two participants from the experiment group that could not
reproduce the failure were P10 and P12. Participant P12 could
not reproduce the failure because he was missing some actions
in the trace. Participant P10 could not reproduce the failure
because he was exploring the trace backwards, i. e. right to left
instead of left to right. In contrast, only one of six members
of the control group was able to reproduce the failure with the
textual bug report. But this was the developer that originally
fixed the bug and hence his success is biased and cannot be
generalized. Members of the experiment group needed 6:28
min in average while members of the control group gave up
after 6:14 min in average.
We conclude that the Timeline Tool enables developers to
reproduce failures whose bug reports lack steps to reproduce.
This is a major improvement as developers depending on the
textual bug reports could not reproduce those failures.

C. Qualitative Findings

Here we summarize the findings from observing participants
during their work with the Timeline Tool.

77

Table III
BUG REPORTS USED IN EXPERIMENT

Bug
Report

Category Title and Description of Bug Report Steps to reproduce

BR1 With
Steps

Error when assigning a StateMachine to a
SubmachineState:
When adding a "Submachine State",
Moskitt throws an exception: Unhandled
event loop exception
java.lang.StackOverflowError
Then, the submachine is shown into the
diagram, but it cannot be deleted.

1) Create new ’MOSKitt’ project.
2) Create new UML2 diagram of type ’UML State machine’.
3) Create a new ’Submachine State’ element
4) Select the parent StateMachine as the referenced state machine.
-> StackOverflow error is thrown and diagram is no longer editable.

BR2 With
Steps

[Use Case] Error when create an extension
point into a Use Case figure:
[Use Case] Error when create an extension
point into a Use Case figure

0) Open the ’Error log’ view of MOSKitt.
1) Create a new ’MOSKitt’ project.
2) Create new UML2 diagram of type ’UML UseCase’.
3) Create a ’UseCase’ element .
4) Create an ’ExtensionPoint’ inside the use case .
-> An error appears in the error log view with a stack trace.

BR3 Missing
Steps

[Statemachine] Error when create a State
Submachine:
[Statemachine] Error when create an State
Submachine

0) Open the ’Error log’ view of MOSKitt.
1) Create a new ’MOSKitt’ project.
2) Create new UML2 diagram of type ’UML State machine’.
3) Create another UML2 diagram of type ’UML State machine’.
4) Save both diagrams and keep them open.
5) In the first diagram, create a ’Submachine State’ . When prompted to select a
State Machine, select the one from the other diagram.
-> A StackOverflow error happened and MOSKitt needs to be restarted to
continue working.

Table IV
EXPERIMENT PARTICIPANTS

S = STUDENT, R = RESEARCHER, D = DEVELOPER

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Position S S S S S S S S R R D D
Gender M M M M F F M F F M M M
MOSKitt
Experience

No No No No No No No No No No Yes Yes

UML
Experience

Interm. Interm. Beg. Beg. Interm. Interm. Adv. Interm. Interm. Adv. Adv. Adv.

Bug Fixing
Frequency

Daily Weekly Daily Daily Monthly Never Daily Daily Monthly Weekly Daily Monthly

Table V
QUANTITATIVE EXPERIMENT RESULTS

REPR.=FAILURE REPRODUCED? (YES/ NO)

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Experiment 1
Group Contr. Exp. Exp. Contr. Contr. Exp. Contr. Exp. Exp. Contr. Exp. Contr.
Order F1,F2 F1,F2 F1,F2 F2,F1 F1,F2 F2,F1 F1,F2 F1,F2 F2,F1 F2,F1 F2,F1 F1,F2
F1 (BR1) Time 03:00 5:50 06:00 03:00 03:30 02:00 03:20 03:50 01:30 01:55 01:50 02:10
F1 (BR1) Repr. Y Y Y Y Y Y Y Y Y Y Y Y
F2 (BR2) Time 1:15 2:00 03:00 03:00 04:00 05:30 01:25 03:10 02:40 02:10 02:30 00:40
F2 (BR2) Repr. Y Y Y Y Y Y Y Y Y Y Y Y
Experiment 2
Group Exp. Contr. Contr. Exp. Exp. Contr. Exp. Contr. Contr. Exp. Contr. Exp.
F3 (BR3) Time 07:30 06:00 08:00 10:00 07:00 07:45 05:00 07:40 03:10 04:50 04:50 04:30
F3 (BR3) Repr. Y N N Y Y N Y N N N (Y) N

78

Direction of Trace Exploration: We found two trace
exploration strategies. Nine participants explored the trace
chronologically, i.e. left to right, while three participants
explored the trace backwards, i.e. right to left. The backwards
strategy seems to resemble the analysis of a stack trace, where
an exception is analyzed by exploring executed methods start-
ing with the latest method called (top down in the stack trace).
In order to be able to reproduce failures using the Timeline
Tool, participants had to work chronologically. Participants
were not told this before. Also, they did not know that the
Timeline Tool presents minimal reproduction traces, i.e. all
user interactions of a trace have to be reproduced to make an
exception occur. Hence, they were probably trying to identify
the first user interaction necessary for failure reproduction.

Participant Feedback: We asked participants about their
opinion about the Timeline Tool and its impact on failure
reproduction tasks in a short questionnaire. Eleven participants
agreed (8) or strongly agreed (3) that the meaning of infor-
mation presented in the Timeline Tool is clear and easy to
understand. Eleven participants agreed (3) or strongly agreed
(8) that the Timeline Tool is helpful when reproducing failures.
Similarly, eleven participants agreed (6) or strongly agreed
(5) that it is clear what the user did by analyzing the trace
in the Timeline Tool. Two participants preferred textual bug
reports to the Timeline Tool, given that both contain the same
information, while eight participants preferred the Timeline
Tool.

Impact for Developers and Students: When looking at the
results, we see a difference between students and developers.
As the students were all master students and most of them
work as developers, we can assume that the students mimic
new developers without experience with MOSKitt. Looking at
the results of the students in experiment 2, we found that all
four students in the experiment group were able to reproduce
the failure while all four students in the control group were
not able to reproduce it. Consequently, we conclude that the
Timeline Tool has a big impact on failure reproduction of
developers unfamiliar with an application. Looking at the
results of MOSKitt developers in experiment 2, the results
differ. While P12 working with the Timeline Tool could
not reproduce the failure, P11 working with the textual bug
report could reproduce it. But there are effects that doubt
the generalizability of those results. P12 did not work in a
chronological order with the Timeline Tool and P11 was the
developer fixing the corresponding bug for F3. Because of
these effects and the limited number of developers in the
experiment further investigation is necessary. Both developers
strongly agreed that the Timeline Tool is helpful in failure
reproduction.

D. Limitations
Our experiment setup has three main limitations that we

discuss below. First, the interaction traces presented in the
Timeline Tool were generated manually. Thereby, we followed
the steps to reproduce elicited from the textual bug report
or given by MOSKitt developers. Hence, we assume that the

manual generation of traces will not influence the results of the
experiment completely. Second, the limited number of failures
that participants had to reproduce. We could find only four
bug reports fulfilling our criteria. By choosing bug reports
from a real bug repository, we can assume a good practical
relevance of the bug reports studied. But the generalizability of
our approach has to be further investigated. Third, participants
were asked to reproduce failures on a laptop with the same
environment and the same MOSKitt instance that was also
used to record the interaction traces. As this is usually not the
case in reality, further research is necessary to discriminate
failures that only occur in special environments and to extend
our approach to deal with heterogeneity of environments.

V. EVALUATION OF PERFORMANCE OVERHEAD

In order to evaluate the performance overhead introduced
by our sensors, we conducted a simulation study and a user
survey that we describe in this section. We investigate the
following research questions.

• How big is the performance overhead introduced by our
sensors in terms of time and memory (RQ4)?

• How do users perceive the performance overhead (RQ5)?
MOSKitt, a modeling and diagram-editing tool was used as
case study application in this evaluation. It is the same ap-
plication as used in the evaluation from developer perspective
and is described in more detail in Section IV.

A. Design
Here we present the design of the simulation and user

survey.
Simulation: In order to study RQ4 and measure the

performance overhead introduced by our sensors, we con-
ducted a simulation. We generated sequences of diagram
manipulation actions automatically and used them to simulate
user interactions. These generated sequences were injected
in a plain MOSKitt instance as well as in an instrumented
MOSKitt instance. We measured and compared differences
regarding time and memory consumption in order to evaluate
the performance overhead introduced by our diagram sensor,
i.e. the GMF-based sensor monitoring diagram manipulations.

The types of diagram manipulations simulated are Cre-
ate and Delete Project (CP, DP), Create Model (CM), Cre-
ate/Update/Delete Element (CE, UE, DE), Execute Transfor-
mation (ET), Change Size (CS), Move Figure (MF), Switch
Editor (SW), Undo (UN) and Redo (RE). The occurrence
frequency of each manipulation type is determined by param-
eters. As the order of manipulations is not arbitrary, e.g. an
element can only be created when an umbrella model exists,
a state machine is used to determine the next manipulation.
A simplified version (showing only a subset of all diagram
manipulations) is shown in Figure 3. As diagram elements are
parts of models and models are organized in projects, the states
InElement, InModel, and InProject represent the current focus.
During creation of the manipulation sequence, the diagram is
in a certain state and randomly selects a manipulation that is
possible in the current state. If a manipulation is feasible in a

79

Ready

InProject

InModel

InElement

Exception

DP

CP

CP CM

CE,UE,DE

Figure 3. State Machine Used to Generate Diagram Manipulation Sequences
C=Create, D=Delete, U=Update, P=Project, M=Model, E=Element
Simplified version

state, it is represented as an edge leaving the state node in the
state machine. Projects can be created and deleted at any time,
as well as exceptions can occur at any time. Between any two
manipulations, a time break of 0, 1 or 2 seconds is inserted
randomly. The resulting sequence of diagram manipulations is
stored in a file.

The generated sequences of diagram manipulations are in-
jected in a plain MOSKitt instance and in a MOSKitt instance
instrumented with our sensors. The total time needed for the
execution of all manipulations is measured and the time per
manipulation is calculated by dividing measured total time
by the number of diagram manipulations. Further, the current
RAM consumption of the application is measured using nmon
utility tool periodically and the average of a simulated session
is calculated. Both metrics are compared for the plain and
the instrumented MOSKitt instance. A machine with similar
configuration as the typical user machine is used to run the
simulations, i.e. a laptop running Ubuntu Linux equipped with
a Intel Core 2 Duo processor (2 cores at 2.00 GHz) and 3 GB
RAM.

User Survey: We conducted a user survey in order to
investigate RQ5 and obtain user feedback on the performance
overhead introduced by our sensors. We asked six MOSKitt
users to work with a MOSKitt version instrumented with
our sensors for two weeks and report their experiences in a
questionnaire. As this study was part of a larger evaluation
study in the FastFix project [16], the instrumentation consisted
of our sensors as described in Section III-A and additionally
sensors for a record & replay approach that monitored user
interactions on a lower level of granularity. User feedback
was collected using an anonymized, web-based questionnaire.
Users were asked the following questions: “The application
behaves the same way with as without the sensors.” (Q1,
agreement on a 5 point Likert scale from Strongly agree to
Strongly disagree), “Did you notice changes in performance

Figure 4. Performance Overhead of Instrumentation

(e.g. longer response time) since you started using MOSKitt
with sensors?” (Q2, Yes/ No) and “If yes, do you agree with
the following statement - The performance changes introduced
by the sensors are tolerable and do not hinder my work.“ (Q3,
Likert scale like Q1).

B. Results
Here we present the results of both the simulation and the

user survey.
Simulation: We simulated 9 user sessions ranging from

50 to 800 diagram manipulations. Figure 4 shows the time and
memory overhead between plain and instrumented MOSKitt
version. The results show that the time overhead is big for
short sequences and then converges to approx. 5 %. We
expected a big overhead for short sequences as the sensor
initialization overhead is proportionally large for sequences
with few diagram manipulations. The average memory over-
head introduced was 2-5 %. Concluding, we found that our
diagram sensor introduces a small overhead regarding time
and memory consumption.

User Survey: Table VI gives an overview over partici-
pants of the user survey and their answers to the questions.
Users used the instrumented version of MOSKitt for 5 days
in average and performed 6 sessions on average during this
time. Five users agreed or strongly agreed that they do not
perceive a difference in the behavior of MOSKitt as compared
to MOSKitt without our sensors. User U2 disagreed and
perceived a performance overhead, but judged it to not hinder
his or her daily work. Concluding, we found that our sensors
do not introduce a performance overhead that hinders users in
their daily work.

C. Limitations
As the performance of users was not considered during the

user survey, we think there is no Hawthorne effect influencing
the behavior of users and consequently our results. Our evalu-
ation has three limitations. First, only diagram manipulations
are simulated and consequently we evaluate the overhead
of the diagram sensor and the processing and storage logic
with our simulation. As diagram manipulations are frequent
user interactions for a diagram manipulation application, we
expect the results to generalize to other actions. Second,

80

Table VI
USER SURVEY PARTICIPANTS AND RESULTS

Participant U1 U2 U3 U4 U5 U6
Days of

Use
8 3 8 7 1 3

Sessions 8 3 12 7 4 3
Usual
Usage
Freq.

Never Never Once
a day

Once
a day

Several
times
a day

Once
a

week
Q1: Same
behavior

Agree Disagr. Agree Strong
Agree

Agree Agree

Q2: Perf.
changes

No Yes No No No No

Q3: No
hindrance

- Agree - - - -

the generated sequences of diagram manipulations simulate
user behavior but might deviate from real user behavior. In
order to minimize this limitation, the order of manipulations
in generated sequences is determined randomly guided by
the state machine and time breaks between two manipula-
tions are introduced. Third, an additional record & replay-
instrumentation was present in parallel to our sensors during
the user study. Consequently, we cannot determine the extent
to which our sensors are responsible for potential performance
degradation.

VI. DISCUSSION

We discuss the applicability of our approach, important
observations and findings in this section.

As we monitor and analyze user interactions, our approach
is applicable to software applications with a user interface. We
implemented and tested our approach with a traditional desk-
top application that is controlled using mouse and keyboard.
But we expect our approach to be adaptable without big effort
to other UI driven applications running on smart phones or
tablets. In order to apply our approach to other applications,
the sensors and the taxonomy have to be extended accordingly.
The possibility and effort to implement sensors for an applica-
tion depends on the existence of monitoring components, the
hooks provided by the frameworks used, and the availability
of source code. The domain-independent part of the taxonomy
such as standard commands and UI navigation actions can
be reused while domain-dependent interactions have to be
added to the taxonomy. For employing our approach, two main
scenarios are possible. First, augmenting an existing, textual
bug report with monitored interaction traces. Second, in cases
where no bug report exists, automatically generating a bug
report containing a monitored interaction trace.

Considering user interactions only is not enough to reliably
reproduce failures occurring in the field. First, other types of
input such as data loaded from a file alters the state of an
application and may cause a failure. Second, a failure may
depend on a certain environment such as a certain library
version. Consequently, it has to be investigated what subset
of failures can be tackled with our approach and how the
mentioned issues can be tackled.

Existing record & replay approaches focus on collecting
application execution information such as window system
events and UI hardware interactions. We share the goal to
reproduce failures by monitoring user interactions, but propose
to selectively monitor user interactions at a high level of
granularity. Focusing on important interactions allows to min-
imize performance overhead introduced, reduces the number
of interactions developers have to inspect during reproduction
and thereby enables manual analysis by developers. We do
not replay the interactions we monitored but present them
as traces to developers for manual analysis, thereby avoiding
problems sometimes associated with replaying monitored user
interactions.

VII. RELATED WORK

Maalej et al. [12] and Maalej and Pagano [13] discuss how
feedback and input of users can be considered in software
development in general. Maalej et al. [12] also present a
classification of user input types and our approach falls in
their category “Pull communication & Implicit Feedback”. In
the following, we review related work in four areas below.

Record & Replay Approaches for User Interactions:
Approaches to capture and replay user interactions have been
developed by other researchers. Herbold et al. [7] monitor the
messages between GUI objects in applications implemented
using Microsoft Foundation Classes as target platform. Those
message are triggered by user interactions like mouse clicks or
key presses. Steven et al. [20] present jRapture, an approach
to monitor and replay AWT and Swing events generated upon
interactions of users with the user interface by a wrapper.
We monitor user interactions selectively at a higher level of
granularity.

Automated Failure Reporting: Murphy [14] discusses
automated failure reporting and stresses the importance of
user input and the events preceding a failure. Glerum et
al. [6] present WER, the automated failure reporting tool used
by Microsoft, and their experiences to collect and analyze
failure data. Further tools to report failures and context in-
formation via the Internet have been developed. Apple Crash
Reporter [2], BugBuddy6, Mozilla Talkback7, and Google
Breakpad8 collect memory dumps and report to central failure
repositories. These approaches do not capture user interactions
preceding failures.

Monitoring of User Interactions: Monitoring user actions
has a long tradition. Hilbert and Redmiles [8] review the
state of the art of monitoring user interface events. Saito et
al. [19] observe window switches and summarize user tasks
and compare user behavior. Several authors present approaches
that help in usability testing in general [21], [1], usability
testing of web pages [4] and usability testing of mobile
apps [10], [17]. These approaches monitor user actions and
exploit them to comprehend user behavior, but they do not
deal with failure reproduction.

6http://directory.fsf.org/wiki/Bug-buddy
7http://talkback.mozilla.org
8http://code.google.com/p/google-breakpad/

81

Reproduction of Field Failures: Other researchers have
studied reproduction of failures occurring in the field by
monitoring the dynamic execution of applications. Orso and
Kennedy [15] selectively monitor the executed methods, field
accesses and exceptions. Jin and Orso [9] support in-house
reproduction of field failures based on software execution
information such as call traces. Similarly, Artzi et al. [3]
automatically generate multiple unit tests to reproduce a given
program failure. Bell et al. [5] capture and replay all sources
of non-determinism to an application. Tucek et al. [22] employ
lightweight monitoring to detect failures and collect additional
information by re-execution on the user’s machine. All those
approaches collect information about application execution
while we monitor user interactions.

VIII. CONCLUSION

In this paper we presented an approach to monitor user
interactions at a higher level of abstraction than state of the
art tools and establish a semantic meaning for monitored
interactions by mapping them to a taxonomy of interactions.
We also presented a tool that visualizes interaction traces
preceding failures. By evaluating the impact on failure repro-
duction tasks using an experiment, we found that developers
are able to derive steps to reproduce from monitored and
visualized interaction traces. Inexperienced developers were
able to reproduce failures that they could not reproduce before.
By evaluating the performance overhead introduced by our
instrumentation using a simulation and a user survey, we found
that the overhead is small and does not hinder users in their
work.

Four main future directions are necessary to improve our ap-
proach and understand its impact on maintenance tasks. First,
the experiment should be replicated with more experienced
developers, other applications, more failures, real interaction
traces, and heterogeneous reproduction environments to tackle
current limitations. Second, it should be investigated how
developers can deal with large interaction traces as generated
by users in their daily work and corresponding mechanisms
such as filtering algorithms should be designed. Third, the
Timeline Tool should be integrated into existing development
and maintenance environments such as code editors, debug-
gers, and issue trackers. Fourth, the issue of privacy and its
implications on interaction monitoring should be investigated.

ACKNOWLEDGEMENTS

We thank Dennis Pagano, Rebecca Tiarks, and anonymous
ICPC reviewers for feedback, Marc Gil, Miguel Llácer, and
Javier Cano for their support to collect data, and all partic-
ipants of our evaluation studies. This work was supported
by the European Commission under grant no. FP7-258109
(FastFix project) and partially supported by the Spanish MEC
INNCORPORA-PTQ 2011 program.

REFERENCES

[1] D. Akers, R. Jeffries, M. Simpson, and T. Winograd. Backtracking events
as indicators of usability problems in creation-oriented applications.
ACM Transactions on Computer-Human Interaction, 19(2):1–40, 2012.

[2] Apple Inc. CrashReporter. Technical Report TN2123. Technical report,
2004.

[3] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making software
failures reproducible by preserving object states. In ECOOP 2008 -
Object-Oriented Programming, volume 5142 of LNCS, pages 542–565.
Springer, 2008.

[4] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s every move
- User activity tracking for website usability evaluation and implicit
interaction. In Proc. of the 15th Int. Conf. on World Wide Web, pages
203–212. ACM, 2006.

[5] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight recording to
reproduce field failures. In ICSE 2013 Proceedings, To Appear., 2013.

[6] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the (very)
large: Ten years of implementation and experience. In Proc. of the ACM
SIGOPS 22nd Symp. on Operating Systems Principles, pages 103–116.
ACM, 2009.

[7] S. Herbold, J. Grabowski, S. Waack, and U. Bünting. Improved bug
reporting and reproduction through non-intrusive GUI usage monitoring
and automated replaying. In Fourth Int. Conf. on Software Testing,
Verification and Validation Workshops, pages 232–241. IEEE, 2011.

[8] D. M. Hilbert and D. F. Redmiles. Extracting usability information from
user interface events. ACM Computing Surveys, 32(4):384–421, 2000.

[9] W. Jin and A. Orso. BugRedux: Reproducing field failures for in-house
debugging. In ICSE 2012 Proceedings, pages 474–484. IEEE, 2012.

[10] D. Kim and K. Lee. Development of interactive logger for understanding
user’s interaction with mobile phone. In Human-Computer Interaction.
Interaction Platforms and Techniques, volume 4551 of LNCS, pages
394–400. Springer, 2007.

[11] E. I. Laukkanen and M. V. Mantyla. Survey reproduction of defect
reporting in industrial software development. In 2011 Int. Symp. on
Empirical Software Engineering and Measurement, pages 197–206.
IEEE, 2011.

[12] W. Maalej, H. Happel, and A. Rashid. When users become collaborators:
Towards continuous and context-aware user input. Proc. of the 24th ACM
SIGPLAN Conf. on Object Oriented Programming Systems Languages
and Applications, pages 981–990, 2009.

[13] W. Maalej and D. Pagano. On the socialness of software. In Ninth IEEE
Int. Conf. on Dependable, Autonomic and Secure Computing, DASC,
pages 864–871. IEEE, 2011.

[14] B. Murphy. Automating software failure reporting. Queue, 2(8):42–48,
2004.

[15] A. Orso and B. Kennedy. Selective capture and replay of program
executions. In Proc. of the 3rd Int. Workshop on Dynamic Analysis,
pages 1–7. ACM, 2005.

[16] D. Pagano, M. Juan, A. Bagnato, T. Roehm, B. Bruegge, and W. Maalej.
FastFix: Monitoring control for remote software maintenance. In ICSE
2012 Proceedings, pages 1437–1438. IEEE, 2012.

[17] F. Paternò, A. Russino, C. Santoro, and V. G. Moruzzi. Remote
evaluation of mobile applications. In Task Models and Diagrams for
User Interface Design, volume 4849 of LNCS, pages 155–169. Springer,
2007.

[18] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do professional
developers comprehend software? In ICSE 2012 Proceedings, pages
255–265. IEEE, 2012.

[19] R. Saito, T. Kuboyama, Y. Yamakawa, and H. Yasuda. Understanding
user behavior through summarization of window transition logs. In
Databases in Networked Information Systems, volume 7108 of LNCS,
pages 162–178. Springer, 2011.

[20] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture: A capture/
replay tool for observation-based testing. ACM SIGSOFT Softw. Eng.
Notes, 25(5):158–167, 2000.

[21] Y. Tao. Capturing user interface events with aspects. In Human-
Computer Interaction. HCI Applications and Services, volume 4553 of
LNCS, pages 1170–1179. Springer, 2007.

[22] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: Diagnosing
production run failures at the user’s site. In Proc. of 21st ACM SIGOPS
Symp. on Operating System Principles, 2007.

[23] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and
C. Weiss. What makes a good bug report? IEEE TSE, 36(5):618–643,
2010.

82

