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Abstract

We present two protocols for threshold password authenticated key exchange. In this model for
password authentication, the password is not stored in a single authenticating server but rather
shared among a set of n servers so that an adversary can learn the password only by breaking
into ¢t + 1 of them. The protocols require n > 3t servers to work.

The goal is to protect the password against hackers attacks that can break into the authenticating
server and steal password information. All known centralized password authentication schemes
are susceptible to such an attack.

Ours are the first protocols which are provably secure in the standard model (i.e. no random
oracles are used for the proof of security). Moreover our protocols are reasonably efficient and
implementable in practice. In particular a goal of the design was to avoid costly zero-knowledge
proofs to keep interaction to a minimum.
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1 Introduction

Password-based authentication is arguably the most deployed mean of authentication in real life
applications. The reasons for its wide use are easy to understand: it is mainly its user-friendliness
that makes it an attractive choice. Users must remember just a password of their choice and store
no other complicated data like long random keys or certificates.

Yet, solutions based on passwords have several security drawbacks. First of all, users tend
to choose simple, memorizable passwords. This gives a potential attacker a non-negligible prob-
ability of guessing the password and impersonate the user. The most trivial form of this attack
(repeatedly try to login until the right password is guessed) can be easily avoided, by careful pro-
tocol implementations steps (like disabling an account after a given number of unsuccessful login
attempts).

A more dangerous attack is the so-called off-line dictionary attack in which the authentication
protocol reveals enough information to allow efficient verification of passwords’ guesses. In this
case the attacker can just perform a search in the password dictionary without ever interacting
with the server until he gets the correct password. Thus a major research focus for password-based
authentication has been to design protocols that are secure against off-line dictionary attacks.
Several such protocols have been presented in a variety of models and with various degrees of
security analysis. See below for a detailed list of references.

However, none of the above protocols offers any resistance against hackers’ attacks, i.e. against
attackers who are able to compromise and break into the authentication server itself. Indeed in
such a case, the attacker will be able to find all password information and mount a dictionary
attack against the passwords of all users subscribed to that server. Ford and Kaliski [10] identified
the problem and its potentially catastrophic consequences and proposed a new model in which the
password information is not stored in a single server, but rather in a collection of servers, so that
in order to compromise the passwords, the attacker must break into several of them?.

In this paper we present two new provably secure protocol in this model of distributed password
authentication. Our protocols can be proven secure under the Decisional Diffie-Hellman Assump-
tion, in the standard model of computation (i.e. no random oracles are used). The protocols are
reasonably efficient and implementable in practice. In particular no costly zero-knowledge proofs
are used in order to keep interaction to a minimum.

1.1 Prior Related Work

Research in password-authentication protocols resistant to off-line attacks started with the work
of Bellovin and Merritt [3] and continued in [15, 19]. A formal model of security was proposed by
Halevi and Krawczyk in [16], where they also presented a provably secure protocol for the case in
which the authentication server has a certified public key known to the client. For the case in which
the server’s key cannot be trusted to be authentic, formal models and provably secure protocols
(though in the random oracle model) were presented in [6, 2]. The first (and only currently known)
protocol to achieve security without any additional setup is that of Goldreich and Lindell [14]. Their
protocol is based on general assumptions (i.e., the existence of trapdoor permutations) and should
be viewed as a proof of feasibility with respect to obtaining password-based security. Unfortunately,
the [14] protocol is very inefficient and thus cannot be used in any practical setting.

We heavily use the efficient protocol by Katz, Ostrovsky and Yung in [23] which is provably

Tt should be noted that an alternative solution would be to use secure hardware to protect the memory area
where the password is stored.



secure in the standard model, i.e. without assuming random oracles. It assumes the existence of a
publicly known shared random string. We will refer in the following to this protocol as the KOY
protocol.

As we mentioned before, Ford and Kaliski [10] put forward the idea of sharing the password
information among several servers in order to prevent leaking the passwords to an attacker who is
able to break into the authentication server. They present a n-out-of-n solution, i.e., the password
information is shared among n servers and they all must cooperate to authenticate the user. Al-
though this solution guarantees that the password is secure against an attacker who breaks into
n — 1 servers, it is also less tolerant to random faults. Jablon in [20] improves on the [10], but
neither solution comes with a formal proof of security. Independently from our work, Jakobsson,
MacKenzie and Shrimpton have presented a t-out-of-n threshold password authentication protocol,
which is provably secure in the random oracle model [21].

Thus we can say that our solutions are the first threshold protocols for password authentication
which are provably secure in the standard model, i.e. without using random oracles.

This line of research can be thought as applying the tools of threshold cryptography to the prob-
lem of password authentication. Threshold cryptography aims at the protection of cryptographic
secrets, such as keys, by distributing them across several servers in order to tolerate break-ins. See
[8, 12] for surveys of this research area. We use and modify several existing threshold cryptography
protocols, most importantly Feldman’s and Pedersen’s VSS protocols [9, 25], their application to
discrete-log key generation from [13] and the protocol for multiplication of shared secrets by Abe

).

1.2 Our Solution in a Nutshell

Our starting point was the KOY protocol from [23]. We present two protocols which are basically
t-out-of-n threshold versions of the KOY protocol. As we said before, the schemes are provably
secure. The crucial tool in proving security is to show that our protocols are simulatable: the
adversary’s view of the threshold protocol can be recreated by a simulator without having access
to the real password.

The basic idea of the protocol is to share the password among n servers using a secret sharing
protocol like Shamir’s [27] (although we will use a more “redundant” version of Shamir’s scheme to
achieve a more efficient overall protocol). Then the servers will cooperate to produce the messages
that in the KOY protocol a single server was supposed to compute. Notice that this must be done
without ever reconstructing the password in a single server, otherwise we expose it to a potential
break-in at that server. Some of the tools developed for the full solution are of independent interest
and can potentially have more applications. The two protocols differs in the way the client interacts
with the collection of the servers.

THE FIRST PROTOCOL. Here we enforce a transparency property: to the eyes of the client the
protocol should look exactly like a centralized KOY protocol. The client should not be aware that
at the server’s side the protocol has been implemented in a distributed fashion, nor should he know
how many servers are involved. This is achieved by having the client interact with a gateway which
to the client’s eyes will be the authentication server. All the messages exchanged by the client and
the gateway will follow the pattern of a regular KOY protocol.

The main advantage of this solution is its efficiency on the client side: the client’s work is
independent of n and the software installed on the client side does not have to reflect security
policies, such as the number n of servers and the threshold ¢, implemented on the server’s side.

Notice however that because of the transparency property, the client will establish a single key



with the whole collection of servers. This means that this key will be known to the adversary even
if he breaks into a single server (for example the gateway). Thus this protocol has the following
security properties: (i) if the adversary does not break into any servers, then the protocol is as
secure as the original KOY protocol; (ii) if the adversary breaks into less than ¢ servers, then the
adversary learns the session key of all the clients who log in during that period, but learns no
information about the password of any client; (iii) if the adversary breaks into more than ¢ servers
then all passwords are compromised.

Notice that we have already made substantial progress with respect to centralized password
authentication protocols. Indeed remember that in that case by breaking into a single server the
adversary would learn all the passwords stored in that server.

In this case to prove security, it will be enough to show that the view of the adversary when
the system is using password pw is identically distributed to the case in which the system is using
password pw (conditioned to the event that the adversary does not guess the right password, in
which case naturally the two views are distinguishable).

THE SECOND PROTOCOL. To strengthen the security properties here we give up on the trans-
parency property. We let the client be aware of the distributed implementation of the servers and
in particular of the number n of servers?. At the end of this protocol the client will establish n
separate keys, one with each server. The adversary will only learn the keys established by the
corrupted servers.

Here security is proven by a reduction to the security of the underlying centralized KOY protocol.
I.e. we show that if there is an adversary breaking our threshold version, then we can build another
adversary which breaks an instance of the centralized original KOY protocol. We are going to use
again simulatability to construct this reduction. We have an adversary Akoy which is trying to
break a centralized version of the KOY protocol. This adversary starts an execution of the threshold
adversary A;presh, which we assume is able to break the threshold KOY protocol. This execution
is run in a “virtual world” in which all the exchanged messages are simulated. The crucial step in
the security proof will be then to “embed” in this virtual world the execution of the centralized
KQY protocol which we want to break. Then we can show that a successful attack by Aipresn 0N
this virtual threshold world can be translated in a successful attack in the centralized instance.

FAULT-TOLERANCE THRESHOLD. Our protocols achieve security against an adversary who corrupts
at most t < n/3 servers. It is possible to improve the fault-tolerance to ¢ < n/2, but the resulting
protocols would be a lot more complicated. We decided to focus on simplicity rather than optimal
threshold.

PROACTIVE SECURITY. In both solutions the password will eventually be exposed if the adversary
manages to break into more than t servers. It is possible to apply proactive security solutions
[24, 18, 17] to our schemes. In particular we can show that the adversary must break into more
than ¢ servers in a single period of time (which is determined according to security policies), in order
to gain information about the passwords. The basic idea is to refresh the shares of the password
after each time period, so that shares from different time periods will be useless in reconstructing
the secret. For lack of space this extension will be described in the final version.

AVOIDING ZERO-KNOWLEDGE PROOFS. A clear design goal of our protocols was to avoid the use of
costly ZK proofs in order to achieve robustness (i.e. security against a malicious adversary). There

2We note that this information, namely 7, can be transmitted to the client in a handshaking session before starting
the actual protocol. Yet the security of our protocol does not rely on the client learning this information in a reliable
authenticated matter. Le. the adversary cannot gain any advantage (besides an obvious denial of service attack) by
relying wrong parameters n,t to the client.



are two reasons for this. The first is efficiency: ZK proofs tend to be expensive and increase the
amount of interaction required by the protocol. The second is security: password authentication
protocols are ran concurrently — the adversary may try to schedule different executions so to try
to gain some advantage. Typical ZK proofs are not provably secure when executed concurrently,
and modifications to make them concurrently secure tend to make them more complicated and
expensive. By avoiding ZK proofs altogether, we simplify the design and facilitate security proofs.

2 Preliminaries

NUMBER THEORY. In the following we denote with p, ¢ two prime numbers such that ¢|(p — 1).
We consider the subgroup G, of Z; of order ¢ and let g be a generator for G;. All computations
are modp unless otherwise noted.

We are going to assume that the Decisional Diffie-Hellman Assumption (DDH) holds in G,
i.e. no probabilistic polynomial time algorithm given as input three values (g%, g°, g) can decide if
¢ = ab mod g with probability better than 1/2. A formal statement of the DDH Assumption is in
Appendix A. For a discussion on the DDH see [5].

COMMUNICATION MODEL. As in previous work on password-based authentication, we assume that
the communication between the client and the authentication servers, is carried on a basically
insecure network. Messages can be tapped and modified by an adversary. A typical assumption
for password protocols is that the communication between the clients and the servers is totally
asynchronous, i.e. messages can be delivered with any delay, and sessions can be interleaved
arbitrarily.

On the other hand we assume that the server’s side is implemented via a set of n servers
S1, ..., Sp. They are connected by a complete network of private (i.e. untappable) point-to-point
channels. In addition, the players have access to a dedicated broadcast channel; by dedicated we
mean that if server S; broadcasts a message, it is received by every other player and recognized
as coming from S;. These assumptions (privacy of the communication channels and dedication of
the broadcast channel) allow us to focus on a high-level description of the protocols. However, it
is worth noting that these abstractions can be substituted with standard cryptographic techniques
for privacy, commitment and authentication.

We assume that the communication channels between the servers provide a partially synchronous
message delivery. That is we assume that the messages sent during the protocol, are received by
their recipients within some fixed time bound. Notice that this will allow a malicious adversary
to wait for the messages of the honest servers in a given round before sending her own. In the
cryptographic protocols literature this is also known as a rushing adversary.

Notice that there is no contradiction with the fact that we assume asynchronous communication
between the clients and the servers, while we assume a partial synchronicity between the servers
themselves. Indeed in typical applications the communication between clients and servers will
happen on a “low-end” medium, while one expects the distributed servers to be connected via a
better dedicated network.

2.1 Password Authenticated Key Exchange

Here we briefly recall the formal security model for centralized password key exchange protocols
from [6, 2]. We then explain how to extend it for the case of a distributed server.

A protocol for password key exchange assumes that there is a set of principals which are the
clients and the servers who will engage in the protocol. Each client stores his own private password



pw, while each server stores all the passwords of the clients who have access to that server. We
assume that the client may use the same password with different servers. Each principal may
start various executions of the protocol, with different partners. Thus we denote with Hé the ("
instance that user P; runs. Instances maintain state, which is updated as the protocol progresses.
In particular the state of an instance Héi includes the following variables (initialized as null):

° sidéi which is the session identifier of this particular instance;

° pidéi which is the partner identifier, i.e. the name of the principal with whom Hii believes
he’s interacting;

° accéi which is a boolean variable denoting if Héi accepts or rejects at the end of the execution.

Partnering. We say that two instances IT% and H;j are partnered, if (1) sid? = sidé-j # null; (2)
pidi-i = j and pidéj = .

The adversary is given total control of the external network (i.e. the network connecting clients to
servers). In particular we assume that the adversary can, not only listen to the messages exchanged
by players, but also interject messages of her choice and/or stop messages sent by the parties. A

way to model such an adversary is to give her oracle access to the instances of the protocol run by
the principals. In particular the adversary can make these oracle calls:

e Execute(i,l;,j,1;) — This call forces an execution of the protocol between instances H? and

Hé-j (where P; is a client and P; is a server). The output is the transcript of the protocol.
This allows the adversary to eavesdrop on a regular execution.

e Send(i,l;, M) — This call sends the message M to the instance Hil The output is whatever
this instance outputs after receiving the message M (given the current state of the instance
Hi’) This allows the adversary to interject spurious messages in the protocol.

e Reveal(i,l;) — This call outputs the secret key skf@ which resulted from instance Hil This
allows the adversary to learn past secret key from previous executions, modeling improper
exposure of past session keys.

e Test(i,l;) — This call is needed to define security. The adversary is allowed to query it only
once, and the output is either skﬁi or a random key sk (each case happens with probability

1/2).
We can state a correctness condition for the protocol as follows:

Correctness: If two partnered instances Héi and Héj accept (i.e. acclii = accéj = 1), then they

must end with the same secret key (i.e. sk:ﬁ" = skréj ).

We can now define what it means for a protocol to be secure. Basically we want the secret key sk
generated by the protocol to be totally hidden from the adversary. Thus we say that the adversary
succeeds if for the Test query she guesses if the output is a random key or the real key. Of course
we need to restrict the instances on which the adversary can call the Test query in order to have a
meaningful notion (otherwise the adversary could call Test on an instance on which she previously
called Reveal). We define the adversary’s advantage as

Adv(A) = |Prob[A succeeds | — %



We would like the advantage to be negligible, but we know that A can always guess the password
and immediately succeed. Thus we say that our protocol is secure, if guessing the password is the
best that the adversary can do. If the password is chosen uniformly® from a dictionary Dict, then

we require
Qsend

|Dict|

where n is the security parameter and Qg.,q the number of Send queries the adversary performs
(since those queries are the ones which allow her to search the dictionary), provided that .4 does

Adv(A) < + negl(n)

not ask Test(4,[;), after asking Reveal(i,[;) or Reveal(j,1;), where Hi-i and Hé-j are partnered.

SECURITY FOR THE DISTRIBUTED CASE. In the distributed case the goal of the adversary will
remain the same (i.e. try to learn some information about a session key). But we will modify
somewhat the adversary powers. First of all the adversary will not have total control of the internal
network of the servers. We assume that the servers have some authentication mechanism already in
place in order to create secure channels between them. Moreover we give the adversary the power
to break into servers. This will allow her to see their internal state and totally gain control of that
server. That means that the adversary will receive all the messages sent to that server and will
reply for him. Notice that we are allowing a malicious adversary which can modify the behavior of
the server in any way. We bound the number of servers that the adversary can corrupt with ¢. We
assume the adversary to be static, i.e. the set of corrupted players is decided in advance (known
techniques can be used to make this protocol secure against adaptive adversaries [7, 11, 22]).

TRANSPARENT PROTOCOLS. We say that a distributed protocol is transparent, if the client’s work
is independent of n. Thus to the client the distributed protocol looks like a centralized one. At the
end of a transparent protocol the client establishes a unique key sk with the n servers. In this case
our definition of security imposes two conditions:

1. If the adversary does not corrupt any servers, then the protocol is secure according to the
centralized definition;

2. If the adversary corrupts from 1 to ¢ servers, then all we ask is that the adversary gains no
information about the clients’ passwords. I.e. the probability of guessing the right password
remains 1/|Dict|. Formally we define as view(pw) the view of the adversary during a protocol
using password pw. The requirement is that for any two passwords pw, pw the two views
view(pw) and view(pw) can be distinguished with at most probability @/|Dict|.

Notice that condition (2) is much weaker than full security, but it is the best we can hope for
a transparent protocol. A protocol satisfying the above conditions is called transparently secure.
Such protocols guarantee the secrecy of the passwords even against compromises of the servers.
However they do not guarantee that the session key will be secret from an adversary who breaks
into a server.

In practice this is not a major drawback. Usually servers’ compromises are brief and quickly
discovered: the adversary can easily be “kicked out” of the compromised server by operations such
as rebooting and reloading of key software components from a trusted basis. A transparently secure
protocol guarantees that during these briefs breaches only the session keys of the clients who log
in are compromised. No long-term information, in particular the password, is leaked.

3This uniformity requirement is made for simplicity and it can be easily lifted by adjusting the advantage with
the max apriopri probability over all the passwords.



Since transparent protocols are usually much more efficient for the clients, we think that even
with this relaxed security notion, this is a useful model.

GENERAL PROTOCOLS. In this case we allow the parameters n,t to be known to the client who
will effectively interact with all n servers. Here the output of the protocol will be n independent
session keys: the client will share one key with each server.

The definition of security is obtained by just extending the oracle calls Reveal, Test to specify the
index of the server for which the adversary wants to see the relevant session key. The security goal
(i.e. the advantage of the adversary remains roughly the same as in the trivial attack of guessing
the password) remains unchanged.

2.2 The KOY Protocol

In this section we briefly recall the KOY protocol from [23]. The protocol can be proven secure
(according to the above definition) under the DDH Assumption. We will not need their proof of
security for our case since we will reduce the security of our distributed version to the security of
the original KOY protocol. For details the reader is referred to [23].

The protocol uses some public information which is composed by: two primes p, g, such ¢|(p—1);
five elements of order ¢ in Z;, f,g,h,c,d, and a universal one-way hash function H. The protocol
appears in Figure 1.

KOY

Public Information: p,q, f,g,h,c,d,H

1. The client C generates a key pair (VK,SK) for a one-time signature scheme. Then he chooses
r’ €r Z4 and computes A = f B=g",C=h"f" a= H(C|VK|A|B|C) and D = (cdo‘)’"/.
The client C then sends to the server S the following message: C|VK|A|B|C|D

2. The server S chooses z,y,z, w,7 €r Zg, recomputes the hash o/ = H(C|VK|A|B|C) and then
computes: E = fg?h*(cd®)¥, F = ", G =g", I = A" fP*, 8 = H(S|E|F|G|I) and J = (cd®)".
The server S then sends to the client C the following message: S|E|F|G|I|J

3. The client C chooses z',vy',z,w’ €r Z, and computes: 3 = H(S|E|F|G|I) and K =
£ gV b (ed®)".
He then signes the message (5| K) with the key SK, thus obtaining the signature Sig = Signgk (5| K).
He finally sends to S the message: K|Sig.
The client computes the session key as follows: ske¢ = Er/Fx/Gyl(Iffpw)zle/

4. The server S checks the signature using the key VK and if it is correct he then computes the session
key as follows: sks = K"A*BY(C f~P¥)*D".

Figure 1: The KOY Protocol

2.3 VSS Protocols

Here we recall a few existing techniques that we use in our solutions.

SHAMIR'S SECRET SHARING. In Shamir’s secret sharing protocol [27], a dealer shares a secret
among n servers Si,...,S, in the following way. Given a number ¢ < n, a prime g and a secret



s € Zg, the dealer chooses at random a polynomial S(-) over Z; of degree ¢, such that S(0) = s.
It then secretly transmits to each server S; a share s; = S(i) mod q. The secret can easily be
reconstructed by polynomial interpolation by at least ¢ 4+ 1 servers. It is not hard to see that a
collection of t servers has no information about the secret. Notice also that this protocol does not
tolerate a malicious adversary (a bad dealer could give shares that do not lie on a polynomial of
degree t and/or bad servers may prevent reconstruction by giving out bad shares).

We will use the following notation to indicate the above protocol:

Shamir-SS[s] — [si]
t,n

FELDMAN’s VSS. Feldman’s Verifiable Secret Sharing (VSS) protocol [9], extends Shamir’s secret
sharing method in a way to tolerate a malicious adversary which corrupts up to ”T_l servers including
the dealer.

Like in Shamir’s scheme, the dealer generates a random ¢-degree polynomial S(-) over Zg, s.t.
S(0) = s, and transmits to each server S; a share s; = S(i) mod q. The dealer also broadcasts
values V5, = g% where ay, is the k™" coefficient of S(-). This will allow the players to check that

the values s; really define a secret by checking that

g% = [](¥81)" mod p (1)
k

If the above equation is not satisfied, server S; asks the dealer to reveal his share (we call this a
complaint). If more than ¢ players complain then the dealer is clearly bad and he is disqualified.
Otherwise he reveals the share s; matching Equation (1) for each complaining ;.

Equation (1) also allows detection of incorrect shares s, at reconstruction time. Notice that the
value of the secret is only computationally secure, e.g., the value g% = ¢° is leaked. However, it
can be shown that an adversary that learns ¢ or less shares cannot obtain any information on the
secret s beyond what can be derived from ¢®. This is good enough for some applications, but it is
important to notice that it does not offer “semantic security” for the value s. In particular if s is
a password, then revealing ¢g® opens the door to an off-line dictionary search.

We will use the following notation to denote the execution of a Feldman’s VSS protocol.

Feldman-VSS[s](g) = [si] (V&%)

t,n

PEDERSEN’s VSS. We now recall a VSS protocol that provides information theoretic secrecy for
the shared secret. This is in contrast to Feldman’s VSS protocol which leaks the value of ¢°. The
protocol is due to Pedersen [25].

Pedersen’s VSS uses the parameters p, q, g as defined for Feldman’s VSS. In addition, it uses
an element h € Z7 such that h belongs to the subgroup generated by g and the discrete log of & in
base ¢ is unknown (and assumed hard to compute).

The dealer first chooses two t-degree polynomials S(-), S(-), with random coefficients over Z,,
subject to S(0) = s, the secret. The dealers sends to each server S; the values s; = S(i) mod ¢
and 5, = S (i) mod q. The dealer then commits to each coefficient of the polynomials S and S by
publishing the values V&), = g*h% where a (resp. by,) is the k' coefficient of S (resp. S).

This allows the players to verify the received shares by checking that

g ihS = H(Vsk)lk mod p (2)
k



As in Feldman’s VSS the players who hold shares that do not satisfy the above equation broadcast
a complaint. If more than t players complain the dealer is disqualified. Otherwise the dealer
broadcasts the values s; and §; matching the above equation for each complaining player S;.

At reconstruction time the players are required to reveal both s; and §; and Equation (2) is used
to validate the shares. Indeed in order to have an incorrect share o) accepted at reconstruction
time, it can be shown that player S; has to compute the discrete log of h in base g.

Notice that the value of the secret is unconditionally protected since the only value revealed is
V5o = g°h (it can be seen that for any value s’ there is exactly one value b, such that V5o = g"/ hY%
and thus V5 gives no information on s).

We will use the following notation to denote an execution of Pedersen’s VSS:

Pedersen-VSS|s, 5](g, h) ? [si, 5i](V5E)
,n
JOINT SHARINGS. To avoid the use of a trusted dealer, it is possible to generate jointly a random
shared secret. The idea is that each player runs a copy of Shamir’s or Pedersen’s protocols with a
random secret. The resulting shared secret is the sum of the secrets shared by each player (in the
case of Pedersen’s VSS the sum is taken only over the players that were not disqualified as dealers).
Notice that by adding up the shares that he received, each player will retain a share of the final
secret. Similarly in the case of Pedersen’s VSS the verification information V5 for the final secret
can be obtained by multiplying the commitments published by each player.
We will later require the following notation:

5.8
Joint-Pedersen-RVSS(g, h) — [s;, 8;, 18] (Vsy, QUAL){s}

t,n

which follows the same syntax of the basic Pedersen’s protocol (with all the parameters referred to
the final secret), except that we are adding the values 73 and QUAL.

15 is the transcript of the n VSS’s executed by each player. We need to save this information,
because it will be useful later on (i.e. our protocol does not just use the final secret and “forgets”
how it was created). In particular 75 includes a private part for each player S; which consists of all
the shares he received, plus a public part which consists of all the verification informations for the
n VSS’s. QUAL is the set of players which were not disqualified during the n VSS’s.

2.4 Abe’s Multiplication Protocol

The last tool we use is Abe’s multiplication protocol [1]. This protocol takes as input the transcripts
of two Pedersen-VSS protocols for secrets r, s and outputs a new sharing of the product rs. This
new sharing can be seen in the form of a Joint-Pedersen of the value rs. See [1] for details.

We are going to use the following notation for this protocol:

Abe'MUIt[sia giyrhfia VSk, VRk](gv h) 7 [XZ:)ZZ,E](‘/X]W QUAL){X = T’S}

which with regards to the output part follows the same syntax as Joint-Pedersen-RVSS (i.e. the
various terms have the same meaning).

This is the only subprotocol that requires n > 3t. We notice that standard multiparty com-
putation techniques could be used to implement multiplication with n > 2¢. But the resulting
protocols would be much more complicated. We decided to focus on simplicity rather than optimal
threshold.



3 Shared Exponentiation of Secrets

This section describes a new tool which we use as part of our main solution. This protocol is of
independent interest and may find applications in other cases.

If we look at the first message sent by the centralized server in the KOY protocol, we see that
it includes the value E = f*gYh*(cd®)", where z,y, z, w are random secrets. Thus, if we want to
distribute this functionality we need a protocol that can output the value gi* - - g5 mod p, where
the s;’s are random secrets which have been generated jointly by the servers.

Let’s start for simplicity for the case m = 1, i.e. the players need to generate a random secret
s shared among them and publicize the value g®. A solution is presented in [13]: they called
their protocol DKG (for Distributed Key Generation) since its main application is the distributed
generation of keys for discrete log based cryptosystems. The DKG protocol is basically a Joint-
Pedersen-RVSS with basis g, h, which generates the shared secret s. It is then followed by a second
phase in which each player performs a Feldman’s VSS with basis g with the same polynomial used
for the Joint-Pedersen-RVSS. This second phase will allow the players to calculate g° securely®.

We modify the DKG protocol so that it works with any combination of basis (i.e. the basis
used in the Joint-Pedersen-RVSS need not be equal to the ones used to exponentiate the secrets).
Moreover we extend DKG to work with any number of secrets. In the future we will refer to an
execution of this protocol with the following notation:

Shared-Exp[131, . . ., L) (g1, - - -y gm) — (g3* -+ g5m)

The protocol appears in Figure 2. For simplicity we limit ourselves to two secrets r, s, with
basis g,h (i.e. we compute g"h®). It should be clear how to extend it to any number of secrets.
The description of the protocol assumes that two Joint-Pedersens for the secrets r, s have already
been performed. Thus the input of the players are the transcripts Tk, T5. We recall exactly what
these transcripts include:

Tk = {private to S; (i € QUAL) : {cur}, {rji,7ji}; public : {VR;x}}

13 = {private to S; (i € QUAL) : {a;}, {sji, 5;i }; public : {V5;,}}

where a;;, (resp. «;i) are the coefficients of the sharing polynomial used by S; during the joint
generation of s (resp. r). The set QUAL can be taken to be the intersection of the qualified set
from each previous Joint-Pedersen protocol. In the first step of the protocol each server S; reveals
the values F;, which are of the form ¢g®#*h%*, This will allow the players to check that they are
correct by matching them with the shares they hold from the previous Pedersen-VSS. If §; gives
out incorrect E;;’s then we expose his component in the Joint-VSS by reconstruction. The desired
value is then the product of the E;y’s.

The protocol Shared-Exp is secure against an adversary which corrupts up to ”T_l of the servers
(in other words we require n > 2t). Security is defined in the usual terms: the execution of the
protocol should not reveal any information about r, s beyond the output value g"h®. This is formally
proven by a simulation argument which we show in Appendix B.

Lemma 1 If n > 2t, then the protocol Shared-Exp, is a secure protocol which on input the tran-
scripts of m Joint-Pedersen-RVSS for secrets si, ..., sm, and m elements of G4 g1, ..., gm, computes

[Ti%, gfl

“In [13] it is also explained why a joint version of Feldman’s VSS is not sufficient, since it allows the adversary to
bias the distribution of the secret s.
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Shared-Exp

Input : the transcripts Tk, 15
1. Every server S; (i € QUAL) computes the values:

Ei = g“* - h** mod p for k € [0..1]

and broadcasts them.
2. Every server S; (j € QUAL) checks that: for every ¢ € QUAL it holds that

t

grihsi = H(Ez )j,c mod p (3)

k=0

If the checks fail for some ¢, then S; complains against S;, by revealing in broadcast the values
Tij,Tij, Sij, 8i5. These values do not satisfy the above check but satisfy the Pedersen’s VSS checks
(since S; € QUAL).

3. If S; receives at least one valid complaint, then the servers run the reconstruction phase of S;’s VSS
and obtain the values o, a;x and E;;, for k € [0..t].

4. Now each player can compute

g'h® = H E;o mod p
IEQUAL

Figure 2: Two-secret version of the protocol for exponentiation of shared secrets

4 The first protocol

We now have all the tools to present our first protocol. As we said in the Introduction, this protocol
will be transparent to the client. C will interact with just one server, the gateway, while in the
background the servers will cooperate to produce KOY -like messages for the client. The gateway
can be any of the servers, thus we are not creating a single point of failure in the network (since if
one gateway fails, another one can always take its place). We now give an informal description of
the protocol.

HOw TO SHARE THE PASSWORD. We assume that the password has already been “installed” in
a shared form across the servers. This could be done by having a trusted process (for example
the client) share the password via Pedersen-VSS. However for efficiency reason we will use a more
redundant sharing. We simulate a Joint-Pedersen-RVSS which has as result the password itself
(this technique is somewhat reminiscent of the share-backup technique of [26], though we use it for
different purposes).

That is, the password pw is first split in n random values pw; . . . pw, such that pw = pwy+...+
pwy, mod ¢ (we assume that we can always encode pw as a member of Z;). The value pw; is given
to server ;. Then each pw; is shared via a (t,n) Pedersen-VSS. The sharing polynomials are also
given to server S;. Each server §; will save the whole transcript of the execution. By summing up
all the shares received in the n previous VSS’s, server S; will obtain values p;, p; which are shares
on a (t,n) Pedersen-VSS of pw. All this work can be performed locally by the trusted process, after
that the sharing informations can be forwarded to the servers.

Notice that in this Joint-VSS the qualified set of players QUAL is the whole set, since this
Joint-VSS is simulated by a trusted process.

11



THE AUTHENTICATION PROTOCOL. Once the password is shared, the actual protocol goes as
follows. We follow the pattern of a KOY protocol closely (so the reader may want to keep Fig-
ure 1 handy while reading this description). First the client sends to the gateway the message
C|VK|A|B|C|D.

On receipt of this message the servers perform five Joint-Pedersen-RVSS to select random values
r,x,y,z,w and keep shares of them. Then using the Shared-Exp protocol (four times) they can
compute E = fPgYh*(cd*)”, F = f", G = ¢g", I = h" fP". This is where the redundant sharing
of the password helps, since it allows us to compute I via a simple invocation of the Shared-Exp
protocol®. Once E, F,G, I are public the servers can compute 3 and then, via another invocation
of Shared-Exp, the value J.

At the same time the servers also perform an invocation of Abe-Mult to compute a sharing of
the value z - pw.

The gateway forwards the message S|E|F|G|I|J to the client (we assume that S is the “name”
of the collective authentication server for the client). Following the KOY protocol the client will
answer with K|Sig.

The servers will first authenticate the signature and, if valid, they need to compute the session
key sks = K"A*BYC*DY f~*P®_ This can be computed via another Shared-Exp invocation, since
the servers have all the relevant sharings.

A detailed exposition of the protocol appears in Figure 3.

ABouT EFFICIENCY. It should be clear that the protocols in steps (3a, 3b, 7b) can be performed
in parallel, thus reducing the number of rounds.

Moreover we observe that the whole of step 3a, plus the computations of F, G, I can be done
offline by the servers, before starting an actual interaction with the client. By saving the inter-
mediate results and carefully keeping a synchronized state, the servers can then use these values
already prepared when the client initiates a protocol. This reduces to a minimum the amount of
computation and communication that the servers need to perform during the actual authentication
protocol.

Notice that no ZK proofs are used anywhere in the protocol.

Theorem 2 Ifn > 3t and the DDH Assumption holds, then the protocol Dist-KOY1 is a transpar-
ently secure distributed password authentication protocol.

Proof appears in Appendix C.

5 The second protocol

In this section we show a protocol which is not transparent, so is less efficient than the previous
one, but achieves a higher level of security. The client will establish n separate session keys, one
with each server §;. We will prove that the adversary can only learn the keys established with the
corrupted servers, and has no information about the keys held by the good servers.

The basic idea is to run n separate KOY protocols, one between the client and each server. The
client will use the same password for each execution. Since the password is shared at the servers’
side, they will cooperate in the background to produce the messages in each execution. Here is an
informal description of this protocol.

The client initiates n instances of the KOY protocol, sending to the servers the message C|VK;|A;|B;|C;|D;
forj=1...n.

®See Appendix D for a non-essential technical remark about the computation of I
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Dist-KOY1

Public Information: p,q, f,g,h,c,d, |, H
Input for Client C: the password pw € Z,4
Input for servers: TpP: the output of the simulated Joint-Pedersen-RVSS for the password pw.

1. The client runs the first step of the KOY protocol. It results in the message: C|VK|A|B|C|D sent to
the gateway.

2. The gateway broadcasts to all the servers the previous message. The servers compute
= H(C|VK|A|B|C) and M = ¢d® mod p

3. (a) The servers S; perform the following;:

Joint-Pedersen-RVSS( £, 1) =B [ri, s, TR] (VRi ) {7}
t,n

Joint-Pedersen-RVSS(f, 1) e [@i, Zq, Te](Vxi){z}

t,n

Joint-Pedersen-RVSS(f, 1) “5 [ys, i, B (Vi) {y}
Joint-Pedersen-RVSS(f,1) — [z, Z;, I2](Vzir){z}
t

Joint-Pedersen-RVSS(f, 1) i [wi, Wi, Tw](Vivy){w}

t,n
We denote by QUAL the intersection of all the qualified sets in the above five protocols.

(b) The servers perform the following:

Shared-Exp[Tx, B, 1z, Tv](f, g, h, M) — (E = f*¢g"h*M"™)
Shared-Exp[TR](f) — (F = f7)

Shared-Exp[T&](g) — (G = ¢")

Shared-Exp[1k, TP](h, f) — (I = h" fP*)

Abe-Mult(z;, Zi, pi, i, Vzi, VPi|(f, 1) -7 [Xa, Xis Tl (Var, QUAL){x = z - pw}
The servers can now compute
B = H(S|E|F|G|I) and N = ¢d” mod p
where S is the “name” of the collective authentication server.
(¢) The servers can now compute:

Shared-Exp[IR](N) — (J = N")

The gateway sends to the client the message: S|E|F|G|I|J as in a regular KOY protocol.
The client C follows the KOY protocol and answers with K|Sig.

The gateway sends to all the servers the previous message K|Sig

NS ov ke

(a) The servers can verify the signature and if it is not correct, it stops.

(b) The servers perform the following:
Shared-Exp[Tk, Tx, T, Tz, T, T](K,A,B,C,D,f ~') — (sks=K"A*BYC*D"“f~*?")

to compute the session key to sks.

Figure 3: Transparent Distributed Version of the KOY protocol
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Dist-KOY2

Input: as in Dist-KOY1.

1. The client runs n times the first step of the KOY protocol. It results in the messages:
C|VK;|A,|B;|C;|D; for j =1...n sent to the gateway.

2. The servers compute
aj = H(C|VK;|A,;|B;|C;) and M; = ¢d® mod p

Then for each j = 1...n the following steps are performed:

(a) The servers perform
. R;,R; ~
Joint-Pedersen-RVSS(f,1) == [rjs, 7ji, TR;| (VR ){r; }
t,n
Joint-Pedersen-RVSS(f, 1) %X’ (i, i, T ] (Vi i) {5 }

Joint-Pedersen-RVSS(f, 1) 27 7 Tysi, B T (W) s}

Joint-Pedersen- RVSS(f,) ; [zﬂ,zﬂ, T2;](Vzi){z}

Joint-Pedersen-RVSS(f, 1) W%V [wjs, Wi, T ;] (Viv i) {w; }

,n

Joint-Pedersen-RVSS(f, I ) [SJZ,SJZ,EJ-}(VSM){SJ-}

t,

The servers send their private information about s; to server S;.

(b) The servers perform the following:

Shared-Exp[1X;, T, Tz, Tw;)(f, g, h, M;) — (E; = f" g% h* M)
Shared-Exp[T;](f) — (F; = f'7)

Shared-Exp[Tk;](g) — (G = g"7)

Shared-Exp[1&;, TP;|(h, ) — (I; = h"7 fP¥)

Abe-Mult(zji, Zji, i, Dji, VZii, VPik] (fi1) 47 [Xie, Xoir Tl (Vagr, QUAL){x; = z; - pw}

(c) The servers can now compute
B; = H(S;|E;|F5|G;|1;) and N; = cd”™ mod p

and .
Shared-Exp[Tk;](N;) — (J; = N;7)
The messages S;|E;|F;|G;|1;]J; are sent to the client.

3. Foreach j =1...n, the client C runs the next step of the KOY protocol which results in the messages
K j|Sigj sent to the servers. The client also computes the corresponding session key sk;.

4. (a) The servers can verify the signatures and if they are not correct, they stop. Otherwise for
each j = 1...n they compute:

Shared-Exp[13;, Tk, Txj, T 5, Tz;, T, T; (L K,A,BC,D,f~*) — (mask;)

where mask; = 1% K" A% BYiC#i D" f~%i'P%

(b) Server S; privately computes the session key as sk; = 17% - mask;.

Figure 4: Distributed version of the KOY protocol
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The servers will send back n KOY messages. That is for each server S; the servers will jointly
select random values 7, x,y;, 2j, w; and send back to the client E; = f% g% h% (cd®)", F; = f'7,
Gj=¢",1; =h"7fP" and J; = (cdﬁi)rﬂ'. As in the first protocol the servers will also perform Abe’s
multiplication protocol to get a sharing of z; - pw.

The servers also perform an additional joint sharing for a random value s;. This value will be
sent privately to server S; (i.e. the servers will send him the shares and he will reconstruct it).

The n messages S;|Ej|F;|G;|1;|J; are sent to the client. He will answer with n messages Kj|Sig;,
which follow the KOY protocol.

The servers will first authenticate the signatures and, if valid, they will cooperate to compute
“masked” session keys mask; = 1% K;j C';j Afj B;*’j D;.Uj f%P*  As before this is another invocation
of the Shared-Exp protocol.

Server §; will then set the secret key as sk; = mask; - [7%.

A detailed exposition of the protocol appears in Figure 4. We omit the steps regarding the
gateway. As in the previous protocol the password pw is installed in a shared form via a Joint-
Pedersen-RVSS.

Theorem 3 If n > 3t and the DDH Assumption holds, then the protocol Dist-KOY2 is a secure
distributed password authentication protocol.

Proof appears in Appendix E.

Acknowledgments: Thanks to Phil MacKenzie for invaluable comments at various stages of this
project, Yehuda Lindell for enlightening conversations about password protocols and Stas Jarecki
for very helpful suggestions.
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A The DDH Assumption

Let PRIMES(n) be the set of pairs (p, q) where both p, ¢ are prime numbers, ¢|p — 1, |¢| = n and
|p| = poly(n) for some polynomial poly(-). Choose (p,q) at random in PRIMES(n) and g as a
random element of order ¢ in Z7. Given an algorithm A we can define the following probabilities

PR r(n) = Probgpce nz,[AWD, 4. 9. 9% ", 9°) = 1]

PR pp(n) = Probg ez, [Ap, .9, 9% ¢°, g*°) = 1]

We say that the Decisional Diffie-Hellman Assumption holds if, for any probabilistic polynomial
time algorithm .4 and for any polynomial P(-), there exists and index np such that for all n > np

we have
1

’PRAJ{(TL) — PRA7DH(TL)’ < %

B Proof of security for Shared-Exp

We construct a simulator which runs on the inputs of the corrupted players and is also given
the output value ¢g"h®. The simulator engages in a simulated execution of the protocol with the
adversary. The goal is to create a view for the adversary which is indistinguishable from the view
she gets in a real execution of the protocol (the view is the collection of messages sent and received
by the adversary). Notice that the simulator has to do this without knowing r, s (apart from the
output value). Which is exactly the reason why this process proves that no further information

17



Sim-Shared-Exp

kel0..t]

Input: ¢g"h*, {our, aik}ff[[ﬁj;ﬁ], {rji, Tji, Sjis §ji}f§[[11fﬁ], {VRir, Vsik}ie[l_'n]

e Simulation of Step 1

1. The simulator computes:

Eir, = g% - h** mod p for k € [0..t],7 € [1..]

2. The simulator chooses at random the values Eio €r G for i € [t + 1..n — 1], where G, is the

subgroup of order ¢ in Z;. The last Ey,o is computed as

ThS
FEno = ;?f mod p
Hi:(} Eio
. The simulator must now compute the values (F;o, Ei1,..., E;) for the good players (i €

[t + 1..n]). These values must “look good” to the adversary, i.e. they must satisfy Equation
(3) for the shares of the bad players.

Recall that Ej, = g - h** where a; (resp a;) is the k' coefficient of a polynomial of
degree t passing through the ¢ points (j,7i;) (resp. (J,si;)) held by the adversary (j € [1..t])
and the free term (0, ajo) (resp. (0, ai0)). If the simulator knew a0, ajo he could compute the
coefficients by simple interpolation. Recall that interpolation is a simple linear combination

i.e.
t t
Qi = E )\jknj and Qi = E )\jksij
J=0 J=0

for the appropriate Lagrangian coefficients \;.

Thus to compute FE;, it is a simple matter to use the above equation in the exponent of g, h,

by forcing E;o = g®i®h%0;
¢

Ei = E?OO’”“ H[g”j i) Nk

j=1

e For steps 2-4 the simulator just follows the protocol since he has enough information to deal with
eventual complaints from bad players.

Figure 5: The simulator for the protocol Shared-Exp
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about r, s is revealed. The detail of the simulation appears in Figure 5. For simplicity we are
assuming that QUAL = [1..n] and that the adversary controls the first ¢ players.

It is not hard to see that the view of the adversary at the end of the simulation is exactly the
same as if she had participated in a real protocol.

C Proof of Security for Dist-KOY1

We want to prove that the protocol Dist-KOY1 described in the previous section is transparently
secure. Recall that this means two things: (i) if the adversary does not break into any server then
this is a secure password authentication protocol; (ii) if the adversary breaks into at most ¢ servers
then she has no information about the password.

Case (i) is easily argued by seeing that the protocol follows exactly the same pattern as the
KQY protocol. Thus if the KOY protocol is secure, then so it is Dist-KOY1 in the case the adversary
does not break into any servers, since in this case the powers of a distributed adversary are the
same as in the case of a centralized one.

Case (ii) will be proven via an indistinguishability argument. We are going to show that the
views of the adversary when interacting with a system using password pw and a system using
password pw can be distinguished with probability at most %fc’;‘l’l, if the DDH Assumption holds.

With regard to the view of the adversary we can concentrate on the public information that the
protocol reveals. Beyond that, the adversary sees only ¢ shares on polynomials of degree t+ 1, with
free term some secret information. The ¢ shares are information theoretically independent from the
secret, so we can ignore them in our argument. Also we can ignore the public information of the
relative VSS’s since we are only using Pedersen’s VSS and that’s also information-theoretic.

Honest Client. We first discuss the case in which the client is honest. In this case the view

of the adversary A when the system uses password pw includes the following values (the defini-

tion of «, 3 follows the protocol description): [A = B =g",C=h"fv D= (cda)T/,K =
fx,gy/hz/(cdﬁ)w/] originating from the client, and the values [FF = f",G = ¢",I = h"fP¥ J =

(cd®)", E = f*gYh*(cd®)"] originating from the server, and finally the secret key sk = K" A*BY(C f~P¥)? D"
generated on the servers’ side. We denote the distribution of all these values with view(pw).

We want to prove that under the DDH the two distributions view(pw) and view(pw) are
computationally indistinguishable (here we can actually prove this stronger statement, in the next
case we will get the weaker bound of %fgﬁl on the distinguishing probability).

We do this via a reduction to the semantic security of the ElGamal encryption scheme. Let’s
assume that we have an adversary A that can distinguish between view(pw) and view(pw). We
show how we can distinguish between ElGamal encryptions of fP* and fP*.

We are given an istance of the ElGamal encryption scheme, with public parameters p, g, f where
f is an element of order ¢, and public key h. We are also given a ciphertext F, I which is either an
encryption of fP* or an encryption of fP¥ (i.e. F = f"and I = h" f?¥ or I = k" fP¥, with r € Z,).

We build a simulated view as follows. We first set the public parameters using f, h and g = f7,
c=f° d= f¢, with 7,8,€ €p Zy.

Then we run the adversary A4 and we simulate the honest client with the following message:
A=F.-ff, B=F".g°, C=h?-I,and D = FOT°* . (¢d®)?. Think of r 4+ p = ', then we have the
exact distribution of a honest client’s first message. We also generate a VK.

We then run the servers, letting the adversary control ¢ of them. First we run executions of the
various Joint-Pedersen-RVSS protocols to generate values 7, x,y, z,w (7 is a dummy value that will
not be used in the rest of the simulation). Then we simulate executions of the protocol Shared-
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Exp in order to generate the following values: F, G = F7, I, J = F%t6_ The computation of
E = f*gYh*(cd™)™ can be performed following the regular protocol, and not a simulation.

We simulate the second message of the client, by following the regular protocol. L.e., choose
2y, 2w €g Zy and set K = f% g¥ h¥ (cd®)*'. We also attach the appropriate signature Sig.

The last step is the computation of the secret key sk. Notice that sk = K TATBYRTZDW. All
terms can be computed by the simulator since K" can be written as F@' T/ +ow'tebuw’p2" g a]] it
has to do is to simulate the last Shared-Exp to hit the value sk.

Notice that if I = A" fP", these values follow the distribution of view(pw). Otherwise if I =
R” fP¥ this is the distribution of view(piv).

Thus if the adversary can distinguish between view(pw) and view(pw) we can break the semantic
security of ElGamal, which implies breaking the DDH.

The Adversarial Client. We assume now that the client is not honest, i.e., the adversary is
trying to impersonate a real client. This case is more complicated than the previous one. We start
with some preliminary Lemmas.

We say that a first client message is correct for password pw if it was constructed according
to the protocol. Specifically a correct first client message C,VK, A, B, C, D has the property that
letting o = H(C|VK|A|B|C'), then

Dlog; A = Dlog, B = Dlog,, C f~"* = Dlogqa D (4)

The first Lemma states that if the servers use password pw, and the first client message is not
correct for password pw, then the secret key sk established by the servers is random and uniformly
distributed, given all the public information of the protocol (i.e. for the client).

Lemma 4 If the first client message C,VK, A, B,C, D is not correct for password pw, then the
distribution of sks = K" A*BYC*D"™ f~*P¥ conditioned to the rest of the client’s view is uniform.

ProOF: Consider the distribution of the value sksK~" = A*BYC*D"™ f~*P¥_ Since r is uniquely
determined by the rest of the view, it is enough to prove that this value is uniformly distributed.

The values z,y, z, w are constrained only by the value E, which defines a linear equation in
them. If we denote with p = Dlog; g, v = Dlog; h and m = Dlogy cd® we have

Dlog; B = = + py + vz + mw (5)
Now the value skg defines a similar equation in the unknowns z,y, z, w:
Dlogs sks = 14z + rppy + revz + rpmw (6)

where 74 = Dlog; A, rp = Dlog, B, r¢ = Dlog;, C'f7P" and rp = Dlog.q. D. However since the
first client message is not correct for pw, then Equation (4) is not satisfied, which means that
ra,TB,TC,Tp are not all equal to each other. Thus Equations (5) and (6) are linearly independent.

This implies that given F, any value of sks appears with the same probability (since for any
value of sks we get the same number of solutions in x,y, z, w to the two equations.) O

We now try to bound the probability that the adversary can come up with a correct first client
message. Notice that such a message is a valid Cramer-Shoup encryption of the password pw
(augmented with the verification key VK). Since Cramer-Shoup is non-malleable, we have that all
the correct first client messages that the adversary sees are of no use to her in trying to build a
new correct first client message.

We say that a first client message C,VK, A, B, C, D is new if the view of the adversary, up to
that point, does not contain a first client message that includes the component A, B,C, D.
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Lemma 5 Under the DDH Assumption, the probability that the adversary outputs a new and
correct first client message is bounded by @Q/|Dict| + negl where @Q is the number of attempted
adversarial logins.

PRrROOF: The proof works as a reduction to the non-malleability of the Cramer-Shoup encryption
scheme. Let’s assume that we have an adversary A that outputs a new and correct first client
message with probability Q/|Dict| + poly~t. We show how to use A to break the non-malleability
of Cramer-Shoup. In particular we show how to use A to output a new and correct encryption of
pw, given several encryptions of pw. Since pw is chosen randomly in a dictionary of size |Dict],
we need to show that we can output such an encryption with probability substantially better than
1/|Dict|.

We assume that we can request two kinds of Cramer-Shoup encryptions for pw: a client type
which include a verification key VK of our choice in the computation of . And a server type which
includes a value E of our choice in the computation of «. In [23] it is shown that these are still
non-malleable encryptions.

We run A and every time she requests to see a protocol between an honest client and the servers,
we request two Cramer-Shoup encryptions of pw (a client one and a server one) and use them to
simulate an execution of the protocol Dist-KOY1. The details of the simulation are similar to the
ones for the honest client described above.

That is we use the client encryption we obtained to compute the first message C,VK, A, B, C, D.
Then we simulate the servers’ message by simulating the various Shared-Exp to “hit” the server
encryption F, G, 1,J (as before the computation of E can be carried out normally as in the real
protocol).

Then we correctly choose K as in the protocol for the client, and we sign since we know SK
(remember that we chose VK).

The servers’ secret key is computed as in the honest case above using the fact that we know all
the values 2, v/, 2/, w’ and z, ¥, z, w.

At the end of this simulation we take all the first client messages that the adversary output.
There are at most () of them. We choose one of them at random and output it. With probability
1/|Dict| + poly™! this will be a correct encryption of the password pw which is a contradiction, as
desired. O

We are now left with the case that the adversary outputs a first client message which is not new.
I.e. she is copying the component A, B, C, D from a honest client. Notice however that if she does
not copy the verification key VK as well, then the message is not correct (by the properties of the
collision resistant function )% But if she copies the whole message, including the verification key
VK, she will not be able to sign correctly at the end so no secret key sk will be established.

Lemma 6 In an execution in which the adversary copies an honest first client message, a secret
key s established only with negligible probability.

The proof of this Lemma is a straightforward reduction to the security of the one-time signature
scheme, and is therefore omitted.

We are finally able to prove our main goal at this point. We want to prove that view(pw) and
view(pw) can be distinguished with probability at most @/|Dict| 4 negl. Given the above Lemmas,

5By the same argument the adversary cannot use “good” server encryptions F, G, I, J, because they do not include
a VK and thus will not be correct first messages
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it is enough to show that they are computationally indistinguishable when the first client messages
are not correct. Then the bound will follow from Lemmas 5 and 6.

So we limit ourselves to the case that the first client messages are incorrect. Then the simulation
follows the same structure of the honest client one, except that we place a random value for the
secret key sks. This is OK because of Lemma 4. Details follow.

We have an adversary A who only sends out incorrect first client messages and distinguishes
between view(pw) and view(pw). We use it to break the semantic security of ElGamal by showing
that we can distinguish between ElGamal encryptions of fP* and fPv.

We are given an istance of the ElGamal encryption scheme, with public parameters p, g, f where
f is an element of order ¢, and public key h. We are also given a ciphertext F, I which is either an
encryption of fP or an encryption of fP* (i.e. F = f"and I = h" fP* or I = h" fP¥, with r € Zy).

We build a simulated view as follows. We first set the public parameters using f, h and g = f7,
c=f° d= f, with v,8,€ €p Zy.

Then we run the adversary A and get her first message VK, A, B, C, D.

We then run the servers, letting the adversary control ¢ of them. First we run executions of the
various Joint-Pedersen-RVSS protocols to generate values 7, x,y, z,w (7 is a dummy value that will
not be used in the rest of the simulation). Then we simulate executions of the protocol Shared-
Exp in order to generate the following values: F, G = F7, I, J = F®t6_ The computation of
E = f*gYh*(cd™)"™ can be performed following the regular protocol, and not a simulation.

We then obtain K from the adversary. If the signature is not correct we stop, otherwise we
choose a random sk. And we simulate the last Shared-Exp in order to hit this value.

Notice that if I = A" fP] these values follow the distribution of view(pw). Otherwise if I =
R fP¥ this is the distribution of view(pw).

Thus if the adversary can distinguish between view(pw) and view(pw) we can break the semantic
security of ElGamal, which implies breaking the DDH.

D Technical Remark about Dist-KOY1

In the Shared-Exp invocation to compute I, we need to take care of a potential discrepancy in the
set of qualified players. If some players have been disqualified during the Joint-Pedersen-RVSS in
Step (3a) of the Dist-KOY1 protocol, then the set QUAL relative to the value r does not contain all
the players. But in step (4) of Shared-Exp we assume that both secrets have the same set QUAL,
which is the intersection of their respective qualified sets. So if apply Shared-Exp as is, we may miss
some components of the password. This problem can be easily solved by exposing all the password
information of the disqualified players and adjust the result of Shared-Exp accordingly. lL.e. we
change the final equation of Shared-Exp

I=hn"fP"= H E;p mod p
1€EQUAL

in the follow:

I =h"fP" = H g H E;p mod p
1€{1,...,n\QUAL 1€QUAL

where pw; is the random component of the password associated to S;, which can be reconstructed
in the clear by the honest players.
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E Proof of Security for Dist-KOY2

We need to prove that Dist-KOY2 is a secure distributed password authentication protocol if the
original KQY protocol is secure. We prove this by contradiction. We show how a distributed
adversary Agpresh that breaks Dist-KOY2 can be used as a subroutine by an adversary A which will
break the KOY protocol.

Let’s recall what it means to break a distributed password authentication protocol. The adver-
sary Ainresh 18 allowed to invoke the commands Execute, Send, Reveal. At the end for one of the
executions in which she did not ask for Reveal query for the key of, say, server S, he will ask a
query Test which will return either the real key sk, or a random key. The adversary A, esp, Wins
if she recognizes the right key with probability substantially better than 1/2.

We assume without loss of generality that A;p.csn breaks into the first ¢ servers Sy ... S;.

The centralized adversary 4 will run a simulator which will create a virtual distributed world
for A¢presn. This simulator will install a fake password pw €g Dict, however this fake password will
not be used in the rest of the simulation.

For each execution of the distributed protocol that Asp,.esn Wwants to see, the centralized adver-
sary A will request n sessions of the KOY protocol she is trying to break. She will use these n
sessions to “embed” them in the distributed protocol, one for each server.

More specifically when Ajesn, invokes an Execute command, A will invoke n Execute in the
centralized instance. This will give a transcript msg; 1, msg; 2, msg; 3 to A. The simulator will have
to create a view in which the " component will match msg; 1, Msg; 2, msg; 3. For msg; 1, msg; 3
this is not a problem since the simulator controls the client. But for msg; 2 we need to show that
the transcript of the distributed protocol can be manipulated to hit this specific value, while still
producing a view which is indistinguishable from the real one.

But this can easily be done, because it’s a matter of simulating the executions of the various
Shared-Exp protocols in order to “hit” the right message msg; 2. We have already shown that this
can be done, while producing a perfect view.

A similar argument holds for the Send command. In this case Aspresn sends n KOY messages
as the client. A4 will take them and forward them to its centralized KOY protocol, as n separate
sessions. The n response she receives will have to be embedded in the distributed response to
Athresh-

Once again we have shown how this can be done by simulating Shared-Exp, to hit the proper
results, and still producing a perfect view.

When Ap.esh asks a Reveal on any server, the adversary A will ask a Reveal on the corresponding
centralized session and forward the answer to A:presh-

Finally we show how to deal with Test. In this case also A asks her Test query in the centralized
case and gets a string which is passed on to Aspresn- Then A answers whatever Aipesp, answers
(i.e. true key or random key).

Clearly, the advantage of A is exactly the same as the advantage of Aspesn. Indeed the simulated
view of Apresh is exactly the same as the view of a real execution of the protocol (this is because
the simulation of Shared-Exp is perfect).
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