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Abstract—A procedure for the determination of an optimum
set of testable components in the fault diagnosis of analog linear
circuits is presented. The proposed method has its theoretical
foundation in the testability concept and in the canonical ambi-
guity group concept. New considerations relevant to the existence
of unique solution in the kkk-fault diagnosis problem of analog
linear circuits are presented, and examples of application of
the developed procedure are considered by exploiting a software
package based on symbolic analysis techniques.

Index Terms—Analog system fault diagnosis, analog system
testing, fault location.

I. INTRODUCTION

FAULT diagnosis and fault location in analog circuits
are of fundamental importance for design validation and

prototype characterization in order to improve yield through
design modification. However, at present, while for digital
circuits well-consolidated fully automatized techniques for
fault diagnosis are commonly used, for analog circuits the
development level is less advanced.

In the analog fault diagnosis field, an essential point is
constituted by the concept of testability which, independently
of the method that will be effectively used in fault location,
gives theoretical and rigorous upper limits to the degree of
solvability of the problem, once the test point set has been
chosen. A well-defined quantitative measure of testability can
be deduced by referring to fault diagnosis techniques of the
parametric kind. These techniques, starting from a series of
measurements carried out on previously selected test points,
are aimed at determining the effective values of the circuit
parameters by solving a set of equations (the fault diagnosis
equations) nonlinear with respect to the component values.
The solvability degree of these nonlinear equations constitutes
the most used definition of testability measure [1]–[3], which
indicates the ambiguity resulting from an attempt to solve
such equations in a neighborhood of almost any failure. In
other words, the testability measure provides information about
the number of testable components with the selected test
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point set. When the testability value is not maximum, that
is when it is less than the total number of potentially faulty
circuit components, the problem is not uniquely solvable and
it is necessary to consider further measurements, i.e., other
test points, or accept a reduced number of potentially faulty
components in order to locate the elements which have caused
the incorrect behavior of the circuit under consideration.
Generally, the second approach is used for two reasons. First,
not all the possible test points actually can be considered
because of practical and economic measurement problems
strictly tied with the used technology and with the application
field of the circuit under consideration. Second, the number of
faulty components is generally smaller than the total number
of circuit components. The single fault case is the most
frequent, double or triple cases are less frequent, and the case
of all faulty components is almost impossible. Therefore, as
the testability is normally not maximum, the fault diagnosis
problem is dealt with by assuming the quite realistic hypothesis
that the number of faulty components is bounded, that is, the

-fault hypothesis is made. Under this hypothesis, in order to
locate the faulty elements with as low as possible ambiguity, it
is of fundamental importance to determine a set of components
that is representative of all the circuit elements.

In this paper a procedure for the determination of an
optimum set of testable components in the-fault diagnosis
of analog linear circuits is presented, where for the optimum
set we mean a set of components representing all the circuit
elements and giving a unique solution. The procedure is based
on the testability evaluation of the circuit and on the determi-
nation of the canonical ambiguity groups. Referring again, for
the sake of simplicity, to parametric fault diagnosis techniques,
an ambiguity group can be defined as a set of components
that, if used as unknowns (i.e., if considered as potentially
faulty), gives infinite solutions in a phase of fault location
(in literature the ambiguity group concept has already been
introduced in [4], but in this paper it is considered with a wider
meaning). A canonical ambiguity group is simply an ambiguity
group that does not contain other ambiguity groups. It is worth
pointing out that the proposed procedure gives information
independently of the method that will be effectively used in the
fault location phase (both simulation after test and simulation
before test methods), even if it has been developed by referring
to parametric fault diagnosis techniques. Furthermore, in the
automation of the procedure the use of symbolic techniques is
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of fundamental importance because symbolic analysis, due to
the fact that it gives symbolic rather than numerical results,
is particularly suitable for applications such as testability and
canonical ambiguity group determination, as will be shown in
the following.

The paper is organized as follows. In Section I the theoreti-
cal basis for the determination of both the testability value and
the canonical ambiguity groups is considered. In Section II,
new considerations relevant to the existence of unique solution
for the -fault diagnosis problem of analog linear circuits
are presented and the procedure for the determination of an
optimum set of testable components is described. Finally, in
Section III a software package, based on symbolic analysis
techniques, for the determination of both testability and canon-
ical ambiguity groups is briefly described and examples of
application of the developed procedure are presented.

II. TESTABILITY AND AMBIGUITY GROUPS

As was previously mentioned, a well-defined quantitative
measure of testability can be deduced by referring to fault di-
agnosis techniques of the parametric kind. In these techniques
it is necessary to determine a set of equations describing the
circuit under test and solve it with respect to the component
values. In the case of analog linear time-invariant circuits, the
fault diagnosis equations can be constituted by the network
functions relevant to the selected test points [5], [6] which
are nonlinear with respect to the potentially faulty circuit
parameters. By assuming that the faults can be expressed as
parameter variations without influencing the circuit topology
(i.e., faults as short and open are not considered), the testability
measure is given by the maximum number of linearly
independent columns of the Jacobian matrix associated with
the fault diagnosis equations, and it represents a measure
of the solvability degree of the nonlinear fault diagnosis
equations [1]–[3]. The entries of the Jacobian matrix are
rational functions depending on the complex frequencyand
the potentially faulty parameters. Thus, in order to evaluate
the testability it is necessary to fix the potentially faulty
parameter values and the complex frequency. In [2] it has
been shown that, once the frequency values are fixed (generally
a multifrequency approach is considered in order to use a
reasonable number of test points), the rank of the obtained
Jacobian matrix is constant almost everywhere, i.e., for all the
potentially faulty parameter values except those lying in an
algebraic variety. Using this approach, the testability value,
although independent of component values, is very difficult to
handle and subject to roundoff errors if a numerical approach is
used in its automation. In order to overcome these problems it
has been demonstrated that starting from the network functions
expressed in the following way:

(1)

where is the vector of the potentially
faulty parameters and is the total number of equations, the
testability is equal to the rank of a matrix independent of
the complex frequency whose entries are constituted by the
derivatives of the coefficients of the fault diagnosis equations
with respect to the potentially faulty circuit parameters [6].
Therefore, the testability matrix can be considered in the
following form:

(2)

If the fault diagnosis equations are generated in a completely
symbolic form, the testability evaluation becomes easy to
perform. In this case, the entries of the matrix can be
simply led back to derivatives of sums of products and the
computational errors are drastically reduced in the automation
phase. Once the matrix has been determined, testability
evaluation can be performed by triangularizing and as-
signing arbitrary values to the components (as was previously
mentioned, testability does not depend on component values).
The disadvantage of considering as the testability matrix the
matrix instead of the Jacobian matrix consists in the fact
that the testability meaning of the solvability measure of the
fault diagnosis equations is less immediate. However, this
limitation can be overcome by splitting the fault diagnosis
equation solution into two phases. In the first phase, starting
from the measurements carried out on the selected test points
at different frequencies, the coefficients of the fault diagnosis
equations are evaluated, eventually exploiting a least-squares
procedure in order to minimize the error due to measurement
inaccuracy [7]. In the second phase, the component values are
obtained by solving the nonlinear system constituted by the
equations expressing the previously determined coefficients as
functions of the circuit parameters. In this way the following
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nonlinear system has to be solved:

...
(3)

where and are
the coefficients of the fault diagnosis equations in (1) which
have been calculated in the previous phase. The Jacobian
matrix of this system coincides with the matrix in (2),
hence, all the information provided by a Jacobian matrix with
respect to its corresponding nonlinear system can be obtained
from the matrix . In particular, if rank is equal to the
number of unknown parameters, the component values can be
uniquely determined by solving the equations in (3) through
the consideration of a set of measurements carried out on the
test points. If the testability ( rank ) is less than the
number of unknown parameters, a locally unique solution
can be determined only if components are considered
not faulty.

The matrix does not give only information about the
global solvability degree of the fault diagnosis problem. In
fact, by noting that each column is relevant to a specific
component of the circuit and by considering the linearly
dependent columns of , other information can be obtained.
For example, if a column is linearly dependent with respect to
another one, this means that a variation of the corresponding
component provides a variation on the fault-equation coef-
ficients, indistinguishable with respect to that produced by
the variation of the component corresponding to the other
column. This means that the two components are not testable
and they constitute an ambiguity group of the second order.
By extending this reasoning to groups of linearly dependent
columns of , ambiguity groups of a higher order can be
found. Then, summarizing, the following definition can be
formulated.

Definition 1: A set of components constitutes an ambi-
guity group of order if the corresponding columns of the
testability matrix are linearly dependent.

In other words, the ambiguity groups of a circuit in which
a certain test point set has been chosen can be determined
by locating the linearly dependent columns of the testability
matrix . Furthermore, as was mentioned, an ambiguity
group that does not contain other ambiguity groups is called
canonical. Therefore, a canonical ambiguity group can be
defined as follows.

Definition 2: A set of components constitutes a canonical
ambiguity group of order if the corresponding columns of
the testability matrix are linearly dependent and every subset
of this group of columns is constituted by linearly independent
columns.

It is important to notice that with this definition, the order
of the canonical ambiguity groups cannot be greater than the

testability value plus one. Moreover, it is worth pointing out
that, while the ambiguity group definition in [4] is strictly tied
with small deviations of the component values with respect to
the nominal values, in our definition there is not this limitation
because both testability and linearly dependent columns of the
matrix are independent of the component values.

In most cases the canonical ambiguity groups have some
components in common. By unifying these types of groups,
another ambiguity group, corresponding again to linearly de-
pendent columns of the matrix is obtained. We define as
global an ambiguity group of the following type.

Definition 3: A set of components constitutes a global
ambiguity group of order if it is obtained by unifying
canonical ambiguity groups having at least one element in
common.

Obviously, a canonical ambiguity group which does not
have components in common with any other canonical am-
biguity group can be considered as a global ambiguity group.
Finally, the columns of the matrix that do not belong to any
ambiguity group are linearly independent. We define as surely
testable a group of components of the following kind.

Definition 4: A set of components whose corresponding
columns of the testability matrix do not belong to any
ambiguity group constitutes a surely testable group of order.

Obviously, the number of surely testable components cannot
be greater than the testability value, that is, the rank of the
matrix .

III. D ETERMINATION OF AN OPTIMUM

SET OF TESTABLE COMPONENTS

As affirmed in the previous section, if the testability value
is equal to the number of unknown parameters, the fault
diagnosis problem can be uniquely solved. This means that, in-
dependent of the used fault location method, it is theoretically
possible to determine the faulty components, starting from the
measurements carried out on the selected test points. It has
been previously affirmed also that, if the testability is less
than the number of unknown parameters, a locally unique
solution can be determined only if components are
considered not faulty, that is, with a value equal to the nominal
one. In this case (very frequent in the practical applications
because the testability is usually not maximum), the-fault
hypothesis is made and at most a number of faults equal
to the testability value can be considered. However, under
this hypothesis whatever fault location method is used, it is
necessary to be able to select as potentially faulty components
a set of elements that represents as well as possible all the
circuit components. To this end, the determination of both
the canonical ambiguity groups and surely testable group is
of fundamental importance. In order to better understand the
role of these groups, we refer again to the parametric fault
diagnosis techniques.

In [8], a theorem has been demonstrated showing that a
circuit is -fault diagnosable in a neighborhood of the nominal
value of the components if every combination of
columns of the Jacobian matrixassociated with the nonlinear
fault diagnosis equations evaluated in a previously selected set
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of frequencies and in the nominal value of the components,
is independent. In [8], -fault diagnosable at means that
all the possible combinations of elements among the
total number of circuit components are distinguishable from
each other (the total number of combinationsis equal to

, that is, where
two combinations and are distinguishable if they do not
have totally coincident measurements in any neighborhood
of . Furthermore, in [8] there is a lemma affirming that,
under the -fault hypothesis, two different combinations of
elements and are distinguishable if the rank of the matrix
constituted by the columns of the Jacobian matrix, relevant
to each element belonging to and to each element belonging
to , is greater or equal to . The previously mentioned
theorem implicitly involves as well the solvability with respect
to a combination of elements , that is guaranteed if the
matrix obtained from the Jacobian matrixby selecting all
the columns relevant to the elements ofhas a rank equal
to . Finally, in [8] the theorem and the lemma, enunciated
with reference to the nominal value of the components, are
also extended to almost all . In our case the word
diagnosable has been replaced with the word testable and the
Jacobian matrix corresponds to the matrix [5], [6]. Now
we apply the lemma and the theorem in [8] to explain the role
of the canonical ambiguity groups and the testable group in the
selection of an optimum set of testable components. Further-
more, it is worth pointing out that, as the linear independence
of the columns of is not influenced by the component values,
the use of the matrix instead of the matrix automatically
extends the theorem and the lemma in [8] to almost all .

On the basis of the previous considerations the following
useful lemmas can be introduced.

Lemma 1: Two combinations of elements and
belonging to the surely testable group (of order greater than

) are distinguishable.
This result directly derives from the lemma in [8]. In fact,

the columns of relevant to the parameters of and
form a matrix with at least linearly independent columns
because the two combinations and differ by at least one
element.

On the basis of this lemma it is possible to deduce that if
elements belonging to the surely testable group are considered
as unknowns, they give a unique solution in the phase of fault
location.

Lemma 2: Two combinations of elements and ,
belonging to a canonical ambiguity group of order , are
not distinguishable.

In fact, by applying the lemma in [8] the columns of
relevant to the elements of and form a matrix with
different columns ( and can differ by only one element)
that, by the definition of the canonical ambiguity group, are
not linearly independent.

On the basis of this lemma, it is possible to deduce that,
even if columns relevant to a canonical ambiguity group
of order are linearly independent, the corresponding
combination of elements is not testable. Hence, the

elements considered as unknowns do not give a unique
solution in the phase of fault location.

Lemma 3: Two combinations of elements and
belonging to a canonical ambiguity group of order greater or
equal to are distinguishable.

In fact, by applying the lemma in [8] the columns of
relevant to the elements of and form a matrix with at least

different columns ( and can differ by at least one
element) that are also linearly independent by the definition
of canonical ambiguity group.

On the basis of this lemma it is possible to deduce that
elements of a canonical ambiguity group of order greater or
equal to are testable, that is, theelements considered
as unknowns give a unique solution in phase of fault location.

In conclusion, in the case that all the canonical ambiguity
groups of a circuit have no elements in common, it is sufficient
to verify that all the possible combinations of elements

, belonging to every canonical ambiguity group, are distin-
guishable from each other because generic combinations of
elements belonging to different canonical ambiguity groups
(and/or eventually belonging to the testable group) surely
correspond to linearly independent columns and satisfy the
lemma in [8]. By exploiting all these considerations we can
reformulate the theorem in [8] in the following way.

Theorem: A circuit, characterized by canonical ambiguity
groups without any elements in common, is-fault testable if
the smallest canonical ambiguity group has order greater or
equal to .

At this point we define an optimum set of testable compo-
nents as follows.

Definition 5: A group of components constitutes an opti-
mum set of testable components if it represents all the circuit
components and if it gives a unique solution for the fault
diagnosis equations under the-fault hypothesis.

As a consequence of the previous theorem, a procedure for
the selection of such a set of components can be summarized
as follows:

1) evaluation of the circuit testability ;
2) determination of all the canonical ambiguity groups;
3) subsequent determination of the surely testable group;
4) supposition of -fault hypothesis, with and

order of the smallest canonical ambiguity group;
5) selection of the components belonging to the surely

testable group;
6) for each canonical ambiguity group, selection of at most

components as representatives of the correspond-
ing canonical ambiguity group, with order of the th
canonical ambiguity group.

The existence of an optimum set of testable components
is guaranteed only if the order of the smallest canonical
ambiguity group is greater or equal to . For example,
if there is at least a canonical ambiguity group of the second
order, the optimum set does not exist. However, when it does
exist, it is not unique (it is unique only in the case of maximum
testability). By following the previous procedure, each element
belonging to the surely testable group is representative of
itself, while the elements selected for each canonical am-
biguity group are representative of all the elements of the
corresponding canonical ambiguity group. When the number
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of possible simultaneous faults is chosena priori and an
optimum set of testable components does not exist (or when
for whatever value of the optimum set does not exist, as in
the case of presence of canonical ambiguity groups of the
second order), only one component has to be selected for
the canonical ambiguity groups with an order less than or
equal to , while for the surely testable group and for the
canonical ambiguity groups with an order greater or equal to

, steps 5) and 6) of the procedure have to be applied.
Even if a unique solution does not exist, by proceeding in
this way we are able to choose a set of components which
represents as well as possible all the circuit elements and, as
shown in the next section, in the phase of fault location it
will be eventually possible to confine the presence of faults
to well-defined groups of components belonging to canonical
ambiguity groups.

All the considerations described until now refer to the case
in which all the canonical ambiguity groups are distinct. How-
ever, in most cases there are two or more canonical ambiguity
groups that have some components in common, so the eventual
presence of a unique solution is strongly influenced by this not-
null intersection among the canonical ambiguity groups, and
it is necessary to consider the global ambiguity groups for the
determination of the optimum set of testable components. For
example, when there are several distinct canonical ambiguity
groups of the second order, even if a unique solution does
not exist we can, however, characterize them by selecting one
element for every one because the chosen components are
distinguishable on the base of the lemma in [8]. However,
if there are canonical ambiguity groups of the second order
with a not-null intersection, we cannot select one element
for every one of them because, on the basis of the lemma
in [8], these elements are not distinguishable. Thus, only one
element has to be chosen as representative of all these groups.
In other words, the global ambiguity group derived from the
union of all the canonical ambiguity groups with a not-null
intersection has to be considered, and only one element of this
new group has to be selected as representative of all the other
elements belonging to it. In general, when canonical ambiguity
groups also of a different order have elements in common,
it is not sufficient to verify that all the combinations of
components belonging to the same canonical ambiguity group
are distinguishable in order to have a-fault testable circuit,
but it is necessary to verify this for every global ambiguity
group. Having all the global ambiguity groups of a circuit null
intersection, each column corresponding to an element of a
global ambiguity group is linearly independent with respect
to columns corresponding to another global ambiguity group.
This means that, in order to verify if a circuit is-fault testable,
it is sufficient to verify that all the possible combinations of
elements belonging to each global ambiguity group are distin-
guishable. To this aim the following lemma can be introduced.

Lemma 4: Two combinations of elements and ,
belonging to a global ambiguity group obtained by unifying
canonical ambiguity groups of order at least equal to ,
are distinguishable.

This result directly derives from Lemma 3 and it does not
need further explanations.

At this point, by recalling that a canonical ambiguity group
that has a null intersection with respect to all the other
canonical ambiguity groups can be considered as a global
ambiguity group, we can reformulate the previous theorem
in the following form.

Theorem: A circuit is -fault testable if all the global
ambiguity groups have been obtained by unifying canonical
ambiguity groups of an order at least equal to .

When the canonical ambiguity groups do not have a null
intersection, the procedure of selection of the optimum set of
testable components consists of the following steps:

1) evaluation of the circuit testability ;
2) determination of all the canonical ambiguity groups;
3) subsequent determination of all the global ambiguity

groups;
4) subsequent determination of the surely testable group;
5) supposition of -fault hypothesis, with and

order of the smallest canonical ambiguity group;
6) selection of components belonging to the surely testable

group;
7) for each global ambiguity group, selection of at most

components as representatives of the correspond-
ing global ambiguity group with minimum order
of the canonical ambiguity groups, constituting theth
global ambiguity group.

In this case also an optimum set of testable components could
not exist but, if it does exist, it is not unique. With this kind of
selection each element belonging to the surely testable group
is representative of itself, while the elements selected for each
global ambiguity group are representative of all the elements of
the corresponding global ambiguity group. When the number

of possible simultaneous faults is chosena priori and an
optimum set of testable components does not exist (or when for
whatever value of the optimum set does not exist, as in the
case of presence of canonical ambiguity groups of the second
order), only one component has to be selected as representative
for the global ambiguity groups obtained by unifying canonical
ambiguity groups of an order less than or equal to , while
for the surely testable group and for the other global ambiguity
groups, the steps 6) and 7) of the procedure have to be applied.
As in the case of distinct canonical ambiguity groups, if a
unique solution does not exist, by proceeding in this way we
are able to choose a set of components which represents as
well as possible all the circuit elements and, as will be shown
in the next section, in the phase of fault location it will be
eventually possible to confine the presence of faults to well-
defined groups of components belonging to global ambiguity
groups.

It is important to confirm that the proposed procedure
of component selection, even if developed by referring to
parametric fault diagnosis techniques, is independent of the
method used in the phase of fault location. For example, if a
technique based on neural networks is used [9], the presented
procedure can be very useful for sizing (that is for the choice
of the neuron number) and for training the neural network
because, for example, it is useless to train the network with
data relevant to indistinguishable components. Furthermore,
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once the elements representative of all the circuit components
have been chosen on the basis of the previous procedure, the
research of the faulty components is up to the chosen fault
location method. If the selected component set is optimum,
the result given by the used fault location method can be
theoretically unique. Otherwise, always on the basis of the
selected components, it is possible to interpret in the best way
the obtained results, as it will be shown in the next section.
Finally, as the set of components to be selected is not unique,
the eligibility of the most suitable one could be given by
practical considerations as, for example, the set containing
the highest number of components with less reliability or by
the features of the subsequent chosen fault location method
(algorithms using a symbolic approach, neural networks, fuzzy
analyzer, etc.).

IV. EXAMPLES

Fundamental steps of the presented procedure are the testa-
bility evaluation and the canonical ambiguity group determi-
nation. In order to automatize these operations, a program has
been developed by the authors [10]. It is based on symbolic
analysis techniques which, as was previously mentioned, are
particularly suitable for this kind of application because they
not only simplify the determination of both testability and
canonical ambiguity groups, but also strongly reduce the
unavoidable roundoff errors introduced by the use of numerical
techniques applied to problems relevant to sensitivity evalua-
tion. The program has been included in the software package
SAPWIN [11], [12], which permits, in a completely symbolic
form, the evaluation of the network functions relevant to the
selected test points. It requires a schematic entry of the circuit
and all the selected test points. Once the symbolic network
functions have been determined, a procedure for the testability
evaluation starts and, subsequently, an algorithm of canonical
ambiguity group determination is activated. The program
yields as output the circuit testability and all the canonical
ambiguity groups. In the following we present examples of
the application of the developed procedure by exploiting the
realized program for the testability evaluation and canonical
ambiguity group determination.

As a first example, let us consider the Sallen–Key bandpass
filter, whose schematic entry for the program is shown in
Fig. 1 ( is the chosen test point). The program results for
this circuit are shown in Fig. 2. As can be seen, there are two
canonical ambiguity groups without any elements in common
that can be considered also as global ambiguity groups. The
first group is of the second order and it is not possible to
select a set of components giving a unique solution. The surely
testable group is the following:

G1 C1

As the testability is equal to three, we can take into account
at most a three-fault hypothesis in order to obtain a possible
solution. On the basis of our procedure, the elements to select
as representative of the circuit components are the surely
testable group components and only one component for each

Fig. 1. Program schematic entry for the Sallen–Key bandpass filter.

Fig. 2. Program results for the circuit in Fig. 1.

canonical ambiguity group. Let us suppose, for example, a
situation of single fault. Independent of the used fault location
method, if the obtained solution gives as faulty element C1
or G1, we can localize the fault with certainty because both
C1 and G1 belong to the surely testable group. If we locate
as a potentially faulty element a component belonging to the
second-order canonical ambiguity group, we can only know
that there is a fault in this ambiguity group, but we cannot
locate it exactly because there is not a unique solution. Instead,
if we obtain as a faulty element a component belonging to
the third-order ambiguity group, we have unique solution and
then we can localize the fault with certainty. In other words,
a fault in a component of this group can be counterbalanced
only by simultaneous faults on all the other components of the
same group. However, by the hypothesis of single fault, this
situation can not occur.

As second example let us consider the Tow–Thomas filter
shown in Fig. 3. In this circuit we have chosen as test points
the voltages and and the program results are reported
in Fig. 4. In this case the global ambiguity groups are the
following:

G2 G3 G4 C2

G1 G5 G6 C1

It is worth pointing out that the second group is also a
canonical ambiguity group. Moreover, there is not the surely
testable group and, as the testability is equal to four, a solution
can be obtained by supposing, at most, a four-fault hypothesis.
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Fig. 3. Program schematic entry for the Tow–Thomas filter.

Fig. 4. Program results for the circuit in Fig. 3.

There is not an optimum set of testable components, that
is, there is not a unique solution because the smallest order
of the canonical ambiguity groups is two. On the basis of
our procedure, the elements to be selected as representative
of the circuit components are only one element for the first
global ambiguity group and two elements of the second one.
Let us suppose, for example, a situation of double fault.
Independently of the used fault location method, if the obtained
solution gives as faulty elements two components belonging to
the second global ambiguity group, we have a unique solution
and then we can localize the fault with certainty. If we locate
as potentially faulty elements one component belonging to the
first group and the other belonging to the second one, we can
affirm that the element belonging to the second group is surely
faulty. Instead, we can only know that there is a fault in the
first ambiguity group but we cannot locate it exactly because
there is not a unique solution. On the other hand, if we want to
determine a possible solution for the fault diagnosis equations
associated to the determined testability value ( ), we must
choose only one element of the first global ambiguity group
and three components of the second one. It is necessary to

Fig. 5. Program schematic entry for the notch filter.

Fig. 6. Program results for the circuit in Fig. 5.

consider only one element of the first group because this global
ambiguity group is constituted by the union of second-order
canonical ambiguity groups. This means that, if we choose
two elements of this group, we consider a submatrix of the
testability matrix with determinant equal to zero and then it
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Fig. 7. A fourth-order elliptic low-pass filter.

is not possible to find a solution. Obviously, by choosing the
four components as previously described, the obtained solution
is not unique because all the possible combinations of the four
elements are possible solutions.

As a third example let us consider the notch filter shown in
Fig. 5. In this circuit we have chosen as a test point the output
voltage and the program results are reported in Fig. 6.

In this case, all the circuit components belong to a unique
global ambiguity group and, consequently, there is no surely
testable group. However, it is possible to notice that the global
ambiguity group is formed by canonical ambiguity groups of
at least an order of four. Hence, all the possible selections of
groups constituted by the two components can be considered
as optimum sets of testable components and we have the
existence of a unique solution in any case where we take into
account a group of two components (unique solution until two-
fault hypothesis). This means that if, for example, a situation
of double fault is considered, independent of the used fault
location method, the obtained solution locates with certainty
the faulty components.

As a last example let us apply the procedure to the circuit
in Fig. 7 that is a slight modification of the circuit reported
in [9]. In this case, only 13 components are considered
potentially faulty and are indicated by their symbolic name,
while the others are considered healthy and are indicated by
their numerical value. The output voltage has been chosen
as the test point and the program results are reported in Fig. 8.
In this case the surely testable group is the following:

C1 C3 R4 R17 R8

For the remaining eight components belonging to canonical
ambiguity groups of order two, it is easy to see that they can
be grouped in the two following global ambiguity groups:

R6 R7 R9 C2

R19 R21 R22 C4

As the testability is equal to seven, a solution can be obtained
by supposing at most a seven-fault hypothesis. There is not
an optimum set of testable components because the canonical
ambiguity groups have order two. On the basis of our pro-
cedure, the elements to select as representative of the circuit

Fig. 8. Program results for the circuit in Fig. 7.

components are those belonging to the surely testable group
and only one component for each global ambiguity group. For
whatever fault hypothesis from one to seven and, independent
of the used fault location method, a component given as faulty
by a solution is effectively faulty if it belongs to the surely
testable group. Otherwise, it indicates only that there is a fault
in the corresponding global ambiguity group without allowing
the determination of the effectively faulty component.

V. CONCLUSION

By using the fundamental information given by the testa-
bility evaluation and the canonical ambiguity group deter-
mination, a new procedure for the selection of an optimum
set of testable components in the-fault diagnosis of analog
linear circuits has been proposed, where optimum set means
a set of components representing all the circuit elements and
giving a unique solution. Furthermore, when an optimum set
of components is not determinable, the developed procedure
allows us to select the elements that represent all the circuit
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components. New considerations relevant to the existence
of a unique solution in the -fault diagnosis problem of
analog linear circuits have been presented and examples of
applications of the developed procedure have been considered
by exploiting a software package, based on symbolic analysis
techniques, for the determination of both testability and canon-
ical ambiguity groups in analog linear circuits. Finally, the
obtained results can constitute the first step in the development
of whatever procedure for the fault location of analog linear
circuits because they represent theoretical and rigorous upper
limits to the degree of solvability of the problem of faulty
component location.
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