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Abstract—A procedure for the determination of an optimum point set. When the testability value is not maximum, that
set of testable components in the fault diagnosis of analog linear js when it is less than the total number of potentially faulty
circuits is presented. The proposed method has its theoretical circuit components, the problem is not uniquely solvable and

foundation in the testability concept and in the canonical ambi- it i t ider furth s | th
guity group concept. New considerations relevant to the existence 't 1S Necessary 10 consider iurther measurements, 1.e., other

of unique solution in the k-fault diagnosis problem of analog test points, or accept a reduced number of potentially faulty
linear circuits are presented, and examples of application of components in order to locate the elements which have caused

the developed procedure are considered by exploiting a software the incorrect behavior of the circuit under consideration.
package based on symbolic analysis techniques. Generally, the second approach is used for two reasons. First,
Index Terms—Analog system fault diagnosis, analog system not all the possible test points actually can be considered
testing, fault location. because of practical and economic measurement problems

strictly tied with the used technology and with the application

|. INTRODUCTION field of the circuit under consideration. Second, the number of

. . . . .. faulty components is generally smaller than the total number
FAULT diagnosis and fault location in analog CircuitSyt circyit components. The single fault case is the most

are of fundamental importance for design validation ang,,ent, double or triple cases are less frequent, and the case
prototype characterization in order to improve yield througfk 5 faulty components is almost impossible. Therefore, as
design modification. However, at present, while for digitg},s (estapility is normally not maximum, the fault diagnosis
circuits well-consolidated fully automatized techniques fqf,,pjem is dealt with by assuming the quite realistic hypothesis
fault diagnosis are commonly used, for analog circuits th&a; the number of faulty components is bounded, that is, the
development level is Ie;s advqncgd. i . k-fault hypothesis is made. Under this hypothesis, in order to
In the analog fault diagnosis field, an essential point [§cate the faulty elements with as low as possible ambiguity, it

constituted by the concept of testability which, independently ¢ f,ndamental importance to determine a set of components
of the method that will be effectively used in fault locationy, . is representative of all the circuit elements

gives theoretical and rigorous upper limits to the degree of|, i4ig paper a procedure for the determination of an

solvability of the problem, once the test point set has be%Btimum set of testable components in théault diagnosis
chosen. A weII—defineq quantitative. measure of te§tability C} analog linear circuits is presented, where for the optimum
be deduged _by referring to fa.ult dlagnos!s techniques (_)f @€t we mean a set of components representing all the circuit
parametric kind. These techniques, starting from a series @i ments and giving a unique solution. The procedure is based
measurements carried out on previously selected test poif.ihe testability evaluation of the circuit and on the determi-
are aimed at determining the effective values of the circyityion of the canonical ambiguity groups. Referring again, for
parameters by solving a set of equations (the fault diagnogiy, sake of simplicity, to parametric fault diagnosis techniques,

equations) .r.lonlinear with respect j[O the com_ponent va_lu% ambiguity group can be defined as a set of components
The solvability degree of these nonlinear equations constltugﬁgt, if used as unknowns (i.e., if considered as potentially

the most used definition of testability measure [1]{3], Whicﬂ;\ulty), gives infinite solutions in a phase of fault location

indicates the ambiguity resulting from an attempt t0 SON&, jiterature the ambiguity group concept has already been
such equations in a neighborhood of aimost any failure. fayqqced in [4], but in this paper it is considered with a wider
other words, the testability measure provu;ies information aborHEaning). A canonical ambiguity group is simply an ambiguity
the number of testable components with the selected tggh, 5 that does not contain other ambiguity groups. It is worth

. . . P inting out that the proposed procedure gives information
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of fundamental importance because symbolic analysis, duewtherep = [p1, p2, - -+, pr|* is the vector of the potentially

the fact that it gives symbolic rather than numerical resultiulty parameters ané is the total number of equations, the

is particularly suitable for applications such as testability artdstability is equal to the rank of a matr®® independent of

canonical ambiguity group determination, as will be shown ithe complex frequency whose entries are constituted by the

the following. derivatives of the coefficients of the fault diagnosis equations
The paper is organized as follows. In Section | the theoretisth respect to the potentially faulty circuit parameters [6].

cal basis for the determination of both the testability value afidherefore, the testability matrix can be considered in the

the canonical ambiguity groups is considered. In Section fhllowing form:

new considerations relevant to the existence of unique solution

for the k-fault diagnosis problem of analog linear circuits

are presented and the procedure for the determination of an [V al? af?
optimum set of testable components is described. Finally, in 9 b 9 b 9 b
Section Il a software package, based on symbolic analysis Op1 Ops Opr
techniques, for the determination of both testability and canon- . S e
ical ambiguity groups is briefly described and examples of e ald ad
application of the developed procedure are presented. 8b—1 7] 2 L a 2 !
Ip1 Ip2 Ipr
[I. TESTABILITY AND AMBIGUITY GROUPS
(K) (K) (K)
As was previously mentioned, a well-defined quantitative g% a%o a0
measure of testability can be deduced by referring to fault di- bm bm bm
agnosis techniques of the parametric kind. In these techniques B=| 9 Ip2 dpr | . )
it is necessary to determine a set of equations describing the
circuit under test and solve it with respect to the component aﬁf;) agf,‘() agf,‘()

. A . ot 3] 3] g
values. In the case of analog linear time-invariant circuits, the b b by
fault diagnosis equations can be constituted by the network o1 dp»  Opr
functions relevant to the selected test points [5], [6] which bo bo bo
are nonlinear with respect to the potentially faulty circuit ab_m ab_m ab_m
parameters. By assuming that the faults can be expressed as a1 Fps R
parameter variations without influencing the circuit topology ..
(i.e., faults as short and open are not considered), the testability b1 b1 b1
measure?’ is given by the maximum number of linearly ab—m ab—m ab—m
independent columns of the Jacobian matrix associated with L apy Ipo pr

the fault diagnosis equations, and it represents a measure
of the solvability degree of the nonlinear fault diagnosis

equations [1]-{3]. The entries of the Jacobian matrix algthe fault diagnosis equations are generated in a completely
rational functions depending on the complex frequea@nd symbolic form, the testability evaluation becomes easy to
the potentially faulty parameters. Thus, in order to evaluagarform. In this case, the entries of the mati can be

the testability it is necessary to fix the potentially faultgimply led back to derivatives of sums of products and the
parameter values and the complex frequencyn [2] it has computational errors are drastically reduced in the automation
been shown that, once the frequency values are fixed (generglgse. Once the matriB has been determined, testability
a multifrequency approach is considered in order to usee@gluation can be performed by triangularizii®) and as-
reasonable number of test points), the rank of the obtaing@ning arbitrary values to the components (as was previously
Jacobian matrix is constant almost everyWhere, i.e., for all th%ntioned' testabmty does not depend on Component Va|ues)_
potentially faulty parameter values except those lying in afhe disadvantage of considering as the testability matrix the
algebraic variety. Using this approach, the testability valugatrix B instead of the Jacobian matrix consists in the fact
although independent of component values, is very difficult {at the testability meaning of the solvability measure of the
handle and subject to roundoff errors if a numerical approach¥iglt diagnosis equations is less immediate. However, this
used in its automation. In order to overcome these problemgjfitation can be overcome by splitting the fault diagnosis
has been demonstrated that starting from the network functiaffuation solution into two phases. In the first phase, starting

expressed in the following way: from the measurements carried out on the selected test points
I at diffgrent frequencies, the coefficients of. t.he fault diagnosis

Zai (p) o equations are evaluated_, _ev_entually exploiting a least-squares

Ni(p, ) “— bm(p) procedure in order to minimize the error due to measurement

hi(p, s) = D(p, s) = —) , 1=1,---K inaccuracy [7]. In the second phase, the component values are
P Mo Z b;(p) Lol obtained by solving the nonlinear system constituted by the

=0 b (P) equations expressing the previously determined coefficients as

(1) functions of the circuit parameters. In this way the following
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nonlinear system has to be solved: testability value plus one. Moreover, it is worth pointing out
e 1) that, while the ambiguity group definition in [4] is strictly tied

ay " (p) —A® an/ (P) — AW with small deviations of the component values with respect to
b (P) 0 b (P) h the nominal values, in our definition there is not this limitation

because both testability and linearly dependent columns of the
3) matrix B are independent of the component values.

aéK)(p) — A0 agﬁ;)(p) — 400 In most cases the canonical ambiguity groups have some
b (p) 0 b (p) K components in common. By unifying these types of groups,
bo(p) by_1(P) another ambiguity group, corresponding again to linearly de-
b = Do T T o Br1 pendent columns of the matriB is obtained. We define as
\ m(p) m(p) Lo .
global an ambiguity group of the following type.
where Az@ andBj(i = 0,---,ng,j =0,---, m— 1) are Definition 3: A set of m components constitutes a global

the coefficients of the fault diagnosis equations in (1) whichmbiguity group of ordern if it is obtained by unifying
have been calculated in the previous phase. The Jacobfanonical ambiguity groups having at least one element in
matrix of this system coincides with the matr® in (2), common.
hence, all the information provided by a Jacobian matrix with Obviously, a canonical ambiguity group which does not
respect to its corresponding nonlinear system can be obtaifé¥e components in common with any other canonical am-
from the matrix B. In particular, if ranB is equal to the biguity group can be considered as a global ambiguity group.
number of unknown parameters, the component values canfteally, the columns of the matriB that do not belong to any
uniquely determined by solving the equations in (3) througkmbiguity group are linearly independent. We define as surely
the consideration of a set of measurements carried out on tfgtable a group of components of the following kind.
test points. If the testability” (I’ = rankB) is less than the  Definition 4: A set of » components whose corresponding
number of unknown parametef, a locally unique solution columns of the testability matriB do not belong to any
can be determined only iR — 7" components are considerec@mbiguity group constitutes a surely testable group of order
not faulty. Obviously, the number of surely testable components cannot
The matrix B does not give only information about thebe greater than the testability value, that is, the rank of the
global solvability degree of the fault diagnosis problem. Imatrix B.
fact, by noting that each column is relevant to a specific
component of the circuit and by considering the linearly
dependent columns @8, other information can be obtained. IIl. DETERMINATION OF AN OPTIMUM
For example, if a column is linearly dependent with respect to SET OF TESTABLE COMPONENTS
another one, this means that a variation of the correspondingAs affirmed in the previous section, if the testability value
component provides a variation on the fault-equation coé$ equal to the number of unknown parameters, the fault
ficients, indistinguishable with respect to that produced kiagnosis problem can be uniquely solved. This means that, in-
the variation of the component corresponding to the othdependent of the used fault location method, it is theoretically
column. This means that the two components are not testaptessible to determine the faulty components, starting from the
and they constitute an ambiguity group of the second ordeneasurements carried out on the selected test points. It has
By extending this reasoning to groups of linearly dependebéen previously affirmed also that, if the testability is less
columns of B, ambiguity groups of a higher order can behan the number of unknown parametdtsa locally unique
found. Then, summarizing, the following definition can beolution can be determined only ® — 1" components are
formulated. considered not faulty, that is, with a value equal to the nominal
Definition 1: A set of j components constitutes an ambiene. In this case (very frequent in the practical applications
guity group of orderj if the corresponding columns of the because the testability is usually not maximum), théault
testability matrixB are linearly dependent. hypothesis is made and at most a number of faults equal
In other words, the ambiguity groups of a circuit in whicho the testability value can be considered. However, under
a certain test point set has been chosen can be determitiésl hypothesis whatever fault location method is used, it is
by locating the linearly dependent columns of the testabilityecessary to be able to select as potentially faulty components
matrix B. Furthermore, as was mentioned, an ambiguity set of elements that represents as well as possible all the
group that does not contain other ambiguity groups is callettcuit components. To this end, the determination of both
canonical. Therefore, a canonical ambiguity group can ltige canonical ambiguity groups and surely testable group is
defined as follows. of fundamental importance. In order to better understand the
Definition 2: A set of £ components constitutes a canonicalole of these groups, we refer again to the parametric fault
ambiguity group of ordek if the corresponding: columns of diagnosis techniques.
the testability matribXB are linearly dependent and every subset In [8], a theorem has been demonstrated showing that a
of this group of columns is constituted by linearly independentrcuit is £-fault diagnosable in a neighborhood of the nominal
columns. value of the componentp, if every combination oft + 1
It is important to notice that with this definition, the ordecolumns of the Jacobian matrdxassociated with the nonlinear
of the canonical ambiguity groups cannot be greater than ttailt diagnosis equations evaluated in a previously selected set
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of frequencies and in the nominal value of the components,Lemma 3: Two combinations ofk elementsy; and -;

is independent. In [8]k-fault diagnosable ap, means that belonging to a canonical ambiguity group of order greater or
all the possible combinations df elementsy; among the equal tok + 2 are distinguishable.

total numberR of circuit components are distinguishable from In fact, by applying the lemma in [8] the columns &
each other (the total number of combinatiopsis equal to relevant to the elements ¢f and~; form a matrix with at least
RI/((R—E)k!), thatis,i = 1, 2--- R!/((R — k)!k!)) where [ + 1 different columns {; and~y; can differ by at least one
two combinationsy; and~y; are distinguishable if they do notelement) that are also linearly independent by the definition
have totally coincident measurements in any neighborhoefl canonical ambiguity group.

of p,. Furthermore, in [8] there is a lemma affirming that, On the basis of this lemma it is possible to deduce that
under thek-fault hypothesis, two different combinations bf elements of a canonical ambiguity group of order greater or
elementsy; and~; are distinguishable if the rank of the matrixequal tok + 2 are testable, that is, the elements considered
constituted by the columns of the Jacobian maliixelevant as unknowns give a unigue solution in phase of fault location.
to each element belonging t@ and to each element belonging |n conclusion, in the case that all the canonical ambiguity
to «y;, is greater or equal té + 1. The previously mentioned groups of a circuit have no elements in common, it is sufficient
theorem implicitly involves as well the solvability with respecto verify that all the possible combinations &f elements

to a combination oft elementsy;, that is guaranteed if the 4, belonging to every canonical ambiguity group, are distin-
matrix obtained from the Jacobian matexby selecting all guishable from each other because generic combinatioks of
the columns relevant to the elementsfhas a rank equal elements belonging to different canonical ambiguity groups
to k. Finally, in [8] the theorem and the lemma, enunciategind/or eventually belonging to the testable group) surely
with reference to the nominal value of the compongitsare correspond to linearly independent columns and satisfy the
also extended to almost al € R¥. In our case the word jemma in [8]. By exploiting all these considerations we can
diagnosable has been replaced with the word testable and {@@rmulate the theorem in [8] in the following way.

Jacobian matrixJ corresponds to the matr [5], [6]. Now  Theorem: A circuit, characterized by canonical ambiguity

we apply the lemma and the theorem in [8] to explain the rc’?é)ups without any elements in common kigault testable if
of the canonical ambiguity groups and the testable group in th&s smallest canonical ambiguity group has order greater or
selection of an optimum set of testable components. Furthgg o) to % + 2.

more, it is worth pointing out that, as the linear independence ¢ this point we define an optimum set of testable compo-
of the columns oB is not influenced by the component values,ents as follows.
the use of the matriB instead of the matri automatically Definition 5: A group of components constitutes an opti-

i yid
extends the theorem and the lemma in [8] to almosi &@lR™. 1\, set of testable components if it represents all the circuit

On the basis of the previous considerations the fOHOWi%mponents and if it gives a unique solution for the fault
useful lemmas can be introduced. diagnosis equations under thefault hypothesis.

Lemma 1:Two combinations ofk elementsy; and - As a consequence of the previous theorem, a procedure for

belonging to the surely testable group (of order greater thﬁﬂe selection of such a set of components can be summarized
k) are distinguishable. as follows:

This result directly derives from the lemma in [8]. In fact, . N .
y (8] 1) evaluation of the circuit testability’;

the columns ofB relevant to the parameters and v, T . -
P of K 2) determination of all the canonical ambiguity groups;

form a matrix with at leaskt+ 1 linearly independent columns 3 b q o f th | bl _
because the two combinations and-y; differ by at least one ) su seq_u_ent etermination o t_ € surély testable group;
4) supposition oft-fault hypothesis, withk < k, — 2 and

element. . -
On the basis of this lemma it is possible to deduce that if k. order of the smallest canonical ambiguity group;
selection of the components belonging to the surely

elements belonging to the surely testable group are considered)
testable group;

as unknowns, they give a unique solution in the phase of fault i o .
location. 6) for each canonical ambiguity group, selection of at most

Lemma 2: Two combinations ofk: elements~; and ~; k; — 2 components as representatives of the correspond-
. 7 E . . . . . .
belonging to a canonical ambiguity group of orde# 1, are ing canonical ambiguity group, with; order of theith
not distinguishable. canonical ambiguity group.

In fact, by applying the lemma in [8] the columns 8 The existence of an optimum set of testable components
relevant to the elements of and~; form a matrix withk +1 is guaranteed only if the order of the smallest canonical
different columns 4; and~; can differ by only one element) ambiguity group is greater or equal fo+ 2. For example,
that, by the definition of the canonical ambiguity group, arié there is at least a canonical ambiguity group of the second
not linearly independent. order, the optimum set does not exist. However, when it does

On the basis of this lemma, it is possible to deduce tha&xist, it is not unique (it is unique only in the case of maximum
even if & columns relevant to a canonical ambiguity grougestability). By following the previous procedure, each element
of order k + 1 are linearly independent, the correspondingelonging to the surely testable group is representative of
combination of £ elements~; is not testable. Hence, theitself, while the elements selected for each canonical am-
k elements considered as unknowns do not give a unigbiguity group are representative of all the elements of the
solution in the phase of fault location. corresponding canonical ambiguity group. When the number



FEDI et al: DETERMINATION OF OPTIMUM SET OF TESTABLE COMPONENTS 783

k of possible simultaneous faults is chosarpriori and an At this point, by recalling that a canonical ambiguity group
optimum set of testable components does not exist (or whigrat has a null intersection with respect to all the other
for whatever value of the optimum set does not exist, as ircanonical ambiguity groups can be considered as a global
the case of presence of canonical ambiguity groups of thebiguity group, we can reformulate the previous theorem
second order), only one component has to be selected iforthe following form.

the canonical ambiguity groups with an order less than orTheorem: A circuit is k-fault testable if all the global
equal tok + 1, while for the surely testable group and for theambiguity groups have been obtained by unifying canonical
canonical ambiguity groups with an order greater or equal &nbiguity groups of an order at least equalkte- 2.

k + 2, steps 5) and 6) of the procedure have to be applied.when the canonical ambiguity groups do not have a null
Even if a unique solution does not exist, by proceeding iftersection, the procedure of selection of the optimum set of
this way we are able to choose a set of components whiglstable components consists of the following steps:
represents as well as possible all the circuit elements and, ag) eyaluation of the circuit testability’;

shown in the next section, in the phase of fault location it 5y getermination of all the canonical ambiguity groups:

will be eventually possible to confine the presence of faults 5 subsequent determination of all the global ambiguity
to well-defined groups of components belonging to canonical groups:

ambiguity groups. _ _ 4) subsequent determination of the surely testable group;
All the considerations described until now refer to the case 5) supposition oft-fault hypothesis, with: < k, — 2 and

in Whif:h all the canonical ambiguity groups are di.stinct. H.owj k. order of the smallest canonical ambiguity group;
ever, in most cases there are two or more canonical ambiguitysy <ajection of components belonging to the surely testable
groups that have_some cor_npo_nents in common, so the eyentual group:

presence ofgumque solution Is str(_)ngly |anL_Jen_ced by this not-7) for each global ambiguity group, selection of at most
null intersection among the canonical ambiguity groups, and k; —2 components as representatives of the correspond-

it is necessary to consider the global ambiguity groups for the ing global ambiguity group withk; minimum order
determination of the optimum set of testable components. For of the canonical ambiguity groupsz constituting tie
example, when there are several distinct canonical ambiguity global ambiguity group '

groups of the second order, even if a unique solution does . - '
not exist we can, however, characterize them by selecting dRdiS case also an optimum set of testable components could
element for every one because the chosen components Eexilst but, if it does exist, it is not unique. With this kind of
distinguishable on the base of the lemma in [8]. Howeve??'ecuon each element belonging to the surely testable group

if there are canonical ambiguity groups of the second ordis-representative of itself, while the elements selected for each
with a not-null intersection, we cannot select one elemeBioPa! ambiguity group are representative of all the elements of
for every one of them because, on the basis of the lem/A{}§ corresponding global ambiguity group. When the number
in [8], these elements are not distinguishable. Thus, only ofie®f Possible simultaneous faults is choserpriori and an
element has to be chosen as representative of all these gro@pimum set of testable components does not exist (or when for
In other words, the global ambiguity group derived from th@hatever value of the optimum set does not exist, as in the
union of all the canonical ambiguity groups with a not-nulfase of presence of canonical ambiguity groups of the second
intersection has to be considered, and only one element of tAfg€r), only one component has to be selected as representative
new group has to be selected as representative of all the offiféithe global ambiguity groups obtained by unifying canonical
elements belonging to it. In general, when canonical ambigu@biguity groups of an order less than or equat o1, while
groups also of a different order have elements in commdg! the surely testable group and for the other global ambiguity
it is not sufficient to verify that all the combinations &f groups, the steps 6) and 7) of the procedure have to be applied.
components belonging to the same canonical ambiguity grofip in the case of distinct canonical ambiguity groups, if a
are distinguishable in order to havekefault testable circuit, Unique solution does not exist, by proceeding in this way we
but it is necessary to verify this for every global ambiguitre able to choose a set of components which represents as
group. Having all the global ambiguity groups of a circuit nulWell as possible all the circuit elements and, as will be shown
intersection, each column corresponding to an element offathe next section, in the phase of fault location it will be
global ambiguity group is linearly independent with respe&ventually possible to confine the presence of faults to well-
to columns corresponding to another global ambiguity grougiefined groups of components belonging to global ambiguity
This means that, in order to verify if a circuitisfault testable, groups.
it is sufficient to verify that all the possible combinationskof It is important to confirm that the proposed procedure
elements belonging to each global ambiguity group are distiof component selection, even if developed by referring to
guishable. To this aim the following lemma can be introducegiarametric fault diagnosis techniques, is independent of the
Lemma 4: Two combinations oft elementsy; and v;, method used in the phase of fault location. For example, if a
belonging to a global ambiguity group obtained by unifyingechnique based on neural networks is used [9], the presented
canonical ambiguity groups of order at least equakt® 2, procedure can be very useful for sizing (that is for the choice
are distinguishable. of the neuron number) and for training the neural network
This result directly derives from Lemma 3 and it does ndiecause, for example, it is useless to train the network with
need further explanations. data relevant to indistinguishable components. Furthermore,
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once the elements representative of all the circuit components a3
have been chosen on the basis of the previous procedure, the —Ay
research of the faulty components is up to the chosen fault
location method. If the selected component set is optimum,
the result given by the used fault location method can be
theoretically unique. Otherwise, always on the basis of the G 2
selected components, it is possible to interpret in the best way H

the obtained results, as it will be shown in the next section. 1
Finally, as the set of components to be selected is not unique, 1 I (03]

ol
r
%_
_ -° Vo

G2
the eligibility of the most suitable one could be given by

1A

practical considerations as, for example, the set containing = 04
the highest number of components with less reliability or by
the features of the subsequent chosen fault location method
(algorithms using a symbolic approach, neural networks, fuzzy G5
analyzer, etc.). _l_
IV. EXAMPLES Fig. 1. Program schematic entry for the Sallen—Key bandpass filter.

Fundamental steps of the presented procedure are the testa-
bility evaluation and the canonical ambiguity group determi-
nation. In order to automatize these operations, a program has Testability Value: 3
been developed by the authors [10]. It is based on symbolic
analysis techniques which, as was previously mentioned, are Total Nurber of Components: 7
particularly suitable for this kind of application because they
not only simplify the determination of both testability and
canonical ambiguity groups, but also strongly reduce the
unavoidable roundoff errors introduced by the use of numerical
techniques applied to problems relevant to sensitivity evalud9- 2- Program resuilts for the circuit in Fig. 1.
tion. The program has been included in the software package

SAPWIN [11], [12], which permits, in a completely symboliccanonical ambiguity group. Let us suppose, for example, a
form, the evaluation of the network functions relevant to th&ituation of single fault. Independent of the used fault location
selected test points. It requires a schematic entry of the circiibthod, if the obtained solution gives as faulty element C1
and all the selected test points. Once the symbolic netwask G1, we can localize the fault with certainty because both
functions have been determined, a procedure for the testabilify and G1 belong to the surely testable group. If we locate
evaluation starts and, subsequently, an algorithm of canoniggl a potentially faulty element a component belonging to the
ambiguity group determination is activated. The progragecond-order canonical ambiguity group, we can only know
yields as output the circuit testability and all the canonic@hat there is a fault in this ambiguity group, but we cannot
ambiguity groups. In the following we present examples écate it exactly because there is not a unique solution. Instead,
the application of the developed procedure by exploiting thewe obtain as a faulty element a component belonging to
realized program for the testability evaluation and canonic@e third-order ambiguity group, we have unique solution and
ambiguity group determination. then we can localize the fault with certainty. In other words,
As a first example, let us consider the Sallen-Key bandpassault in a component of this group can be counterbalanced
filter, whose schematic entry for the program is shown ignly by simultaneous faults on all the other components of the
Fig. 1 (V, is the chosen test point). The program results f@ame group. However, by the hypothesis of single fault, this
this circuit are shown in Fig. 2. As can be seen, there are tWpyation can not occur.
canonical ambiguity groups without any elements in common As second example let us consider the Tow—Thomas filter
that can be considered also as global ambiguity groups. Tdiown in Fig. 3. In this circuit we have chosen as test points
first group is of the second order and it is not possible t@e voltagesy, and V, and the program results are reported

select a set of components giving a unique solution. The surglyFig. 4. In this case the global ambiguity groups are the
testable group is the following: following:

Canonical Ambigulty Lroups:
G5 G4
Cc2 G2 G3

GlcCi 1) G2 G3 G4 C2

o _ 2) G1 G5 G6 C1
As the testability is equal to three, we can take into account
at most a three-fault hypothesis in order to obtain a possibiteis worth pointing out that the second group is also a
solution. On the basis of our procedure, the elements to seleahonical ambiguity group. Moreover, there is not the surely
as representative of the circuit components are the surédgtable group and, as the testability is equal to four, a solution
testable group components and only one component for eaam be obtained by supposing, at most, a four-fault hypothesis.
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Fig. 3. Program schematic entry for the Tow—Thomas filter.
Go
Testability Value: 4 MAN
G2
Total Number of Components: 8 ’V\N\u
1
Canonical Anbiguity Groups: 11
G2 G3 T 63
G2 G4 G6
G2 C2
G3 G4 G1 c2 01
c3 c2 A I} ™. G4 02
G4 C2 A >
Gl G5 G6 C1 ') 1 + v
. S = d 0
Fig. 4. Program results for the circuit in Fig. 3.

. . Fig. 5. Program schematic entry for the notch filter.
There is not an optimum set of testable components, that
is, there is not a unique solution because the smallest order
of the canonical ambiguity groups is two. On the basis of
our procedure, the elements to be selected as representative
of the circuit components are only one element for the first
global ambiguity group and two elements of the second one.
Let us suppose, for example, a situation of double fault.
Independently of the used fault location method, if the obtained

Testability Value: &
Total Number of Components: 8

Canonical Ambiguity Groups:

solution gives as faulty elements two components belonging to G3 Ci C2 G4
the second global ambiguity group, we have a unique solution Gl 52 G3 1 C2
and then we can localize the fault with certainty. If we locate Gl &2 G3 C1 G4
as potentially faulty elements one component belonging to the Gl G2 G3 C2 G4
first group and the other belonging to the second one, we can 61 G2 c1 (52 (5'4
Gl G2 Gt G5 GS

affirm that the element belonging to the second group is surely
faulty. Instead, we can only know that there is a fault in thgg. 6. Program results for the circuit in Fig. S.

first ambiguity group but we cannot locate it exactly because

there is not a unique solution. On the other hand, if we want ¢ensider only one element of the first group because this global
determine a possible solution for the fault diagnosis equatioasbiguity group is constituted by the union of second-order
associated to the determined testability valfie{ 4), we must canonical ambiguity groups. This means that, if we choose
choose only one element of the first global ambiguity grougvo elements of this group, we consider a submatrix of the
and three components of the second one. It is necessarytetstability matrixB with determinant equal to zero and then it
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Fig. 7. A fourth-order elliptic low-pass filter.

is not possible to find a solution. Obviously, by choosing the

four components as previously described, the obtained solution Testability Value: 7

is not unique because all the possible combinations of the four

elements are possible solutions. Total Number of Components: 13
As a third example let us consider the notch filter shown in

Fig. 5. In this circuit we have chosen as a test point the output cahOnical Aubiguily Groups:

voltage V,, and the program results are reported in Fig. 6. RE H7

In this case, all the circuit components belong to a unique R6 RO
global ambiguity group and, consequently, there is no surely RG C2
testable group. However, it is possible to notice that the global R7 RO
ambiguity group is formed by canonical ambiguity groups of R7 02
at least an order of four. Hence, all the possible selections of RO 2

groups constituted by the two components can be considered RIS RZ1
as optimum sets of testable components and we have the p19 p22

existence of a unique solution in any case where we take into 1o c1
account a group of two components (unique solution until two- RZ1 R22
fault hypothesis). This means that if, for example, a situation R21 C4
of double fault is considered, independent of the used fault R22 C4

location method, the obtained solution locates with certam% 8. Program results for the circuit in Fig. 7.
the faulty components.

As a last example let us apply the procedure to the circuit _
in Fig. 7 that is a slight modification of the circuit reportedOmponents are those belonging to the surely testable group

in [9]. In this case, only 13 components are consideréid only one component for each global ambiguity group. For
potentially faulty and are indicated by their symbolic namévhatever fault hypothesis from one to seven and, independent
while the others are considered healthy and are indicated #ythe used fault location method, a component given as faulty
their numerical value. The output voltage has been chosenby @ solution is effectively faulty if it belongs to the surely

as the test point and the program results are reported in Figt&stable group. Otherwise, it indicates only that there is a fault

In this case the surely testable group is the following: in the corresponding global ambiguity group without allowing
Cl C3 R4 R17 RS the determination of the effectively faulty component.

For the remaining eight components belonging to canonical
ambiguity groups of order two, it is easy to see that they can

be grouped in the two following global ambiguity groups: ! . ) give
bility evaluation and the canonical ambiguity group deter-

1) R6 R7 R9 C2 - . .
mination, a new procedure for the selection of an optimum
2) R19 R21 R22 C4 set of testable components in thefault diagnosis of analog
As the testability is equal to seven, a solution can be obtainkear circuits has been proposed, where optimum set means
by supposing at most a seven-fault hypothesis. There is @otet of components representing all the circuit elements and
an optimum set of testable components because the canongpahg a unique solution. Furthermore, when an optimum set
ambiguity groups have order two. On the basis of our prof components is not determinable, the developed procedure
cedure, the elements to select as representative of the cirallibws us to select the elements that represent all the circuit

V. CONCLUSION
By using the fundamental information given by the testa-
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