		Journal of Symbolic Computation 36 (2003) 845-853

www.elsevier.com/locate/jsc

Bases for projective modules in $A_{n}(k)$

Jesús Gago-Vargas*
Departamento de Álgebra, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain

Received 14 November 2001; accepted 6 February 2003

Abstract

Let $A_{n}(k)$ be the Weyl algebra, with k a field of characteristic zero. It is known that every projective finitely generated left module is free or isomorphic to a left ideal. Let M be a left submodule of a free module. In this paper we give an algorithm to compute the projective dimension of M. If M is projective and $\operatorname{rank}(M) \geq 2$ we give a procedure to find a basis. © 2003 Elsevier Ltd. All rights reserved.

Keywords: Projective modules; Non-commutative rings; Gröbner bases

Introduction

The study of finitely generated projective modules over a ring is an interesting topic. We know that over polynomial rings they are free, as it was shown by Quillen and Suslin. There are several algorithmic versions of this theorem (Logar and Sturmfels, 1992; Laubenbacher and Woodburn, 1997; Gago-Vargas, 2002) that compute a basis from a system of generators. All of these procedures use Gröbner bases in polynomial rings. It is natural to extend these results to the Weyl Algebra $A_{n}(k)$, with k a field with characteristic zero. It is known that if a left finitely generated $A_{n}(k)$-module is projective and has rank greater or equal 2 then is free (Stafford, 1978). Our goal is to give an algorithm to find a basis of these modules.

Projective modules in $A_{n}(k)$ are stably free (Stafford, 1977), so the first step is to find an isomorphism $P \oplus A_{n}(k)^{s} \simeq A_{n}(k)^{t}$ for some s, t. We develop this procedure in Section 1, together with an algorithm to compute the projective dimension of a module, that is valid for a broad class of rings. We note by $\operatorname{pdim}(M)$ the projective dimension of a module M. We require the computation of Gröbner bases in the ring and that every module has a finite free resolution. If M is projective we find a matrix that defines an isomorphism

[^0]$M \oplus R^{s} \simeq R^{t}$. The starting point is a left R-module M defined by a system of generators in some R^{m}.

In Section 2 we follow the proof of Stafford (1978) with algorithmic tools to find a basis of a projective module. We develop, for completeness, the reference to Swan (1968) used in Stafford (1978, Theorem 3.6(a)), to clarify where these computations are needed. We follow describing the minor changes to Hillebrand and Schmale (2002) to obtain two special generators of a left ideal, according to Stafford (1978, Theorem 3.1). Finally, we give an example of this procedure to build a basis of a projective module in $A_{2}(\mathbb{Q})$.

For all the computations we need an effective field k in the sense of Cohen (1999) to apply the Gröbner bases algorithm in $A_{n}(k)$. We have used in the examples $k=\mathbb{Q}$.

1. Computing projective dimension

Let R be a ring where it is possible to compute a finite free resolution of a left module, and we can determine if a right submodule of R^{k} is equal to R^{k}. Such a ring may be $k\left[x_{1}, \ldots, x_{n}\right], A_{n}(k)$ or more general rings like PBW algebras (Bueso et al., 1998). We make use of a characterization given in Logar and Sturmfels (1992), based on a finite free resolution of a module. The existence of a finite free resolution for a projective module M is equivalent for M to be stably free (McConnell and Robson, 1987). With the algorithm described in this section we test wether M is projective, and if the answer is yes we compute an isomorphism $M \oplus R^{s} \simeq R^{t}$ for some s, t. The procedure is by induction on the length of the resolution. We identify the homomorphisms with their matrices to simplify the notation.

Suppose

$$
0 \rightarrow F_{1} \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

is a free resolution of M, with $\operatorname{rank}\left(F_{i}\right)=r_{i}$. If M is a projective module, this sequence splits, so there exists $\beta_{1}: F_{0} \rightarrow F_{1}$ such that $\beta_{1} \alpha_{1}=I_{r_{1}}$. We can compute this matrix from the rows of the matrix α_{1} : if we consider them as vectors of F_{1}, the right R-module generated must be equal to F_{1}. We express each vector of the canonical basis of F_{1} as a linear combination of the rows of α_{1}, and with these coefficients we construct the matrix β_{1}. So we can give the isomorphism $F_{1} \oplus \operatorname{ker}\left(\beta_{1}\right) \simeq F_{0} \simeq F_{1} \oplus M$ and a basis of $F_{1} \oplus \operatorname{ker}\left(\beta_{1}\right)$.

Let

$$
\mathcal{F}: 0 \rightarrow F_{t} \xrightarrow{\alpha_{t}} F_{t-1} \xrightarrow{\alpha_{t-1}} F_{t-2} \xrightarrow{\alpha_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \cdots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

be a finite free resolution of M with $\operatorname{rank}\left(F_{i}\right)=r_{i}$ and $t \geq 2$ (we take α_{-1} the null homomorphism). Again, if M is a projective module, then the short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\alpha_{0}\right) \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

splits, so $\operatorname{ker}\left(\alpha_{0}\right)=\operatorname{im}\left(\alpha_{1}\right)$ is projective. By induction, the modules $\operatorname{im}\left(\alpha_{i}\right), i=1, \ldots, t$ are projective. In particular, $\operatorname{im}\left(\alpha_{t-1}\right)$ is projective and the exact sequence

$$
0 \rightarrow F_{t} \xrightarrow{\alpha_{t}} F_{t-1} \xrightarrow{\alpha_{t-1}} \operatorname{im}\left(\alpha_{t-1}\right) \rightarrow 0
$$

splits. Then there exists $\beta_{t}: F_{t-1} \rightarrow F_{t}$ such that $I_{r_{t}}=\beta_{t} \alpha_{t}$. The module $\operatorname{ker}\left(\beta_{t}\right)$ is projective, isomorphic to $\operatorname{im}\left(\alpha_{t-1}\right)$ and we can compute the isomorphism $\operatorname{ker}\left(\beta_{t}\right) \oplus F_{t} \simeq$ F_{t-1}. We consider the following sequence:

$$
0 \rightarrow F_{t} \xrightarrow{\widetilde{\alpha}_{t}} F_{t-1} \oplus F_{t} \xrightarrow{\tilde{\alpha}_{t-1}} F_{t-2} \oplus F_{t} \xrightarrow{\tilde{\alpha}_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \cdots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

where

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\mathbf{v}_{t}\right)=\left(\alpha_{t}\left(\mathbf{v}_{t}\right), \mathbf{0}\right), \quad \widetilde{\alpha}_{t-1}\left(\mathbf{v}_{t-1}, \mathbf{v}_{t}\right)=\left(\alpha_{t-1}\left(\mathbf{v}_{t-1}\right), \mathbf{v}_{t}\right), \\
& \widetilde{\alpha}_{t-2}\left(\mathbf{v}_{t-2}, \mathbf{v}_{t}\right)=\alpha_{t-2}\left(\mathbf{v}_{t-2}\right) .
\end{aligned}
$$

Then it is an exact sequence and again the module $\operatorname{im}\left(\widetilde{\alpha}_{t-1}\right)$ is projective. As before, the sequence

$$
\begin{equation*}
0 \rightarrow F_{t} \xrightarrow{\widetilde{\alpha}_{t}} F_{t-1} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-1}} \operatorname{im}\left(\widetilde{\alpha}_{t-1}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

splits and there exists $\widetilde{\beta}_{t}: F_{t-1} \oplus F_{t} \rightarrow F_{t}$ such that $I_{r_{t}}=\widetilde{\beta}_{t} \widetilde{\alpha}_{t}$. In this case,

$$
\widetilde{\beta}_{t}=\left(\begin{array}{ll}
\beta_{t} & \theta
\end{array}\right)
$$

where θ is the null matrix with order $r_{t} \times r_{t}$. Then $\widetilde{\beta}\left(\mathbf{v}_{t-1}, \mathbf{v}_{t}\right)=\beta_{t}\left(\mathbf{v}_{t-1}\right)$, so $\operatorname{ker}\left(\widetilde{\beta}_{t}\right)=$ $\operatorname{ker}\left(\beta_{t}\right) \oplus F_{t} \simeq F_{t-1}$. We can compute the isomorphism

$$
\tilde{v}_{t-1}: F_{t-1} \rightarrow \operatorname{ker}\left(\widetilde{\beta}_{t}\right)
$$

Let

$$
\begin{equation*}
\tilde{\gamma}_{t-1}=\widetilde{\alpha}_{t-1} \widetilde{v}_{t-1}: F_{t-1} \rightarrow F_{t-2} \oplus F_{t} . \tag{2}
\end{equation*}
$$

Then the sequence

$$
0 \rightarrow F_{t-1} \xrightarrow{\tilde{\gamma}_{t-1}} F_{t-2} \oplus F_{t} \xrightarrow{\tilde{\alpha}_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \cdots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

is exact. Because the sequence (1) splits, the homomorphism $\widetilde{\alpha}_{t-1}$ is an isomorphism between $\operatorname{ker}\left(\widetilde{\beta}_{t}\right)$ and $\operatorname{im}\left(\widetilde{\alpha}_{t-1}\right)$, so $\widetilde{\gamma}_{t-1}$ is an isomorphism between F_{t-1} and $\operatorname{im}\left(\widetilde{\alpha}_{t-1}\right)=$ $\operatorname{ker}\left(\widetilde{\alpha}_{t-2}\right)$, and we have the exactness of the sequence (2). We apply again the process to $\tilde{\gamma}_{t-1}$ to check the projectiveness of the module M.

We need the following result:
Theorem 1.1. Let R be a ring and

$$
\mathcal{F}: \cdots \rightarrow F_{d} \rightarrow F_{d-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

a projective resolution. Let d be the smallest number such that $\left\{\operatorname{im} F_{d} \rightarrow F_{d-1}\right\}$ is projective. Then d does not depend on the resolution and $\operatorname{pdim}(M)=d$.
Proof. Eisenbud (1995, Exercise A.3.13).
Theorem 1.2. The previous algorithm allows us to compute the projective dimension of a module.

Proof. Let

$$
0 \rightarrow F_{n} \xrightarrow{\alpha_{n}} F_{n-1} \xrightarrow{\alpha_{n-1}} \cdots \rightarrow F_{1} \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

be a finite free resolution given by the procedure. Then $\operatorname{im}\left(\alpha_{n-1}\right)$ is not projective, because the matrix α_{n} has no left inverse. We can suppose that M is not projective, otherwise we have shortened the resolution. Then the sequence

$$
0 \rightarrow \operatorname{ker}\left(\alpha_{0}\right) \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

does not split, so $\operatorname{im}\left(\alpha_{1}\right)=\operatorname{ker}\left(\alpha_{0}\right)$ is not projective. In the same way, the short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\alpha_{1}\right) \rightarrow F_{1} \rightarrow \operatorname{im}\left(\alpha_{1}\right) \rightarrow 0
$$

does not split and $\operatorname{im}\left(\alpha_{2}\right)=\operatorname{ker}\left(\alpha_{1}\right)$ is not projective. Then the modules

$$
\operatorname{im}\left(\alpha_{1}\right), \operatorname{im}\left(\alpha_{2}\right), \ldots, \operatorname{im}\left(\alpha_{n-1}\right)
$$

are not projective and the module $\operatorname{im}\left(\alpha_{n}\right)$ is projective. Then the projective dimension of M is equal to n.

Algorithm. Projective dimension.
Input: a left R-module M defined by its generators in R^{r}.
Output: a projective dimension of M and a minimal length free resolution. If $\operatorname{pdim}(M)=0$, i.e. M is projective, the algorithm returns an isomorphism $M \oplus R^{s} \simeq R^{t}$.

Let \mathcal{F} be a finite free resolution of M :

$$
0 \rightarrow F_{t} \xrightarrow{\alpha_{t}} F_{t-1} \xrightarrow{\alpha_{t-1}} F_{t-2} \xrightarrow{\alpha_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \cdots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

START:

if α_{t} has no left inverse then

$$
\operatorname{pdim}(M)=t . \text { STOP. }
$$

else
let β_{t} be a left inverse of α_{t}.
end if
if $t=1$ then
$\operatorname{pdim}(M)=0$ and $M \oplus F_{1} \simeq \operatorname{ker}\left(\beta_{1}\right) \oplus F_{1} \simeq F_{0}$. STOP.
else
compute the exact sequence

$$
0 \rightarrow F_{t} \xrightarrow{\widetilde{\alpha}_{t}} F_{t-1} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-1}} F_{t-2} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \cdots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

and the matrix $\widetilde{\nu}_{t-1}$ that gives the isomorphism $\operatorname{ker}\left(\beta_{t}\right) \oplus F_{t} \simeq F_{t-1}$.
end if
Let $\widetilde{\gamma}_{t-1}=\widetilde{\alpha}_{t-1} \widetilde{v}_{t-1}$.
Let \mathcal{F} be the finite free resolution

$$
0 \rightarrow F_{t-1} \xrightarrow{\tilde{\gamma}_{t-1}} F_{t-2} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \cdots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0 .
$$

go to START.

This algorithm has been programmed with Macaulay 2 (Grayson and Stillman, 2000), using the routines for D-modules developed by Leykin and Tsai (2002).

Example. Let $W=A_{2}(\mathbb{Q})$ and $I=W\left\langle x \partial_{x}-1, x \partial_{y}, \partial_{x}^{2}, \partial_{y}^{2}\right\rangle$. We found a resolution of I of the form

$$
0 \leftarrow I \stackrel{\widetilde{\alpha}_{0}}{\leftarrow} W^{4} \stackrel{\tilde{\gamma}_{1}}{\leftarrow} W^{3} \leftarrow 0
$$

where

$$
\tilde{\gamma}_{1}=\left(\begin{array}{ccc}
-\partial_{x}^{2} & -x \partial_{x}+1 & 0 \\
\partial_{y} & 0 & -x \\
0 & \partial_{y} & \partial_{x} \\
-\partial_{x} & -x & 0
\end{array}\right)
$$

The rows of the matrix $\widetilde{\gamma}_{1}$ do not generate W^{3}, because a Gröbner basis is given by the columns of the matrix

$$
\left(\begin{array}{cccc}
0 & 0 & \partial_{y} & \partial_{x} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
$$

Then the ideal I is not projective, and its projective dimension is 1 .

2. Computing a basis

Let k be a field of characteristic zero. Given a projective module over $A_{n}(k)$ with rank greater than 1 , we are going to describe a procedure to compute a basis. We will need the standard Gröbner basis theory on $A_{n}(k)$ to perform the computations. See, for example, Castro (1987) for a description of this algorithm. In Hillebrand and Schmale (2002) we found the following theorem.

Theorem 2.1. Let $\mathcal{R}=k\left(x_{1}, \ldots, x_{n}\right)\left[\partial_{1}, \ldots, \partial_{n}\right]$ and $I=\mathcal{R}\langle a, b, c\rangle$. Then we can compute $\tilde{a}, \tilde{b} \in \mathcal{R}$ such that $I=\mathcal{R}\langle a+\tilde{a} c, b+\tilde{b} c\rangle$.

As pointed out in Hillebrand and Schmale (2002, Remark 3.15), the algorithm can be extended to $W=A_{n}(k)=k\left[x_{1}, \ldots, x_{n}\right]\left[\partial_{1}, \ldots, \partial_{n}\right]$. We need the following stronger result (Stafford, 1978, Theorem 3.1):

Theorem 2.2. Let $I=W\langle a, b, c\rangle$ be a left W-ideal, and let $d_{1}, d_{2} \in W-\{0\}$ be arbitrary elements. Then we can find $f_{1}, f_{2} \in W$ such that

$$
I=W\left\langle a+d_{1} f_{1} c, b+d_{2} f_{2} c\right\rangle
$$

This can be accomplished with some minor changes to the proof of Hillebrand and Schmale (2002, Lemma 3.10). Following their notation, it is enough to take $g_{1}, g_{2} \in W$ such that $h_{1} d_{1} g_{1}+h_{2} d_{2} g_{2}=0$, and to apply (Hillebrand and Schmale, 2002, Lemma 3.9) to $v=t d_{2} g_{2}$. These changes appear in the proof of Stafford (1978, Theorem 3.1). The procedure is analogous for right ideals.
Definition. Let M be a left W-module and $\mathbf{v} \in M$. We say that \mathbf{v} is unimodular in M if there exists $\varphi \in \operatorname{Hom}_{W}(M, W)$ such that $\varphi(\mathbf{v})=1$.

Remark. If \mathbf{v} is a column vector in some W^{m} then \mathbf{v} is unimodular if and only if the right ideal generated by its entries is equal to W. Through Gröbner bases, we can give the homomorphism that apply \mathbf{v} in 1 .

The following Lemma is a direct consequence of Theorem 2.2, and it will allow a 'cancellation' in some direct sums.

Lemma 2.1 (Stafford, 1978, Lemma 3.5). Let $M \subset W^{m}$ be a left W-module with $\operatorname{rank}(M) \geq 2$ and $\mathbf{a} \oplus t \in M \oplus W$ unimodular. Then there is an algorithm to find $\Phi \in \operatorname{Hom}_{W}(W, M)$ such that $\mathbf{a}+\Phi(t)$ is unimodular in M.
Proof. Let $\mathbf{a}_{1} \in M \subset W^{m}$ be a non-zero element and consider $\Phi_{1}: W^{m} \rightarrow W$ a projection such that $\Phi_{1}\left(\mathbf{a}_{1}\right) \neq 0$. Let $M_{1}=M \cap \operatorname{ker}\left(\Phi_{1}\right)$, that we can compute by Gröbner bases. Then $\operatorname{rank}\left(M_{1}\right)=\operatorname{rank}(M)-1 \geq 1$, so there exists $\mathbf{a}_{2} \in M_{1}-\mathbf{0}$. Let $\Phi_{2}: W^{m} \rightarrow W$ be a projection such that $\Phi_{2}\left(\mathbf{a}_{2}\right) \neq 0$. If $\Phi_{2}\left(\mathbf{a}_{1}\right) \neq 0$ we can compute syzygies to get $r_{1}, r_{2} \in W$ such that $\Phi_{1}\left(\mathbf{a}_{1}\right) r_{1}+\Phi_{2}\left(\mathbf{a}_{2}\right) r_{2}=0$ and replace Φ_{2} by the homomorphism $\Phi_{1} r_{1}+\Phi_{2} r_{2}$. Then $\Phi_{1}\left(\mathbf{a}_{2}\right)=\Phi_{2}\left(\mathbf{a}_{1}\right)=0$. Let $d_{1}=\Phi_{1}\left(\mathbf{a}_{1}\right), d_{2}=\Phi_{2}\left(\mathbf{a}_{2}\right)$ and consider the right ideal

$$
I=\left\langle\Phi_{1}(\mathbf{a}), \Phi_{2}(\mathbf{a}), t\right\rangle W .
$$

Then there exist $f_{1}, f_{2} \in W$ such that

$$
I=\left\langle\Phi_{1}(\mathbf{a})+t f_{1} d_{1}, \Phi_{2}(\mathbf{a})+t f_{2} d_{2}\right\rangle W .
$$

Let $\Phi: W \rightarrow M$ be the homomorphism defined by $\Phi(1)=f_{1} \mathbf{a}_{1}+f_{2} \mathbf{a}_{2}$. Then, as shown in Stafford (1978, Lemma 3.5), $\mathbf{a}+\Phi(t)$ is unimodular, and we can compute $j \in \operatorname{Hom}_{W}(M, W)$ such that $j(\mathbf{a}+\Phi(t))=1$.

Remark. The case $\mathbf{a} \neq \mathbf{0}$ is of special interest. In this case we can take $\mathbf{a}_{1}=\mathbf{a}$ and obtain $\Phi_{2}(\mathbf{a})=0, d_{1}=\Phi_{1}(\mathbf{a})$. We have to find f_{1}, f_{2} such that

$$
I=\left\langle d_{1}, 0, t\right\rangle W=\left\langle d_{1}+t f_{1} d_{1}, t f_{2} d_{2}\right\rangle W .
$$

Note that the problem is not to find two generators for the ideal I. We are looking for two special generators.

Proposition 2.1 (Swan, 1968, Corollary 12.6). Let $M \subset W^{m}$ be a left W-module with $\operatorname{rank}(M) \geq 2$ and $h: W \oplus N \rightarrow W \oplus M$ be an isomorphism with N a left W-module. Then $M \simeq N$.

Proof. Let $h(1, \mathbf{0})=\left(t_{0}, \mathbf{a}_{0}\right) \in W \oplus M$. The vector $(1, \mathbf{0})$ is unimodular so $\left(t_{0}, \mathbf{a}_{0}\right)$ too. Then we compute $\Phi: W \rightarrow M$ such that $\mathbf{a}_{0}^{\prime}=\mathbf{a}_{0}+\Phi\left(t_{0}\right)$ is unimodular in M and we get the homomorphism $j: M \rightarrow W$ with $j\left(\mathbf{a}_{0}^{\prime}\right)=1$. We consider the following homomorphisms:

$$
\begin{array}{ll}
g: W \oplus M \rightarrow W \oplus M, & g(t, \mathbf{a})=(t, \mathbf{a}+\Phi(t)) \\
k: W \rightarrow W, & k(1)=t_{0} \\
l: W \oplus M \rightarrow W \oplus M, & l(t, \mathbf{a})=(t-(k \circ j)(\mathbf{a}), \mathbf{a}), \\
i: W \oplus N \rightarrow W \oplus M, & i=l \circ g \circ h .
\end{array}
$$

Then i is isomorphism and $i(1, \mathbf{0})=\left(0, \mathbf{a}_{0}^{\prime}\right)$. We have $M=W \mathbf{a}_{0}^{\prime} \oplus \operatorname{ker}(j)$ and the following chain of isomorphisms:

$$
\begin{aligned}
N & \simeq(W \oplus N) / W \mathbf{e}_{1} \xrightarrow{i}(W \oplus M) / W \mathbf{a}_{0}^{\prime}=\left(W \oplus \operatorname{ker}(j) \oplus W \mathbf{a}_{0}^{\prime}\right) / W \mathbf{a}_{0}^{\prime} \\
& \simeq W \oplus \operatorname{ker}(j) \simeq W \mathbf{a}_{0}^{\prime} \oplus \operatorname{ker}(j)=M
\end{aligned}
$$

The isomorphism is defined as follows. Take $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ a set of generators of N. Let $i\left(0, \mathbf{v}_{i}\right)=\left(\alpha_{i}, \mathbf{u}_{i}\right)$, where $\alpha_{i} \in W, \mathbf{u}_{i} \in M$. The map $(W \oplus M) / W \mathbf{a}_{0}^{\prime} \rightarrow W \oplus \operatorname{ker}(j)$ works taking an element of $W \oplus M$, decomposes the component in M as a sum $\mathbf{v}+\mathbf{w}$ with $\mathbf{v} \in W \mathbf{a}_{0}^{\prime}, \mathbf{w} \in \operatorname{ker}(j)$ and takes \mathbf{w}. For this step note that if $\mathbf{u} \in M$ and $\lambda=j(\mathbf{u})$ then $\mathbf{u}=\left(\lambda \mathbf{a}_{0}^{\prime}\right)+\left(\mathbf{u}-\lambda \mathbf{a}_{0}^{\prime}\right)$ is the desired decomposition.

Remark. When the module N is of the form W^{s}, then M is isomorphic to a free module, so it has a basis. Such a basis is the image of $\mathbf{e}_{i}, i=1, \ldots, s$.

Algorithm. Computing a basis.
Input: an isomorphism $W^{t} \stackrel{h}{\simeq} W^{s} \oplus M$, with $t-s \geq 2$.
Output: a basis of the module M.

START:

```
if \(s=0\) then
    \(\left\{h\left(\mathbf{e}_{1},\right), \ldots, h\left(\mathbf{e}_{t}\right)\right\}\) is a basis.
    STOP.
end if
```

Let $h(1, \mathbf{0})=\left(t_{0}, \mathbf{a}_{0}\right)$, with $t_{0} \in W, \mathbf{a}_{0} \in W^{s-1} \oplus M$.
Compute $\Phi: W \rightarrow W^{s-1} \oplus M$ such that $\mathbf{a}_{0}^{\prime}=\mathbf{a}_{0}+\Phi\left(t_{0}\right)$ is unimodular.
Compute $j: W^{s-1} \oplus M \rightarrow W$ such that $j\left(\mathbf{a}_{0}^{\prime}\right)=1$.
Let $i: W \oplus W^{t-1} \rightarrow W \oplus\left(W^{s-1} \oplus M\right)$ as defined in Proposition 2.1.
Let $h: W^{t-1} \rightarrow W^{s-1} \oplus M$ the isomorphism defined by

$$
h\left(\mathbf{e}_{i}\right)=\alpha_{i} \mathbf{a}_{0}^{\prime}+\mathbf{u}_{i}-\lambda_{i} \mathbf{a}_{0}^{\prime}
$$

where $i\left(0, \mathbf{e}_{i}\right)=\left(\alpha_{i}, \mathbf{u}_{i}\right), \alpha_{i} \in W, \mathbf{u}_{i} \in W^{s-1} \oplus M, \lambda_{i}=j\left(\mathbf{u}_{i}\right)$.

go to START

As in the previous section, this algorithm has been programmed with Macaulay 2.
Example. Let $W=A_{2}(\mathbb{Q})$, and $\mathbf{f}=\left(\begin{array}{lll}x \partial_{y} & x y & \partial_{x}\end{array}\right)$. Then $P=\operatorname{ker} \mathbf{f}$ is a projective module, because \mathbf{f} is a unimodular row. Let

$$
\beta=\left(\begin{array}{c}
-y \partial_{x} \\
\partial_{x} \partial_{y} \\
-x
\end{array}\right)
$$

Then $\mathbf{f} \cdot \beta=1$, and $\operatorname{im} \beta \oplus P=W^{3}$. The isomorphism $h: W \oplus W^{2} \rightarrow W \oplus P$ is given by the matrix

$$
h=\left(\begin{array}{ccc}
x \partial_{y} & x y & \partial_{x} \\
x y \partial_{x} \partial_{y}+x \partial_{x}+1 & x y^{2} \partial_{x} & y \partial_{x}^{2} \\
-x \partial_{x} \partial_{y}^{2} & -x y \partial_{x} \partial_{y}+1 & -\partial_{x}^{2} \partial_{y} \\
x^{2} \partial_{y} & x^{2} y & x \partial_{x}+2
\end{array}\right) .
$$

Then

$$
t_{0}=x \partial_{y}, \quad \mathbf{a}_{0}=\left(\begin{array}{c}
x y \partial_{x} \partial_{y}+x \partial_{x}+1 \\
-x \partial_{x} \partial_{y}^{2} \\
x^{2} \partial_{y}
\end{array}\right)
$$

We must find $\Phi: W \rightarrow P$ such that $\mathbf{a}_{0}^{\prime}=\mathbf{a}_{0}+\Phi\left(t_{0}\right)$ is unimodular. Let $\Phi_{1}: P \rightarrow W$ be the projection over the first component and $\mathbf{a}_{2} \in P \cap \operatorname{ker}\left(\Phi_{1}\right)$ not null. For example,

$$
\mathbf{a}_{2}=\left(\begin{array}{c}
0 \\
\partial_{x}^{2} \partial_{y} \\
-x y \partial_{x} \partial_{y}-x \partial_{x}-2 y \partial_{y}-2
\end{array}\right)
$$

and let $\Phi_{2}: W \rightarrow P$ be the projection over the second component. Because $\Phi_{2}\left(\mathbf{a}_{0}\right) \neq 0$, we have to compute $r_{1}, r_{2} \in W$ such that $\Phi_{1}\left(\mathbf{a}_{0}\right) r_{1}+\Phi_{2}\left(\mathbf{a}_{2}\right) r_{2}=0$. In this case, we get

$$
r_{1}=-\partial_{x}^{2} \partial_{y}, \quad r_{2}=x y \partial_{x} \partial_{y}-2 y \partial_{y}+1
$$

and following the notation of the proof of Lemma 2.1

$$
d_{1}=x y \partial_{x} \partial_{y}+x \partial_{x}+1, \quad d_{2}=x y \partial_{x}^{3} \partial_{y}^{2}+x \partial_{x}^{3} \partial_{y}+\partial_{x}^{2} d y
$$

We have to find $f_{1}, f_{2} \in W$ such that $\left\langle d_{1}, t_{0}\right\rangle W=\left\langle d_{1}+t_{0} f_{1} d_{1}, t_{0} f_{2} d_{2}\right\rangle W$. Applying the modified procedure of Hillebrand and Schmale (2002), we find

$$
f_{1}=0, \quad f_{2}=x+y
$$

Let $\Phi: W \rightarrow P$ be the morphism defined by $\Phi(1)=(x+y) \mathbf{a}_{2}$. Then $\mathbf{a}_{0}^{\prime}=\mathbf{a}_{0}+\Phi\left(t_{0}\right)$ is unimodular and we can compute the morphism $j: P \rightarrow W$ such that $j\left(\mathbf{a}_{0}^{\prime}\right)=1$. The output is too large to be included here, but has the form

$$
\begin{aligned}
j= & \left(-\frac{2}{63} x^{2} y^{7} \partial_{x}^{4} \partial_{y}^{5}-\frac{2}{63} x y^{8} \partial_{x}^{4} \partial_{y}^{5}+\frac{5}{126} x^{3} y^{6} \partial_{x}^{3} \partial_{y}^{6}+\cdots-\frac{433}{9} x \partial_{x}+17 x \partial_{y}+1,\right. \\
& \left.\frac{2}{63} x y^{8} \partial_{x}^{3} \partial_{y}^{4}-\frac{5}{126} x^{2} y^{7} \partial_{x}^{2} \partial_{y}^{5}+\frac{10}{63} x y^{8} \partial_{x}^{2} \partial_{y}^{5}++\cdots+\frac{5}{3} x y-\frac{137}{6} y^{2}, 0\right) .
\end{aligned}
$$

Also we can build the matrices associated to the other morphisms

$$
\begin{aligned}
& g=\left(\begin{array}{cc}
1 & \mathbf{0} \\
\Phi & I_{3}
\end{array}\right), \quad k=\left(x \partial_{y}\right), \quad l=\left(\begin{array}{cc}
1 & -k \cdot j \\
\mathbf{0} & I_{3}
\end{array}\right) \\
& i=l \cdot g \cdot h=\left(\begin{array}{rrr}
0 & \alpha_{2} & \alpha_{3} \\
\mathbf{a}_{0}^{\prime} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbf{u}_{2}= & \left(x y^{2} \partial_{x}, x^{2} y \partial_{x}^{2} \partial_{y}+x y^{2} \partial_{x}^{2} \partial_{y}-x y \partial_{x} \partial_{y}+1,\right. \\
& -x^{3} y^{2} \partial_{x} \partial_{y}-x^{2} y^{3} \partial_{x} \partial_{y}-x^{3} y \partial_{x}-x^{2} y^{2} \partial_{x} \\
& \left.-2 x^{2} y^{2} \partial_{y}-2 x y^{3} \partial_{y}-x^{2} y-2 x y^{2}\right)^{t}, \\
\mathbf{u}_{3}= & \left(y \partial_{x}^{2}, x \partial_{x}^{3} \partial_{y}+y \partial_{x}^{3} \partial_{y},\right. \\
& -x^{2} y \partial_{x}^{2} \partial_{y}-x y^{2} \partial_{x}^{2} \partial_{y}-x^{2} \partial_{x}^{2}-x y \partial_{x}^{2}-4 x y \partial_{x} \partial_{y} \\
& \left.-3 y^{2} \partial_{x} \partial_{y}-3 x \partial_{x}-3 y \partial_{x}-2 y \partial_{y}\right)^{t} .
\end{aligned}
$$

Then

$$
\mathbf{w}_{1}=\left(\alpha_{2}-\lambda_{2}\right) \mathbf{a}_{0}^{\prime}+\mathbf{u}_{2}, \quad \mathbf{w}_{2}=\left(\alpha_{3}-\lambda_{3}\right) \mathbf{a}_{0}^{\prime}+\mathbf{u}_{3}
$$

is a basis of P, where $\lambda_{i}=j\left(\mathbf{u}_{i}\right), i=2,3$.

Acknowledgement

The author was partially supported by project BFM2001-3164 and FQM-813.

References

Bueso, J.L., Gómez-Torrecillas, J., Lobillo, F.J., Castro, F.J., 1998. An introduction to effective calculus in quantum groups. In: Rings, Hopf Algebras, and Brauer Groups, Lecture Notes in Pure and Appl. Math., vol. 197. Dekker, New York.
Castro, F.J., 1987. Calculs effectives pour les idéaux d'opérateurs différentiels. In: Géometrie et Applications, III, Travaux en cours, vol. 24. Hermann, Paris.
Cohen, A.M., 1999. Gröbner bases, an introduction. In: Some Tapas of Computer Algebra, Algorithms and Computation in Mathematics, vol. 4. Springer, Berlin.
Eisenbud, D., 1995. Commutative Algebra. With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York.
Gago-Vargas, J., 2002. Constructions in $R\left[x_{1}, \ldots, x_{n}\right]$. Applications to K-theory. J. Pure Appl. Algebra 171, 185-196.
Grayson, D.R., Stillman, M.E., 2000. Macaulay 2, a software system for research in algebraic geometry. Available from http://www.math.uiuc.edu/Macaulay2.
Hillebrand, A., Schmale, W., 2002. Towards an effective version of a theorem of Stafford. J. Symbolic Comput. 32 (6), 699-716.
Laubenbacher, R., Woodburn, C., 1997. An algorithm for the Quillen-Suslin theorem for monoid rings. J. Pure Appl. Algebra 117-118, 397-429.
Leykin, A., Tsai, H., 2002. D-modules for Macaulay 2. Available from http://www.math.umn.edu/~leykin/Dmodules.
Logar, A., Sturmfels, B., 1992. Algorithms for the Quillen-Suslin theorem. J. Algebra 145, 231-239.
McConnell, J.C., Robson, J.C., 1987. Noncommutative Noetherian Rings. Wiley-Interscience Publication.
Stafford, J.T., 1977. Weyl Algebras are stably free. J. Algebra 48, 297-304.
Stafford, J.T., 1978. Module structure of Weyl algebras. J. London Math. Soc. 18, 429-442.
Swan, R.G., 1968. Algebraic K-Theory, Lecture Notes in Mathematics, vol. 76. Springer.

[^0]: * Tel.:+34-95-455-79-65.

 E-mail address: gago@algebra.us.es (J. Gago-Vargas).

