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Abstract

Background : Diagnosis codes are assigned to medical records in healthcare facilities by
trained coders by reviewing all physician authored documents associated with a patient’s
visit. This is a necessary and complex task involving coders adhering to coding guidelines
and coding all assignable codes. With the popularity of electronic medical records (EMRs),
computational approaches to code assignment have been proposed in the recent years. How-
ever, most efforts have focused on single and often short clinical narratives, while realistic
scenarios warrant full EMR level analysis for code assignment.

Objective: We evaluate supervised learning approaches to automatically assign international
classification of diseases (ninth revision) - clinical modification (ICD-9-CM) codes to EMRs
by experimenting with a large realistic EMR dataset. The overall goal is to identify methods
that offer superior performance in this task when considering such datasets.

Methods : We use a dataset of 71,463 EMRs corresponding to in-patient visits with discharge
date falling in a two year period (2011–2012) from the University of Kentucky (UKY) Med-
ical Center. We curate a smaller subset of this dataset and also use a third gold standard
dataset of radiology reports. We conduct experiments using different problem transforma-
tion approaches with feature and data selection components and employing suitable label
calibration and ranking methods with novel features involving code co-occurrence frequencies
and latent code associations.

Results : Over all codes with at least 50 training examples we obtain a micro F-score of 0.48.
On the set of codes that occur at least in 1% of the two year dataset, we achieve a micro F-
score of 0.54. For the smaller radiology report dataset, the classifier chaining approach yields
best results. For the smaller subset of the UKY dataset, feature selection, data selection,
and label calibration offer best performance.

Conclusions : We show that datasets at different scale (size of the EMRs, number of dis-
tinct codes) and with different characteristics warrant different learning approaches. For
shorter narratives pertaining to a particular medical subdomain (e.g., radiology, pathology),
classifier chaining is ideal given the codes are highly related with each other. For realistic
in-patient full EMRs, feature and data selection methods offer high performance for smaller
datasets. However, for large EMR datasets, we observe that the binary relevance approach
with learning-to-rank based code reranking offers the best performance. Regardless of the
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training dataset size, for general EMRs, label calibration to select the optimal number of
labels is an indispensable final step.

Keywords: Multi-label text classification, learning to rank, label calibration, diagnosis
code assignment

1. Introduction

Assigning codes from standard terminologies is a regular and indispensable task often
encountered in medical and healthcare fields. Diagnosis codes, procedure codes, cancer site
and morphology codes are all manually extracted from patient records by trained human
coders. The extracted codes serve multiple purposes including billing and reimbursement,
quality control, epidemiological studies, and cohort identification for clinical trials. In this
paper we focus on assigning international classification of diseases, clinical modification,
9th revision (ICD-9-CM) diagnosis codes to electronic medical records (EMRs), and the
application of supervised multi-label text classification approaches to this problem.

Diagnosis codes are the primary means to systematically encode patient conditions treated
in healthcare facilities both for billing purposes and for secondary data usage. In the US,
ICD-9-CM (just ICD-9 henceforth) is the coding scheme still used by many healthcare
providers while they are required to comply with ICD-10-CM, the next and latest revi-
sion, by October 1, 2015. Regardless of the coding scheme used, both ICD code sets are very
large, with ICD-9 having over 14,000 diagnoses while ICD-10 has nearly 68,000 diagnosis
codes [1] and as will be made clear in the rest of the paper, our methods will also apply to
ICD-10 coding tasks. ICD-9 codes contain 3 to 5 digits and are organized hierarchically: they
take the form abc.xy where the first three character part before the period abc is the main
disease category, while the x and y components represent subdivisions of the abc category.
For example, the code 530.12 is for the condition reflux esophagitis and its parent code
530.1 is for the broader condition of esophagitis and the three character code 530 subsumes
all diseases of esophagus. Any allowed code assignment should at least assign codes at the
category level (that is, the first three digits). At the category levels there are nearly 1300
different ICD-9 codes.

The process of assigning diagnosis codes is carried out by trained human coders who
look at the entire EMR for a patient visit to assign codes. Majority of the artifacts in an
EMR are textual documents such as discharge summaries, operative reports, and progress
notes authored by physicians, nurses, or social workers who attended the patient. The codes
are assigned based on a set of guidelines [2] established by the National Center for Health
Statistics and the Centers for Medicare and Medicaid Services. The guidelines contain rules
that state how coding should be done in specific cases. For example, the signs and symptoms
(780-799) codes are often not coded if the underlying causal condition is determined and
coded. Given the large set of possible ICD-9 codes and the need to carefully review the entire
EMR, the coding process is a complex and time consuming process. Hence, several attempts
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have been made to automate the coding process. However, computational approaches are
inherently error prone. Hence, we would like to emphasize that automated medical coding
systems, including our current attempt, are generally not intended to replace trained coders
but are mainly motivated to expedite the coding process and increase the productivity of
medical record coding and management.

The main focus of this paper is supervised text classification approaches to automatically
assign1 ICD-9 codes to clinical narratives using a large EMR dataset of patients discharged
during a two year period (2011–2012) from the University of Kentucky (UKY) Medical
Center. We will refer to this dataset as UKLarge in the rest of the paper. The correct codes
for the EMRs in this dataset are those assigned by one of the trained coders in the UKY
medical records office. To study the affect of scale, we also use two other smaller datasets: a
gold standard dataset created for the BioNLP 2007 shared task [3] by researchers affiliated
with the Computational Medicine Center (CMC: http://computationalmedicine.org/)
and a subset of the UKLarge dataset, called UKSmall, that is comparable to the number of
records used in BioNLP dataset. The CMC dataset is a high quality, but relatively small
and simple dataset of clinical reports that covers the pediatric radiology domain. The gold
standard correct codes are provided for each report. To experiment with a more general
dataset with a comparable number of records to the CMC dataset, we curated UKSmall, a
subset of the UKLarge dataset.

In supervised classification, multi-label problems are generally transformed into several
multi-class (where each object belongs to a single class) or binary classification problems.
In this effort, we explore these different transformation techniques with different base classi-
fiers (support vector machines, naive Bayes, and logistic regression). Large label sets, high
label cardinality (number of labels per instance), class imbalance, inter-class correlations,
large feature sets are some of the factors that negatively affect performance in multi-label
classification problems. We experiment with different state-of-the-art feature selection, train-
ing data selection, classifier chaining, and label calibration approaches to address some of
these issues. We achieve comparable results to the state-of-the-art on the CMC dataset.
Our experiments reveal how the differences in the nature of our three datasets significantly
affect the performance of different supervised approaches. To our knowledge, our current
contribution is the first of its kind in terms of the total number of codes considered and
the realistic nature of the multi-document EMRs (Section 3). We design a sophisticated
end-to-end pipeline involving novel features that depend on output code co-occurrences to
rerank codes and to predict the correct number of codes per EMR (Sections 4.6 and 4.7).
While our current task is diagnosis code assignment, our methods can also be used by the
AI community to situations where coded biomedical information needs to be extracted from
textual narratives.

The rest of the paper is organized as follows: In Section 2 we discuss related work on
automated diagnosis code assignment and provide background on multi-label classification
approaches. We elaborate on the statistics and characteristics of the three different datasets

1Throughout the article we use the verb assign to indicate the prediction of diagnosis codes by multi-
label classification of the EMR narratives because the codes (or the corresponding English names) may not
be present in the EMR for straightforward extraction through named entity recognition.
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used in Section 3. In Section 4, we present details of different multi-label text classification
learning components used in our experiments. After a brief discussion of evaluation measures
in Section 5, we present our results in Section 6. We present a qualitative error analysis of
our results and identify opportunities for improvement in Section 7.

2. Related Work and Background

In this section we discuss related work and prior efforts in assigning ICD-9 codes and
present a brief general background for multi-label classification techniques.

Several attempts have been made to automatically assign ICD-9 codes to clinical doc-
uments since the 1990s. Advances in natural language and semantic processing techniques
contributed to a recent surge in automated coding. de Lima et al. [4] use a hierarchical
approach utilizing the alphabetical index provided with the ICD-9-CM resource. Although
completely unsupervised, this approach is limited by the index not being able to capture
all synonymous occurrences and also the inability to code both specific exclusions and other
condition specific guidelines. Gunderson et al. [5] extracted ICD-9 codes from short free text
diagnosis statements that were generated at the time of patient admission using a Bayesian
network to encode semantic information. However, in the recent past, concept extraction
from longer documents such as discharge summaries has gained interest. Especially for ICD-9
code assignment, recent results are mostly based on the systems and the CMC dataset devel-
oped for the BioNLP workshop shared task on multi-label classification of clinical texts [3]
in 2007.

The CMC dataset consists of 1954 radiology reports arising from outpatient chest x-ray
and renal procedures and is observed to cover a substantial portion of pediatric radiology
activity. The radiology reports are also formatted in XML with explicit tags for history and
impression fields. Finally, there are a total of 45 unique codes and 94 distinct combinations
of these codes in the dataset. The dataset is split into training and testing sets of nearly
equal size where example reports for all possible codes and combinations occur in both
sets. This means that all possible combinations that will be encountered in the test set are
known ahead of time. The top system obtained a micro-average F-score of 0.89 and 21 of
the 44 participating systems scored between 0.8 and 0.9. Next we list some notable results
that fall in this range obtained by various participants and others who used the dataset
later. The techniques used range from completely handcrafted rules to fully automated
machine learning approaches. Aronson et al. [6] adapted a hybrid medical subject heading
(MeSH) assignment program called the medical text indexer (MTI) that is in use at the
National Library of Medicine (NLM) and included it with SVM and k nearest neighbor
classifiers for a hybrid stacked model. Goldstein et al. [7] applied three different classification
approaches - traditional information retrieval using the search engine library Apache Lucene,
Boosting, and rule-based approaches. Crammer et al. [8] use an online learning approach in
combination with a rule-based system. Farkas and Szarvas [9] use an interesting approach
to induce new rules and acquire synonyms using decision trees. Névéol et al. [10] also model
rules based on indexing guidelines used by coders using semantic predications to assign MeSH
heading-subheading pairs to indexing biomedical articles. A recent attempt [11] also exploits
the hierarchical nature of the ICD-9-CM terminology to improve the performance achieving
comparable performance to the best scores achieved during the competition. Although not
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applicable/practical in all situations, researchers have also tried to predict codes purely based
on structured resources in the EMR [12].

In terms of dataset size, there are two recent efforts similar to ours. The first is by
Ruch et al. [13] who worked on French EMRs. They used a k-NN approach to obtain codes
from training documents. However, their results are very inconclusive as they focused on
example-based recall R20, the recall at top 20 codes, without the accompanying precision
values. Instead, they report P0, which is precision of the top most code. The second
effort is by Perotte et al. [14] conducted independently around the same time our research
was conducted. They use flat and hierarchical SVM approaches with a dataset of nearly
22,000 discharge summaries of intensive care unit patients and the corresponding diagnosis
codes. They achieve an F-score of 39.5% over a set of 5000 codes where the definitions of
true positives and false negatives are relaxed based on the ICD-9 hierarchy in a way that is
broader than our treatment of codes at the fourth digit level (see Section 3). Their effort also
considers single summaries while we consider full EMRs based on in-patient visits. Hence
our findings are not directly comparable with their results.

Next, we provide a brief review of the background and state-of-the-art in multi-label
classification, the general problem of choosing multiple labels among a set of possible labels
for each object that needs to be classified. A class of approaches called problem transfor-
mation approaches convert the multi-label problem into multiple single-label classification
instances. A second class of methods adapts the specific algorithms for single-label classifi-
cation problems to directly predict multiple labels. Both problem transformation and algo-
rithm adaptation techniques are covered in this recent survey by [15]. Recent attempts in
multi-label classification also consider label correlations [16, 17, 18] when building a model
for multi-label data. An important challenge in problems with a large number of labels
per document is to decide the number of candidates after which candidate labels should
be ignored, which has been recently addressed by calibrated ranking [19] and probabilistic
thresholding [20]. Feature selection is an important aspect when building classifiers using
machine learning. We request the readers to refer to Forman [21] for a detailed comparative
analysis of feature selection methods. Combining the scores for each feature using differ-
ent feature selection methods has also been applied to multi-label classification [22]. When
dealing with datasets with class imbalance, methods such as random under/over-sampling,
synthetic training sample generation, and cost-sensitive learning were proposed (see [23] for
a survey). In contrast with these approaches, Sohn et al [24] propose an alternative Bayesian
approach to curate customized optimal training sets for each label. In the next section, we
discuss the characteristics of the three datasets used in this paper.

3. Datasets

We already introduced the CMC dataset in Section 2 when discussing related work. Here
we will give some additional details to contrast it with our private datasets. From the 1954
reports in the CMC dataset, 978 are included in the training dataset with their corresponding
ICD-9 codes; the remaining documents form the testing set. All labels sets that occur in
the testing set occur at least once in the training dataset. At least 75% of the codes appear
less than 50 times in the training set. Almost 50% of the 45 labels appear less than ten
times. For each instance in the CMC dataset there are two fields that contain textual data,
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‘clinical history’ and ‘impression’. Clinical history field contains textual information entered
by a physician before a radiological procedure about the patient’s history. The impression
field contains the textual narrative entered by a radiologist after the radiological procedure
about his/her observations of the patient’s condition as obtained from the procedure. Many
of the textual entries contained in these two fields are very short. An example of the clinical
history field is “22 month old with cough.” The corresponding impression is just one word
“normal.” The average size of a report is 21 words.

We created two datasets from EMRs of the UKY medical center in-patient visits with
discharge dates in the 2011–2012 two year period. They have been approved by the UKY
IRB for use in research projects (protocol #12-0139-p3h). The first dataset UKLarge is the
largest and consists of all in-patient visits during this time period. We also collected the
ICD-9 codes for these EMRs assigned by one of the trained coders at the UKY medical
records office. There are a total of 71,461 EMRs that have a total of 7,485 unique ICD-
9 codes. The average number of codes is 9.76 per EMR with a median of 8 codes. For
each in-patient visit, the original EMR consisted of several documents, some of which are
not conventional text files but are stored in the RTF format. There were approximately
921,000 physician authored documents in the entire dataset, so an average of 13 documents
per EMR. Since many of the codes in the UKLarge have very few examples, we decided to
consider predicting codes at the fourth digit level. That is, all codes of the form abc.xy for
different ‘y’ are mapped to the four digit code abc.x, but codes that were already coded at
the fourth or third digit level were retained in that form. With this mapping we had 4,723
unique codes. The average size of each EMR (that is, of all textual documents in it) in the
UKLarge dataset is 5303 words. Even when truncated to 4 digits, there were still many
codes that had too few examples to apply supervised methods. Hence we resorted to using
1231 codes (at the fourth digit level) that had at least 50 EMRs in the dataset. That is, our
predictions are going to be only on these 1231 codes, and not all of the 4,723 codes. This
subset of codes accounts for 76% of the total diagnoses in the dataset. There are 60,238
unique combinations of these 1231 codes in the data.

Label-cardinality is the average number of codes per report (or EMR in the UKY dataset).
To use consistent terminology we refer to the single reports in the CMC dataset as EMRs
that consist of just one document. Let m be the total number of EMRs and Yi be the set
of labels for the i-th EMR. Then we have

Label-Cardinality =
1

m

m∑
i=1

|Yi|.

The CMC training dataset has label cardinality 1.24 and the UKLarge dataset has label
cardinality 7.4. Another useful statistic that describes the datasets is label-density, which
divides the average number of codes per EMR by the total number of unique codes q. We
have

Label-Density =
1

q
· 1

m

m∑
i=1

|Yi|.

The label-density for the CMC dataset is 0.03 and for UKLarge is 0.006. Unlike label-
cardinality, label-density also takes into account the number of unique labels possible. Two
datasets with the same label cardinality can have different label densities and might need
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different learning approaches tailored to the situations. Intuitively, in this case, the dataset
with the smaller density is expected to have fewer training examples per label.

Table 1: Comparison of datasets

CMC UKSmall UKLarge

#EMRs 1954 1000 71,463

#Codes 45 56 1231

Label Cardinality 1.24 2.8 7.4

Label Density 0.03 0.06 0.006

EMR Size (avg #words) 21 2088 5303

#Code Combinations 94 554 60,238

As we can see, the datasets have significant differences: the CMC data set is coded by
three different coding companies and final codes were consolidated from these three different
assignments. As such, it is of higher quality compared to UKLarge, which is coded by only
one of the eight trained coders from the UKY medical records office. On the other hand,
the CMC dataset does not have the broad coverage of the UKLarge, which models a more
realistic dataset at the EMR level. The CMC dataset only includes radiology reports and has
45 codes with 94 code combinations and has on an average 21 words per EMR. In contrast,
even with the final set of 1231 codes (at the four digit level) that have at least 50 examples
that we use for our experiments, the number of combinations for the UKY dataset is 60,238
with the average EMR size two orders of magnitude more than the average for the CMC
dataset.

We created a subset of UKLarge, called UKSmall, with 1000 EMRs corresponding to a
randomly chosen set of 1000 in-patient visits from February, 2012. Although in terms of the
nature of the EMR documents this dataset shares the same traits as the UKLarge dataset,
it has fewer codes and also fewer examples per code when considering absolute count. We
also removed all EMR documents whose names did not contain any of the words “report”,
“summary”, “note”, or “portion” based on coding specific knowledge that important notes
for coding tasks contain these words. This halves the size of our EMRs in this dataset and
from an automatic code extraction perspective has been shown to be detrimental for code
recall (more in Section 7). For this dataset, we made prediction only for those codes that
had at least 20 examples; although this number is less than the minimum requirement of 50
examples for the UKLarge dataset, considering the size of the datasets, 20 examples out of
a total of 1000 examples constitute a 2% presence. However, 50 examples in a dataset of
over 71,000 examples, constitute only 0.07% of the UKLarge dataset, which is an order of
magnitude fewer examples than that for the UKSmall dataset. This is also reflected by the
label density for the two datasets as shown in the summary of all three datasets in Table 1.
This crucial difference translates to high class imbalance in the UKLarge dataset compared
with the other two datasets. This was the original dataset used in the conference version of
the paper [25] and offers a different perspective on suitability of different learning components
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and performance variations based on differences in size and nature of the datasets available
(Section 7).

4. Components of the Code Assignment Framework

The main motivation for our effort is to assess the suitability of feature selection, data
selection, label calibration, and different problem transformation methods for extracting
diagnosis codes from EMRs on datasets at different scale (the three datasets in Section 3).
The learning components we use fall into these four categories that are arranged in the order
they are used.

1. First, we use a problem transformation approach and transform the multi-label clas-
sification problem into multiple binary classification problems. We also use different
approaches that take into account label correlations expressed in the training data
(Section 4.3).

2. After problem transformation, we utilize feature selection and training data selection
as additional components of the binary classifiers (Sections 4.4 and 4.5).

3. Using the binary classifier outputs for each label, we use the learning-to-rank approach
to rerank top label predictions from the binary classifiers based on output code co-
occurrences (Section 4.6).

4. Finally, we also use label calibration methods to predict an appropriate number of
labels for each EMR instead of a choosing a constant number for all (Section 4.7).

We used the Java based packages Weka [26] and Mulan [27] for our classification experi-
ments with the smaller datasets. For the UKLarge dataset, we used Scikit-Learn [28] for
binary classification and RankLib (http://sourceforge.net/p/lemur/wiki/RankLib/) for
reranking the binary classifier predictions. Before going over components in each of the four
categories in the prediction pipeline, we first outline the text features used.

4.1. EMR Text Features

We used unigram and bigram counts as the common features in all experiments. Stop
words (determiners, prepositions, and so on) were removed from the unigram features. For
the CMC dataset where the report size is very short, we used the binary features, but
for the other two datasets we used the popular tf-idf transformation [29, Section 4] of word
counts. In addition to these syntactic features, we also used semantic features such as named
entities and binary relationships (between named entities) extracted from text, popularly
called semantic predications, as features for the smaller datasets. Due to computational
resource availability constraints, we could not use named entities or relationships as features
for the UKLarge dataset. To extract named entities and semantic predications, we used
software made available through the Semantic Knowledge Representation (SKR) project by
the NLM. The two software packages we used were MetaMap and SemRep. MetaMap [30] is a
biomedical named entity recognition (NER) program that identifies concepts from the Unified
Medical Language System (UMLS) Metathesaurus, an aggregation of over 160 biomedical
terminologies. When MetaMap outputs different named entities, it associates a confidence
score in the range from 0 to 1000. We only used concepts with a confidence score of at
least 700 as features. Each of the concepts extracted by MetaMap also contains a field
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Figure 1: Diagnosis code assignment pipeline and constituent learning components

specifying if the concept was negated (e.g., “no evidence of hypertension”). We used negated
concepts that capture the absence of conditions/symptoms as different features from the
original concepts. We used SemRep, a relationship extraction program developed by Thomas
Rindflesch [31] and team at the NLM that extracts semantic predications of the form C1→
relationType → C2 where C1 and C2 are two different biomedical named entities and
relationType expresses a relation between them (e.g., “Tamoxifen treats Breast Cancer”).
If there is more than one document in an EMR, features are aggregated from all documents
authored by a physician.

4.2. Diagnosis Code Assignment Pipeline

With this introduction, we present the overall code prediction pipeline in Figure 1. As
shown in the figure, we first build the best models using problem transformation, feature
selection, and data selection methods. Using the top ranked codes from these models for each
EMR, we learn a ranking function that uses several novel features (Section 4.6) including
the classifier scores based on a validation dataset. Subsequently, we also use the validation
dataset to learning a function that predicts the correct number of codes for each EMR, which
is used to select case specific top few codes after the learning-to-rank component reranks the
original binary classifier based positions. NLM tools MetaMap and SemRep are not only
used as features for the binary classifiers but also as features and filters in ranking the codes
and predicting the correct number of labels.
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4.3. Problem Transformation Approaches for Multi-Label Classification

We initially experimented with three base classifiers on codes in the UKSmall dataset:
Support Vector Machines (SVMs), Logistic Regression (LR), and Multinomial Naive Bayes
(MNB). We used the MNB classifier that is made available as part of the Weka framework.
For LR, we used LibLINEAR [32] implementation in Weka/Scikit-Learn and for SVMs we
used LibSVM [33] in Weka. We experimented with three different multi-label problem trans-
formation methods: binary relevance (BR), copy transformation, and ensemble of classifier
chains.

Let T be the set of labels and let q = |T |. BR learns q binary classifiers, one for each
label in T . It transforms the dataset into q separate datasets. For each label Tj, we obtain
the dataset for the corresponding binary classifier by considering each document–label-set
pair (Di,Yi) and generating the document-label pair (Di, Tj) when Tj ∈ Yi and generating
the pair (Di,¬Tj) when Tj 6∈ Yi. When predicting, the labels are ranked based on their
score output by the corresponding binary classifiers and the top k labels are considered as
the predicted set for a suitable k. The copy transformation transforms multi-label data into
single-label data. Let T = {T1, . . . , Tq} be the set of q possible labels for a given multi-label
problem. Let each document Dj ∈ D, j = 1, . . . ,m, have a set of labels Yj ⊆ T associated
with it. The copy transformation transforms each document–label-set pair (Dj,Yj) into
|Yj| document–label pairs (Dj, Ts), for all Ts ∈ Yj. After the transformation, each input
pair for the classification algorithm will only have one label associated with it and one can
use any single-label method for classification. The labels are then ranked based on the score
given from the classifier when generating predictions. We then take the top k labels as our
predicted label set.

One of the main disadvantages of the BR and copy transformation methods is that they
assume label independence. In practical situations, there can be dependence between labels
where labels co-occur very frequently or where a label occurs only when a different label is
also tagged. Classifier chains [16], based on the BR transformation, try to account for these
dependencies that the basic transformations cannot. Like BR, classifier chains transform the
dataset into q datasets for binary classification per each label. But they differ from BR in
the training phase. Classifier chains loop through each dataset in some order, training each
classifier one at a time. Each binary classifier in this order will add a new Boolean feature
to the subsequent binary classifier datasets to be trained next. For further details of the
chaining approach and the ensemble of chains modification that overcomes dependence on
the chaining order, we request the reader to refer to the paper by Read et al. [16].

4.4. Feature Selection

An important issue in classification problems with a large number of classes and features
is that the features most relevant in classifying one class from the rest might not be the
same for every class. Furthermore, many features are either redundant or irrelevant to the
classification tasks at hand. In the domain of text classification, Bi-Normal Separation (BNS)
score was observed to result in best performance in most situations among a set of 12 feature
selection methods applied to 229 text classification problems [21]. We employ this feature
scoring method for our current effort. Let T = {T1, . . . , Tq} be the set of q possible labels.
For each label Ti ∈ T and for each feature, we calculate the number of true positives (tp)
and false positives (fp) with respect to that feature – tp is the number of training EMRs
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(with label Ti) in which the feature occurs. Similarly, fp is the number of negative examples
for Ti in which the feature occurs. Let pos and neg be the total number of positive and
negative examples for Ti, respectively. With F−1 denoting the inverse cumulative probability
function for the standard normal distribution, we define the BNS score of a given feature for
a particular class as

BNS = |F−1(tpr)− F−1(fpr)|

where

tpr =
tp

pos
and fpr =

fp

neg
.

Because F−1(0) is undefined, we set tpr and fpr to 0.0005 when tp or fp are equal to
zero. For each of the q binary classification problems, we pick an appropriate top k ranked
features for each label. In our experiments k = 8000 gave the best performance out of a total
of 68,364 features for the UKSmall dataset. The number of features was very small for the
CMC dataset, a total of 2296 features, feature selection did not improve the performance.
The UKLarge dataset had around a million features and feature selection did not improve
performance.

4.5. Greedy ‘Optimal’ Training Data Selection

In the case of multi-label problems with a large number of classes, the number of negative
examples is overwhelmingly larger than the number of positive examples for most labels. We
experimented with the synthetic minority oversampling approach [34] for the positive exam-
ples which did not prove beneficial for our task. Deviating from the conventional random
under/over-sampling approaches, we adapted the ‘optimal’ training set (OTS) selection ap-
proach used for medical subject heading (MeSH terms) extraction from biomedical abstracts
by Sohn et al. [24]. The OTS approach is a greedy Bayesian approach that under-samples
the negative examples to select a customized dataset for each label. The greedy selection is
not technically optimal but we stick with the terminology in [24] for clarity. Our adapta-
tion is described in detail in the conference version of our current contribution [25, Section
IV(D)]. Essentially, the method ranks negative examples according to their content similarity
to positive examples and iteratively selects negative examples according to this ranking and
finally selects the negative instance subset that offers the best performance on a validation
set for that label. The intuition behind this approach is that the negative examples that are
‘closest’ to the positive examples in terms of their content are the hardest to classify. Hence,
choosing a subset that is the harder to distinguish from the positive examples provides the
best outcome instead of using all the negative examples that could be easily distinguished
but nevertheless add significant noise in the training process.

4.6. Learning-to-Rank to Rerank Code Candidates

As discussed in Section 4.3, the BR approach of building a binary classifier for each label
does not take label correlations into account. Although the classifier chain transformation
we discussed in that section helps account for label dependence, it is impractical with a large
number of labels owing to the exponential number of chaining permutations for the ensemble.
Other approaches such as ensemble of pruned label sets (EPS) [18] consider sets of labels
as new special labels. Even this approach leads to combinatorial explosion for large label
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spaces. From Table 1 we have over 60,000 unique label combinations for UKLarge. Hence
we need a different and computationally feasible way of accounting for label dependencies to
rerank the original ranking of codes that is based on the binary classifiers. Originally, this
reranking was done in an unsupervised way where empirical evidence is used to manually
assign weights to different features that are pertinent to the ranking task. This is tedious
and also impractical if the number of features used in the ranking is large. To handle this, as
a collaboration between information retrieval and machine learning communities, learning-
to-rank [35] has emerged as an automated way of learning functions that can rank a list of
documents in response to an input query based on different query-specific features extracted
from the documents. Although the original motivation was to rank documents returned from
a search engine, this approach can be adapted to our current situation in a straightforward
way. We first outline the approach in the information retrieval context.

4.6.1. Learning-to-Rank Basics

A learning-to-rank algorithm follows a supervised approach and in its training phase,
takes as input a training dataset of queries and the corresponding ranked lists of documents:

{(Qi,R(Di)) : i = 1, . . . , n}, (1)

where Qi is a query, Di is the set of documents associated with Qi, R(Di) is the
ground truth ranking on the documents for Qi, and n is the size of the training dataset.
The algorithm then learns a ranking model that minimizes an appropriate loss function
that pertains to the ranking. We note that the training process actually extracts features
f1(D

r
i ), f2(D

r
i ), . . ., r = 1, . . . , t(i), for each document Dr

i ∈ Di where t(i) is the number of
documents provided to the i-th query instance for training and j is an index for the par-
ticular features used. Note that features extracted from the documents are heavily based
on the specific query to tightly constrain the ranking based on information available in the
query. Finally, given a new query and a specific set of documents as input, the learned model
imposes a ranking on the document set based on query specific document features. This is
a general description of the problem; for a more detail discussion of the pointwise, pairwise,
and listwise variants see [35, Section 1.3.3].

Next, we map our problem of ranking ICD-9 codes to a listwise variant based on random
forests that is implemented in the RankLib library, an open source collection of learning-
to-rank implementations part of the Lemur project: http://sourceforge.net/p/lemur/

wiki/RankLib/. We experimented with several of the algorithms in RankLib and chose
the random forests based implementation that gave the best results on a validation dataset
with normalized discounted cumulative gain (NDCG) [36] as the optimization metric. In
Equation (1), our queries Qi are the EMRs (the text from the EMRs) and the documents
Di are the top 200 candidate ICD-9 codes when ranked solely based on the binary classifier
rankings. We chose 200 candidates because the top 200 terms had close to 90% of all possible
correct terms on a validation dataset for the UKLarge dataset. Next we discuss the features
for the the learning-to-rank.

4.6.2. Learning-to-Rank Candidate Code Features

An obvious feature of a candidate code c is

f b(c, E) = score (∈ [0, 1]) output by the corresponding binary classifier for c
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for EMR E. Next, we introduce a Boolean feature based on NER.
As introduced in Section 4.1, MetaMap is an NER tool that identifies biomedical concepts

from over 160 source terminologies incorporated in the UMLS Metathesaurus (see NLM
resource: http://www.ncbi.nlm.nih.gov/books/NBK9684/). ICD-9-CM is one of these
terminologies and hence concepts in ICD-9-CM also have a concept unique identifier (CUI)
in the Metathesaurus. As part of its output, for each concept extracted, MetaMap also gives
the source vocabulary and the string representation of the code in the source terminology.
Thus when MetaMap is run on an EMR text document set, we also obtain a set of ICD-9
codes, say N (E), by filtering the non-negated concepts to only those that are from the ICD-
9-CM terminology. Note that codes in N (E) may not all be coded for the EMR by trained
coders because mere mentions in the EMR text does not necessarily warrant inclusion. These
NER extracted codes can nevertheless be included in learning-to-rank as a Boolean feature

fn(c, E) =

{
1 if c ∈ N (E);
0 otherwise.

Besides these two features, we also exploit ICD-9 code sets from historical records at the
UKY medical center to obtain two additional features. From the time when the UK medical
center moved to electronic record keeping to late 2011, we have a total of around 2 million
visits and each visit has a set of diagnosis codes. From this, we can obtain code co-occurrence
counts independent of the actual EMR texts. Intuitively, a predicted candidate code that
highly co-occurs with the ICD-9 codes in N (E) (the ones extracted from EMR text using
NER) is probably a more relevant code for the EMR over a predicted code with low co-
occurrence with codes extracted using NER. We demonstrated that this co-occurrence based
score is useful for unsupervised multi-label classification in the context of indexing biomedical
citations with MeSH terms [37]. Here we use the co-occurrence score of a candidate term
with the contextual codes extracted using NER from the EMR text as a feature for learning-
to-rank. The co-occurrence score is computed by first building a square matrix

M[i][j] =
number of code sets containing both i-th and j-th ICD-9 codes

number of code sets containing the i-th code

that holds the normalized co-occurrence scores with size equal to the number of all unique
ICD-9 codes that occurred in the 2 million code sets. Note that M[i][i] = 1 because the
numerator would be equal to the denominator. With this definition, M[i][j] is an estimate
of the probability P (j-th code|i-th code). Finally, we introduce the co-occurrence frequency
based feature for a candidate code c as

fF (c, E) =
∑

t∈N (E)

M[t][c].

Our final feature is based on measuring relatedness between any given pair of codes using
distributional semantics [38], a well known methodology traditionally used to identify implicit
relatedness between words in a corpus of documents. Although the co-occurrence based
feature fF (c, E) captures direct association between the candidate code and the context
codes of a test set EMR, it does not capture latent or implicit associations between codes
that might not have co-occurred frequently in historical data but are nevertheless strongly
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associated from a distributional semantics perspective. We map each of the 2 million code
sets to a document and the constituent ICD-9 codes to terms to build a distributional
semantic index using the term based reflective random indexing (TRRI) approach by Cohen
et al. [39], which was shown to successfully predict implicit associations between words.
Finally, the TRRI feature for a candidate code c is defined as

fR(c, E) =
∑

t∈N (E)

R(t, c),

where R(t, c) is the TRRI index based similarity score of t with c. We used the semantic
vectors package [40] to construct the MeSH term vectors using TRRI. Both the co-occurrence
and TRRI based features when combined helped us obtain improved performance in MeSH
term prediction for indexing biomedical citations over using only one of them or neither of
them. Hence we also chose to conduct experiments with both these features for our current
task of code assignment.

4.7. Predicting Number of Labels
The conventional approach in binary classification using an LR model is to predict a

positive response if the value of the logistic function (whose input is a function of the input
variables) is greater than 0.5. However, in the BR model, it is possible to have testing in-
stances where too many or too few labels are predicted with the 0.5 threshold when compared
with the correct number of labels. Thus in multi-label classification, it is also important to
consider the effect of the number of labels predicted per document on the performance of
the approaches used. A quick fix that many employ is to pick a threshold of top r (r-cut)
labels (when ranked either using just the LR classifier scores or using more sophisticated
ranking approaches discussed in Section 4.6) where the r picked is the one that maximizes
the example-based F-score on the training data. However, using this method always results
in the same number of labels for each document in the testing set. We used an advanced
thresholding method, Multi Label Probabilistic Threshold Optimizer [20] (MLPTO), for
choosing a different number of labels per EMR that changes for each EMR instance. The
optimizer we employed uses 1− (Example-Based-F-score) as the loss function and finds the
r that minimizes the expected loss function across all possible example-based contingency
tables for each instance. For specific details of this strategy, please see [20]. This strategy
is computationally expensive and hence we also experimented with a simpler approach of
predicting the number of labels based on linear regression. The idea is to use a validation
dataset where the numerical output is the correct number of labels for the EMRs. We used
two numerical features: 1. the number of labels for the EMR for which the corresponding
binary classifiers output a probability at least 0.1; 2. the number of ICD-9 codes identified
in the EMR text by named entity recognition (NER) using MetaMap. We also tried other
features including the size of the EMR (numbers of documents and words in the EMR) which
did not seem to predict well on the validation dataset.

5. Evaluation Measures

Before we discuss our methods and results, we establish notation to be used for evaluation
measures. Since the task of assigning multiple codes to an EMR is the multi-label classi-
fication problem, there are multiple complementary methods [41] for evaluating automatic
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approaches for this task. Recall that Yi, i = 1, . . . ,m, is the set of correct labels (here codes)
in the dataset for the i-th EMR, where m is the total number of EMRs. Let Zi be the set
of predicted labels for the i-th EMR. The example-based precision, recall, and F-score are
defined as

Pex =
1

m

m∑
i=1

|Yi ∩ Zi|
|Zi|

, Rex =
1

m

m∑
i=1

|Yi ∩ Zi|
|Yi|

,

and Fex =
1

m

m∑
i=1

2|Yi ∩ Zi|
|Zi|+ |Yi|

, respectively.

For each label Tj in the set of labels T being considered, we have label-based precision
P (Tj), recall R(Tj), and F-score F (Tj) defined as

P (Tj) =
TPj

TPj + FPj

, R(Tj) =
TPj

TPj + FNj

,

and F (Tj) =
2P (Tj)R(Tj)

P (Tj) + R(Tj)
,

where TPj, FPj, and FNj are true positives, false positives, and false negatives, respectively,
of label Tj. Given this, the label-based macro average F-score is

Macro-F =
1

|T |

|T |∑
j=1

F (Tj).

The label-based micro precision, recall, and F-score are defined as

Pmic =

∑|T |
j=1 TPj∑|T |

j=1(TPj + FPj)
, Rmic =

∑|T |
j=1 TPj∑|T |

j=1(TPj + FNj)
,

and Micro-F =
2Pmic ·Rmic

Pmic + Rmic
,

While the macro measures consider all labels as equally important, micro measures tend
to give more importance to labels that are more frequent. This is relevant for our dataset
because we have a very unbalanced set of label counts and in such cases micro measures are
considered more important.

6. Experiments and Results

We note that not every component of the automated assignment framework outlined in
Section 4 is suitable for all datasets as will be observed in our results. For clarity we do
not present performance measures for all possible combinations we experimented with for
each dataset, but only show an appropriate subset especially the including top performing
configuration. We will first present our results for the CMC dataset.
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6.1. CMC Dataset Results

From the 1954 reports in the CMC dataset, 978 are included in the training dataset
with their corresponding ICD-9 codes; the remaining documents form the testing set. All
labels sets that occur in the testing set occur at least once in the training dataset. The best
results on the CMC dataset were obtained using unigrams and named entity counts (without
any weighting) as features and SVMs as the base classifiers. Here, we present the results
when using BR and ensemble of classifier chains (ECC). We also used SVMs with bagging
to compare BR with the more complex ensemble approaches, ECC and EPS [18], that take
label dependencies into account. In Table 2, we only show the basic BR configuration and
the best performer ECC. For the CMC competition, the micro F-score was the measure used
for comparing relative performances of contestants. The mean score in the competition was
0.77 with a standard deviation of 0.13. The best performing method was able to achieve a
0.90 micro F-score.

Table 2: CMC test set scores

Learner
Example-Based Micro Macro

P R F P R F P R F

BR + SVM 0.82 0.82 0.81 0.86 0.81 0.83 0.54 0.48 0.49

ECC + SVM 0.84 0.84 0.83 0.88 0.82 0.85 0.54 0.44 0.47

There were many instances in the CMC dataset where our methods did not predict any
codes. We experimented with using an unsupervised approach to generate predictions for
those examples: we generated named entities using MetaMap for each of these documents
that did not have any predictions. We mapped these entities to ICD-9-CM codes via a
knowledge-based mapping approach [42] that exploits the graph of relationships in the UMLS
Metathesaurus (which also includes ICD-9-CM). If MetaMap generated a concept that got
mapped to an ICD-9 code we trained on, we used that ICD-9 code as our prediction. We were
able to increase our best F-Score from using ECC from 0.85 to 0.86 using this method. Also,
we don’t report the results when including semantic predications as features because the
results were comparable with no major improvements. Feature selection, optimal training
sets, and probabilistic thresholding did not make significant improvements for the CMC
dataset.

6.2. UKSmall Dataset Results

In the UKSmall dataset of 1000 EMRs, we removed those that are not coded with at
least one of the 56 codes that had at least 20 examples. That left us with 827 EMRs out of
which 100 were used for testing and the remaining for training examples. Table 3 shows the
results on the testing set for this dataset.

In our experiments, we first tried our best performing combination from the CMC dataset
and noticed that ECC did not perform well on this larger dataset; there seem to have been
very few label dependencies in this dataset – recall that there were over 500 unique label sets
of the 56 labels used for training in UKSmall. Also, on this dataset we achieved the best
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Table 3: UKSmall test set scores (with LR as base classifier and BR as transformation)

Learner, Ranker, and Calibrator
Example-Based Micro Macro

P R F P R F P R F

BNS 0.38 0.21 0.24 0.64 0.16 0.25 0.21 0.13 0.15

BNS + OTS + RCut = 3 0.40 0.49 0.38 0.40 0.41 0.41 0.34 0.31 0.29

Best : BNS + OTS + MLPTO 0.59 0.42 0.45 0.54 0.37 0.44 0.40 0.29 0.32

Best−OTS 0.60 0.36 0.40 0.57 0.29 0.39 0.42 0.25 0.29

Best−MLPTO 0.52 0.34 0.37 0.61 0.32 0.42 0.43 0.26 0.30

Best−BNS 0.30 0.11 0.15 0.31 0.10 0.15 0.05 0.04 0.04

results using LR instead of an SVM as our base classifier. Because there was much more text
available per example, we were able to take advantage of tf-idf weighting and used bigrams,
unigrams, and named entities. For all models in Table 3 with the exception of the last row
model, we used BR for the transformation, LR as the base classifier, and BNS for feature
selection. In the second row we show the results of additionally using OTS (Section 4.5) to
handle class imbalance in the binary classifiers and always choosing the top 3 labels for label
calibration (RCut=3). RCut is determined based on the best number of labels to pick that
maximizes example-based F-score on the training dataset. In our experiments we observed
it to be close to the label cardinality (2.8 for this dataset). Since these methods use RCut
3, that is, three labels are always picked for each EMR, we can see how the recall gain also
introduced many false positives. As seen in the next row, this issue is rectified by using
MLPTO (Section 4.7) instead of Rcut and picking a different number of labels per EMR.
Finally, we can see from the first row, where only BNS is used without any other learning
components, the performance is significantly compared to the best results in the third row.

In rows 4–6 of Table 3, we also show the results of learning component ablation on our
best classifier. Each of these rows show the effect on performance if one of the learning
components is not used. While removal of MLPTO and OTS caused losses of up to 8%
in F-scores, dropping feature selection with BNS caused a drop of 30% in F-score, which
clearly demonstrates the importance of appropriate feature selection in these combinations.
However, interestingly, we can see that just using BNS alone without MLPTO and OTS did
not result in major performance gains. Next, we present our results on the UKLarge dataset.

6.3. UKLarge Dataset Results

From a total of 71,463 EMRs from the 2011–2012 two year period, we randomly selected
2000 EMRs for validation and 3000 EMRs for testing, and all other records were used
for training. Unlike for the smaller datasets, we needed a validation dataset for certain
components that gave us the best performance. We used unigrams and bigrams with tf-idf
weighting as features after ignoring those features that did not occur in at least 10 EMRs
in the training dataset. Most components that performed well on the CMC and UKSmall
datasets were either not practical or did not show any performance improvements. Feature
selection using BNS and careful selection of negative examples to handle class imbalance
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using OTS did not improve the performance. This dataset has 1231 labels and over 60,000
unique combinations of these labels, both at least an order of magnitude larger than the
corresponding counts in the smaller datasets. Hence the ECC transformation approach that
relies on building multiple classier chains turned out to be impractical. The implementation
of MLPTO that calibrates the appropriate number of labels specific to each testing instance
also did not scale to this larger training dataset. Thus we used a different simpler strategy
of estimating the correct number of labels to be coded for an EMR using linear regression
based on the number of predicted codes that exceed a LR classifier score threshold of 0.1 and
the number of codes identified just with NER. We also used learning-to-rank (Section 4.6) to
rerank the preliminary rankings from LR classifiers for all codes before choosing the predicted
number of codes from the linear regression function. We also noticed that for 140 codes (out
of 1231), a simple classifier that predicts a code if it can be extracted using NER on the
EMR text does better than LR classifiers. So after choosing the predicted number of labels
from the linear regression model, we added these NER classifier (NERC) based codes to the
predicted code set for each test set EMR (we chose to trade-off some precision for recall in
this constrained fashion). The linear regression function, the learning-to-rank (L2R) ranking
function, and the identification of codes where NERC outperforms LR is all done over the
validation set of 2000 EMRs that is not part of the training or testing datasets.

Table 4: UKLarge test set scores (with BR as transformation)

Calibrator Learner and Ranker
Example-Based Micro Macro

P R F P R F P R F

RCut=8

LR 0.434 0.489 0.399 0.434 0.387 0.410 0.824 0.181 0.176

LR + L2R 0.443 0.501 0.408 0.443 0.395 0.417 0.799 0.190 0.189

LR + L2R + NERC 0.440 0.511 0.414 0.444 0.409 0.426 0.779 0.224 0.211

Linear

Regression

LR 0.482 0.461 0.442 0.513 0.421 0.463 0.859 0.176 0.180

LR + L2R 0.491 0.469 0.450 0.524 0.430 0.472 0.844 0.184 0.188

LR + L2R + NERC 0.490 0.480 0.455 0.522 0.443 0.479 0.822 0.218 0.211

Correct

Count

LR 0.484 0.481 0.481 0.482 0.482 0.482 0.835 0.197 0.198

LR + L2R 0.486 0.486 0.486 0.495 0.495 0.495 0.821 0.211 0.212

LR + L2R + NERC 0.485 0.496 0.490 0.493 0.505 0.499 0.801 0.241 0.230

The results of our experiments on the UKLarge dataset are presented in Table 4. We
show up to three digits after the decimal for these scores since the differences are not as
substantial as in the case of the smaller datasets. The first three rows of the table show the
evaluation scores if the calibrator was simply selecting the top 8 (label cardinality is 7.4)
codes. Rows 4–6 contain results when we apply our regression function as the calibrator for
number of labels. Our best performer is row 6 indicated in bold font, which has the best
example-based, micro, and macro F-scores when applying both L2R and NERC. Since the
linear regression model does not perfectly predict (our r2 was 0.7) the correct number of codes
for an EMR, we obtained scores assuming a perfect calibrator, that is, assuming we know
the correct number of labels for each EMR. These scores are shown in rows 7–9 of the table.
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Regardless of the calibrator, we see that using L2R and NERC always improves all three
F-scores. L2R and NERC lead to a 1.6 point (or a 3.4% relative improvement) in the micro F-
score although having a better calibrator could add an additional 2 point improvement. The
values in columns for example-based and micro F-scores are in ascending order indicating
gains with calibrators and with additional learning components for a fixed calibrator. In
particular, our best micro F-score in row 6 is still slightly lower than the corresponding value
in row 7, where LR based ranking with a perfect calibrator is used. An accurate calibrator
is a clearly a crucial component here that warrants further exploration. Example-based and
micro F-score are close to each other, but the macro F-score is substantially lower owing to
the very low code level recall for several codes with very few training examples.

7. Discussion

In Section 4, depending on the scale and characteristics of the datasets, we observed that
some methods perform better over the others and as is usually the case there is no sliver
bullet for assigning diagnosis codes. It is important to note that although more sophisticated
methods did not improve the results, they did not worsen the scores in general. While more
training data usually leads to better predictive power, efficient counterparts of techniques
that work extremely well on smaller datasets are essential. In this section, we contrast the
results on the three datasets and further analyze the UKLarge dataset results as that dataset
provides a large representation of EMRs.

7.1. CMC Vs UKSmall

The CMC and the UKSmall datasets share similarities in the number of codes. However,
the number of unique code combinations is 10 times the number of codes in UKSmall and
it is twice the number of codes in the CMC dataset. We believe this is because each EMR
in the CMC dataset is essentially a short radiology report dealing with chest x-ray or renal
procedures and hence codes have high correlation. This could be the reason why the classifier
chain approach worked well for the CMC dataset but not for the UKSmall dataset. The
UKSmall EMR size is two orders of magnitude larger than the CMC reports. Hence feature
selection, training data selection, and label calibration that helped with UKSmall predictions
did not improve for the CMC predictions as the corresponding number of text features and
label cardinality were much smaller. However, the scores were much better on the CMC
dataset due to the more focused and simpler nature of the reports.

7.2. UKSmall Vs UKLarge

The UKLarge and UKSmall datasets differ substantially with the former having 21 times
more codes to predict than the latter. There are fewer examples to learn from in the UKSmall
dataset. However, the class imbalance is much higher in UKLarge since there are several
codes each of which accounts for only 0.07% of the dataset, while in UKSmall each of the
most infrequent codes constitute at least 2% of the dataset. Thus UKLarge had better micro
recall and slightly lower micro precision compared with UKSmall. However, the macro recall
for UKLarge is much worse than the macro recall for UKSmall because most of the recall
gains for UKLarge come from a small set of high frequency codes (so have a large number
of training examples). The ones that have very few examples form a large set and suffer
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significant recall loss leading to an overall low macro recall for UKLarge. To examine this,
we took the best results we had and aggregated the scores for code subsets that constitute
at least 2% or 1% of the entire dataset. However, the minimum requirement of 50 EMRs
per code leads to codes with as low as 0.07% representation in the dataset. So we also
aggregated scores for code subsets with at most 0.1% and 0.5% representation in UKLarge.
The results are shown in Table 5. As we can see the micro recall for those codes with at
least 2% representation in the dataset is 0.699, but the micro recall for the 874 codes (so
80% of the 1231 code set) with at most 0.5% representation is only 0.124. For the set of
250 codes each of which have ≤ 0.1% representation, the micro recall further comes down to
0.05. Thus we can see that most of the recall gains come from the top few codes. Similar
major difference can also be seen in macro recall. The unusually high example-based recall
in the fourth row of the table is because of the absence of very low frequency codes in most
EMRs.

Table 5: UKLarge test set scores for code subsets

Representation
in UKLarge

Example-Based Micro Macro

P R F P R F P R F

≥ 2% (92 codes) 0.498 0.699 0.520 0.531 0.634 0.578 0.547 0.533 0.513

≥ 1% (190 codes) 0.493 0.622 0.500 0.524 0.557 0.540 0.563 0.404 0.395

≤ 0.5% (874 codes) 0.870 0.387 0.361 0.536 0.124 0.202 0.912 0.167 0.161

≤ 0.1% (250 codes) 0.984 0.844 0.831 0.367 0.052 0.091 0.959 0.187 0.167

Another difference is that UKSmall did not have all physician authored documents be-
cause we removed less relevant documents such as flow sheets, vital signs sheets, discharge
instructions. This led to UKLarge EMRs having on an average over 2000 more words.
Upon examination, we found out that some of these less relevant documents also contain
important information albeit that should already be present in more important documents
such as discharge summaries and progress notes. For example, a discharge instruction note
mostly talks about doctors suggestions to the patient about when and how to follow-up,
diet/exercise, and other recommendations. However, it also has information on what the
patient was treated for and which conditions were resolved, evidence relevant to diagnosis
coding. Although, this information is also recorded in discharge summaries and progress
notes, having evidence in multiple notes (that may not be relevant for code assignment) may
help the machine learning algorithms. Similarly, named entity recognition tools are better
at extracting entities that are expressed in text in certain simple ways. If the condition is
not expressed in an NER-friendly way in the discharge summary, it may be expressed in a
concise NER-friendly format in a different not so relevant note.

7.3. Recall and Precision Errors in UKLarge

We also analyzed codes that have a substantial representation in UKLarge but suffered
major recall or precision errors. We first ranked the top 100 frequent codes in UKLarge in the
descending order of their precision and looked at the bottom ten in this list. All these codes
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had precision between 0.2 and 0.3. Six of these ten are the symptom codes (category level
780--799) which are generally not coded as per the guidelines if a cause is ascertained dur-
ing the course of the hospital stay in which case the symptom causing condition gets coded.
In UKLarge, symptom codes account for only 6% of all diagnoses. However, symptoms are
discussed for obvious reasons in the EMRs as they need to document patient’s progress.
The six symptoms we found here are: dyspnea and respiratory abnormalities, other symp-
toms involving digestive system, abdominal pain, tachycardia (unspecified), other general
symptoms, fever and other physiologic disturbances of temperature regulation. As we can
see, they are either generic or vague but probably discussed often in the EMRs. Two other
low precision codes that are not symptom codes are anaemia (unspecified) and backache
(unspecified). These are also generic conditions for which more specific codes exist.

Next we ranked the top 100 frequent codes in the descending order of their recall and
identified the last ten in this list. For four of these codes, once we examined the corresponding
predicted code sets, we noticed that in over 25% of recall errors, a sibling code (at the
fourth digit level) of the correct code was predicted. Although, this is not desirable but
it is a plausible explanation due to the similarities of sibling code conditions. One of the
examples was the code 427.8 (other specified cardiac disrhythmias). In this particular case,
40 times out of the 121 times 427.8 was missed, we also predicted a code with prefix 427

(the general category of cardiac disrhythmias), which then also counts toward a precision
error for example-based measures. Two other low recall codes are abnormal glucose and
hypotension, both generally extracted based on numerical measures reported in the EMR
text, situations where textual features are not useful.

7.4. Machine Learning Vs NER in UKLarge

Recall from Section 6.3 that for 140 out of the 1231 codes, a classifier based on whether
the code was extracted using MetaMap NER tool outperformed machine learning based
classifier. We found these 140 codes based on our findings on the validation dataset which
has 2000 EMRs. Since very low frequency codes have extremely small representation in these
2000 EMRs, we wanted to observe the degree of difference in performance based on F-scores,
for codes with at least 2% representation in the full dataset. We found at least ten such
codes where the F-score was different by more than 10 points. These ten codes represent
half of the 140 codes that also have at least 2% representation in the dataset.

8. Conclusion

In this paper, we used supervised multi-label text classification approaches to assign ICD-
9-CM diagnosis codes to EMRs from three datasets that differ in scale with regards to number
of codes and average size of the EMRs. Using a combination of problem transformation
approaches with feature selection, training data selection, label calibration, and learning-to-
rank, we compared our results with the basic approaches to assess the contribution of these
additional learning components in the task of diagnosis code assignment.

We first showed that on a gold standard dataset with short reports, classifier chains re-
sult in comparable performance to the state of the art. We experiment with a big dataset,
UKLarge, of EMRs of in-patients discharged at the University of Kentucky during the two
year period 2011–2012. At the time of this writing, this is the first study in diagnosis code
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assignment on a generalized and large set of EMRs. First we curated a small subset of
1000 records of this dataset with label set size comparable to the CMC dataset but with
larger EMR size and fewer code correlations. On this dataset, UKSmall, we show the fea-
ture selection, data selection, and label calibration provide significant gains in performance.
However, feature selection and data selection do not improve performance in experiments
with the larger dataset. We used a validation dataset in this case and applied a combina-
tion of NER based and machine learning based classifiers with a reranking approach based
on classifier scores and output code correlations captured through code co-occurrences and
implicit connections.

In our experiments on codes with at least 2% representation in corresponding datasets,
in UKSmall we achieve a micro F-score of 0.44 and for UKLarge we achieve an F-score of
0.57. Over all the 1231 codes even with 80% of the codes have ≤ 0.5% representation in
UKLarge, we obtain a micro F-score of 0.47. However, most of gains in F-score come from a
high recall for a selected few high frequency codes. Hence, the macro F-score of UKSmall is
0.32, which is 11 points more than that for UKLarge. These experiments make it clear that
a larger dataset improves micro scores over larger code sets even if most codes have very few
examples. However, better named entity recognition and more accurate approaches for label
calibration are required to make further progress in automated code assignment especially
for those labels with very few training examples compared with the size of the entire dataset.
We will continue to explore these opportunities in our ongoing research efforts in the general
area of computational code prediction.
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