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ABSTRACT 
The aggressive evolution of  the semiconductor industry - -  
smaller process geometries, higher densities, and greater chip 
complexity - -  has provided design engineers the means to create 
complex, high-performance Systems-on-a-Chip (SoC) designs. 
Such SoC designs typically have more than one processor and 
huge memory, all on the same chip. Dealing with the global on- 
chip memory allocation/de-allocation in a dynamic yet 
deterministic way is an important issue for the upcoming billion 
transistor multiprocessor SoC designs. To achieve this, we 
propose a memory management hierarchy we call Two-Level 
Memory Management. To implement this memory management 
scheme - -  which presents a paradigm shift in the way designers 
look at on-chip dynamic memory allocation - -  we present a 
System-on-a-Chip Dynamic Memory Management Unit 
(SoCDMMU) for allocation of  the global on-chip memory, which 
we refer to as Level Two memory management (Level One is the 
operating system management of  memory allocated to a particular 
on-chip Processing Element). In this way, processing elements 
(heterogeneous or non-heterogeneous hardware or software) in an 
SoC can request and be granted portions of the global memory in 
a fast and deterministic time (for an example of a four processing 
element SoC, the dynamic memory allocation of the global on- 
chip memory takes sixteen cycles per allocation/deallocation in 
the worst case). In this paper, we show how to modify an existing 
Real-Time Operating System (RTOS) to support the new 
proposed SoCDMMU. Our example shows a multiprocessor SoC 
that utilizes the SoCDMMU has 440% overall speedup of the 
application transition time over fully shared memory that does not 
utilize the SoCDMMU. 
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1. INTRODUCTION 
In few years integrated circuits will have close to one billion 
transistors on a single chip [25]. Such chips will no longer be 
individual components to a system but "silicon boards." Given 
that current computers waste much time transferring data between 
compute and storage units, it is appealing to combine significant 
processing power and a large amount of memory in the same chip. 
A typical System-on-a-Chip (SoC), as shown in Figure l, will 
consist of  multiple Processing Elements (PEs) of various types 
(i.e., general purpose processors, domain-specific CPUs such as 
DSPs, and custom hardware), configurable logic, large memory, 
analog components and digital interfaces [l], [2], [20]. 
Architecture such as this will be suitable for embedded real-time 
applications. Such applications - -  especially multimedia 
require great processing power and large volume data 
management [13], [19]. 
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Figure 1. Example of A Billion-Transistor SoC. 

Designers of multiprocessor SoC with heterogeneous processing 
elements and significant on-chip memory must pay careful 
attention to the management of the on-chip memory. They have 
to decide whether the allocation will be static (i.e., determined at 
compile time) or dynamic (decided at run-time and capable of 
being changed from one moment to another during operation)? 
Most previous research in the memory management for embedded 
systems has focused on static allocation and how to synthesize 
memory hierarchies for an SoC [3], [5], [17], [19]. The static 
allocation of  memory makes the on-chip memory utilization 
inefficient especially for applications whose memory requirements 
change significantly during run-time. Moreover, it makes system 
modification after implementation very difficult. On the other 
hand, dealing with memory allocation between the PEs in a 

79 



dynamic way can make the memory utilization more efficient. 
Also, the memory allocation will be programmable and can. be 
changed at any moment depending on the system load. From the 
general-purpose end of the spectrum, there has been significant 
research in shared memory multiprocessing [22]. However, in 
shared memory multiprocessing, dynamic memory allocation is 
not deterministic; moreover, it typically requires hundreds or 
thousands of clock cycles in the worst case [14], which makes 
satisfaction of real-time constraints on such shared memory 
architectures difficult if not impossible. 

We proposed a novel approach for memory allocation/de- 
allocation between PEs in an SoC that is suitable for real-time 
applications [I1]. Such systems require behavior that is 
deterministic and fast in all cases, unlike general-purpose 
computer systems, which have memory management that may be 
neither fast nor deterministic. Our approach focuses on 
implementing a special hardware SoC Dynamic Memory 
Management Unit (SoCDMMU) to dynamically allocate the large 
global on-chip memory between the PEs. Note that after the 
SoCDMMU allocates a portion of the large global on-chip 
memory to a particular PE, the PE itself manages the use of this 
memory by its processes/threads. The SoCDMMU allows fast 
and deterministic dynamic memory allocation/de-allocation of 
large global on-chip memory between the PEs. 

In this paper, we show how a Real-Time Operating System 
(RTOS) might be modified to support the SoCDMMU. Also, we 
present simulation results that show a multiprocessor SoC that 
utilizes the SoCDMMU performs far better than an equivalent 
system that does not utilize the SoCDMMU. 

This paper is organized as follows. First, Section 2 gives an 
overview of the work done to implement the memory management 
in hardware. To make the paper self-contained, Section 3 briefly 
describes the SoCDMMU architecture. Section 4 shows Real- 
Time Operating System (RTOS) support for the SoCDMMU. 
Section 5 gives some experimental results, and finally Section 6 
concludes the paper. 

2. RELATED WORK 
The dynamic management of memory has beeD an important topic 
in computer systems for a long time. Dynamic memory 
management can consume a great amount of a program's 
execution time - -  especially object-oriented applications. 
Moreover, memory management routines often do not have 
deterministic behavior. To reduce the execution time of dynamic 
memory management routines (allocation, de-allocation, and 
garbage collection) and/or make their execution times 
deterministic, many researchers have proposed hardware 
accelerators for dynamic memory management. The literature 
shows that a hardware implementation of a simple buddy allocator 
was first proposed by Puttkamer [5]. P.R. Wilson et al. mention a 
possible implementation of a bitmap memory allocator in 
hardware [14]. Chang and Gehringer propose a modified 
hardware-based buddy system, which eliminates internal 
fragmentation [8]. Chang et al. have implemented the mallocO, 
reallocO, and freeO C-Language functions in hardware [ 18]. Also, 
they propose a hardware extension to be a part of the future 
microprocessors to accelerate the dynamic memory management 
[7]. in the same way, Cam et al. propose a hardware buddy 
allocator that detects any available free block of requested size 
and eliminates the internal fragmentation [6]. The previous 
research focuses only on the hardware implementation of specific 
functionality (e.g., allocation or de-allocation) but does not 

discuss in detail how these functionalities could be integrated into 
a system nor present any system examples. Moreover, they focus 
only on speeding up memory management rather than making it 
deterministic, which means some of the previous implementations 
are not suitable for real-time systems. 

3. THE SoCDMMU 
In this section we briefly give an overview of the 
SoCDMMU [I 1]. The SoC Dynamic Memory Management Unit 
(SoCDMMU) is a hardware unit, to be a part of the SoC, which 
deals with the global on-chip memory allocation/de-allocation 
between the PEs. The SoCDMMU allows a fast and deterministic 
dynamic way to allocate/de-allocate the global memory (see 
Figure 1 ) between the PEs. 

The SoCDMMU resides between the PEs and the global on-chip 
memory. Each PE's memory bus is connected to the SoCDMMU 
to allow the SoCDMMU to control all of the global memory 
accesses. This enables the SoCDMMU to convert the PE-address 
to a physical address. The PE can map any allocated block to any 
memory location inside the PE's address space. This feature 
allows the allocation of non-contiguous memory blocks, so there 
is no need for memory compaction of the global memory blocks 
(memory compaction may be an issue within a particular block). 

Table  1: Execut ion Times  in Cycles 

Command Number of Cycles 
4 _ G_alloc_ex 

G_alloc_rw 4 
G_alloc_ro 3 
G dealloc 4 
Worst-Case Execution Time 4 x (the number of the PEs in 

the SoC) 

The SoCDMMU is mapped into a location in the I/O space of 
each PE. This memory mapped address or I/O port to which the 
SoCDMMU is mapped is used to send commands to the 
SoCDMMU (write data to the port or memory-mapped location) 
and to receive the status of the command execution (reading from 
the port memory-mapped location). There are three types of 
commands that the SoCDMMU can execute: G_Allocate 
commands (exclusive, read-only, and read-write), G_deallocate 
command, and Move command. The move command is used to 
re-map allocated memory blocks to another location in the PE- 
address space. This is useful because it allows PE address space 
compaction. Table 1 summarizes the execution time of each of the 
SoCDMMU commands in cycles. 

4. RTOS SUPPORT FOR THE SoCDMMU 
Conventional memory allocation algorithms (e.g., buddy-heap) 
are not suitable for Real-Time systems because they are not 
deterministic and/or have a quite high Worst Case Execution 
Time (WCET). A deterrmnistic execution time is a very desirable 
trait for real-time applications. Currently, software approaches to 
automatic dynamic memory management often fail to yield 
predictable execution time [7]. The most often used software 
approach in maintaining allocation status is sequential fit or 
segregated fit. These two approaches utilize a linked-list to keep 
the occupied chunks or free chunks. With a linked-list, the 
turnaround time often relates to the length of the list. As the 
linked-list becomes longer, the sequential search time grows 
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longer as well [14]. Similarly, the software approaches to garbage 
collection also yield unpredictable turnaround time. Two of the 
most common approaches for garbage collection are mark-sweep 
and copying collector. In both instances, the execution time is not 
deterministic [7], [ 14]. 

The fastest and most deterministic approach to memory 
management is to disallow dynamic memory allocation and to 
make the programmer allocate all memory statically. However, 
such an approach has obvious problems dealing with dynamically 
changing workloads, e.g., as would be introduced by downloading 
new code onto a PDA. Another approach is to allow dynamic 
memory allocation but to not support dynamic memory allocation 
in the kernel [12]. In this case, the kernel is fast and deterministic, 
but any dynamic memory allocation falls outside of the scope of 
the kernel and thus is the responsibility of  the user! 

Yet another approach to "dynamic" memory allocation is to 
statically assign partitions with fixed block sizes (e.g., partitions 
of size 1KB with blocks of 32B) used to satisfy "dynamic" 
memory allocations [9], [23], [24], [26]. In this case, each request 
can only be for a single block which has the advantage of short 
and predictable execution time due to the fact that only one 
pointer needs to be changed [9]. However, the disadvantage 
occurs in allocating multiple blocks: the allocation time is linear 
in the number of blocks allocated! 

A more fully dynamic memory allocation involves the use of 
mallocO, free(), and their equivalents. Our hardware/software 
multiprocessor RTOS implementation uses a different approach to 
support this fully dynamic case (allocation of  memory using 
mallocO, free() and their equivalents). In the following section 
we give an overview of a way to support dynamic memory 
management of partitions by extending the Atalanta open-source 
RTOS developed at Georgia Tech [4] to support the SoCDMMU 
introduced previously [ 11 ]. 

4.1 Atalanta Memory Management 
An RTOS usually divides the memory into fixed-sized allocation 
units and any task can allocate only One unit at a time [9], [23], 
[24], [26]. However, we present in this section a way to support 
real-time (see Table 6 and Table 7) dynamic allocation of 
partitions using Atalanta for the RTOS software and the 
SoCDMMU for part of  the RTOS functionality in hardware. 
Atalanta is an open source RTOS developed at the Georgia 
Institute of Technology to be used for SoC [4]. We adapted 
Atalanta to support the SoCDMMU. As an RTOS, Atalanta 
manages memory in a deterministic way; tasks can dynamically 
allocate fixed-size blocks by using memory partitions as shown in 
Figure 2. 

Partition Start 

Partition [ ~ / ~ / ~  ~ ~:::k 

I 
Figure 2: Memory partition in Atalanta. 

Partitioned memory is allocated and returned in fixed-size blocks. 
One advantage of  partitioned memory is that allocation and de- 
allocation of blocks can be done in constant time. Since all 
memory blocks in a partition are the same size, the external 
fragmentation that sometimes results from dynamic memory 
allocation does not occur. Consequently, memory compaction is 
not required. During RTOS initialization the partitions should be 
created as static arrays. Atalanta provides only four Application 
Programming Interface (API) functions to manage the memory. 
These functions are summarized in Table 2. 

Table 2. Atalanta Memory Management System Calls. 

Function Name I Description 

asc_partition_gain I Get free memory block from a 
partition (non-blocking) 

ascpartition_seek Get free memory block from a 
partition (blocking) 

ascpartition..free Free a memory block. 

ascpartition_reference Get partition information. 

4.2 Atalanta Support for SoCDMMU 
We modified the Atalanta RTOS memory management to support 
the SoCDMMU and to allow the Atalanta RTOS to work in a 
multiprocessor SoC environment. While modifying the Atalanta 
memory management system we kept on mind the following 
issues. First, we add dynamic memory management for the global 
on chip memory. Second, we use the same memory management 
API functions of Atalanta. Third, we keep the memory 
management deterministic. Also, the following facts governed our 
modifications: 

• The SoCDMMU needs to know where the allocated 
physical memory will be placed in the PE address space. 
This is required by the SoCDMMU allocation 
commands [ 11 ]. 

• The PE address space is much larger than the available 
on chip memory (a typical figure would be 64 MB of  
global on chip memory vs. 4GB address space for a 
typical 32°bit processor). This fact can be used to 
develop an alternative solution for the PE address space 
fragmentation explained earlier in Section 3. 

Table 3. New API memory management Functions introduced 
to the Atalanta RTOS. 

Function Name i Description 
ascpartition_create i Create a partition by requesting 

memory allocation from the 
SoCDMMU if necessary. 

asc partition delete Delete a partition and de-allocate 
i memory block if required. 

We added new API functions to Atalanta both to create partitions 
at run-time when required and to delete the partitions later when 
no longer required (as opposed to creating the partitions as static 
arrays not modifiable at run-time). Table 3 explains these two new 
functions. The asc_partition_create function creates a partition in 
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the memory allocated to the PE. If there is not enough memory or 
the available memory has a different mode (read only, exclusive) 
than that of the requested partition, asc_partirion_create requests 
memory from the SoCDMMU. The asc_partition_delete function 
deletes a partition when it is not required anymore; 
asc_partition_delete will request memory de-allocation from the 
SoCDMMU if the entire physical block corresponding to the 
partition is not in use anymore. 

Table 4. asc_memory_find Function. 

Function Name Description 
asc_memory_find Find a place in the PE address 

space to which to map the allocated 
memory. 

Recalling that the SoCDMMU G_allocate commands require a 
place in the PE address space into which the physical memory 
blocks can be mapped, we need a function that finds an empty 
space in the PE address space into which to map the physical 
blocks. This function is called ascmemory_find. Table 4 gives a 
description of this function. The asc_memory_find function works 
in a way that minimizes the PE address space fragmentation; to 
achieve this, the PE address space is divided into pools (a pool is 
an address range in the PE's address space). Each pool has the 
same size of the total on-chip memory. Each pool can be used to 
map pages of the same size (1 block, 2 blocks, etc.,). The page 
size of each pool is selected to be one of the commonly used page 
sizes. If the commonly used page sizes are large in number, a pool 
can be used to allocate pages of any arbitrary size; and the 
SoCDMMU move command is utilized to perform address space 
compaction. For example, if the total on-chip memory is 64MB 
and the PE address space is 4GB then we have 64 pools each of 
64MB. The first pool may be used to place l-block pages, the 
second pool for 2-block pages, etc., as illustrated in Figure 3. 

4 GB 

Pool 0 
(for 1-block pages) 

Pool 1 
(for 2-block pages) 

Pool 2 
(for 3-block pages) 

Pool 63 
(for any size pages) 

• MB 

Figure 3: The PE's address space divided into pools. 

FiFO I I Mem°ry Buffer I I Mem°ry Buffer 

Figure 4: OFDM Sub-System 

Example 1 Consider a multiprocessor SoC whose 
functionality is dynamically changed to include OFDM 
communication. The SoC has two DSP processors and a 
global on-chip memory. The two DSP processors utilize 
Atalanta as the RTOS. The first DSP reads the incoming 
data from the FIFO buffer and performs a 1024-point FFT 
for each received symbol to find the original transmitted 
spectrum and then stores the results into a memory buffer 
that is shared with the second DSP. The phase angle of 
each transmission carrier is then evaluated and converted 
back to data words by demodulating the received phase. 
The demodulation is performed by DSP2. The operation is 
outlined in Figure 4. DSP1 allocates the shared memory 
buffer as read/write and DSP1 allocates it as read only. 
Figure 5 shows the code snippets for DSP1 and DSP2 that 
performs the dynamic memory allocations. 

DSP1 
#define BUFi 0xl0 

SYS_ERROR e; 
SYS PARTITION pl; 

SYSMEM ml; 

pl=asc_partition_create(2,l,DMMU_RW,BUFl,&e); 

ml= asc_partition_gain(pl,&e); 

asc_loartition_free(pl,ml,&e); 

DSP2 

#define BUFI 0xl0 

#define BUF2 0x20 

SYS_ERROR e; 

SYS_PARTITION pl; 

SYS~EMml; 
;YS_PARTITION p2; 

;YS_MEMm2; 

pl=asc_partition_create(2,l,DMMU_RO,BUFl,&e); 

ml = asc_partition_gain(pl,&e); 

p2=asc_partition_create(3,l,DMMU_EX,BUF2,&e) 

ml= asc_ .pa r t i t i on_ga in (p2 ,&e) ;  

lasc partition freelp2,m2,&e); 

Figure 5: Code snippets for the OFDM System in Example 1. 
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5.  E X P E R I M E N T S  

5.1 C o m p a r i s o n  t o  a Ful ly  S h a r e d - M e m o r y  
Mul t iproeessor  S y s t e m  
In this experiment we compare (i) a system that utilizes the 
SoCDMMU and uses the memory sharing scheme implied by 
using the SoCDMMU [I1] to (ii) a fully shared-memory 
multiprocessor system. The simulation is carried out using the 
Mentor Graphics Seamless Co-simulation environment and the 
ARM Software Development Tools (SDT) v2.5 [21]. The 
simulated system shown in Figure 6 consists of four ARM9TDMI 
cores each of which has a Level one (LI) cache of 64Kbytes. All 
four PEs share a global bus. A shared memory of 16 Mbytes of 
RAM is connected to the same bus. We assume it takes five cycles 
to get the first word from the global memory in Figure 6. A bus 
arbiter controls the access of the cache controllers to the memory. 
The system (including the SoCDMMU) is clocked at 100MHz. 
The SoCDMMU has the size of 41,500 equivalent gates using the 
AMI 0.5-micron Logic library [11]. 

° .  . . . . . .  [ . . . . . . .  ° 

: SoCDMMU 

. . . . .  i I  . . . . . . . .  

I Global Memory [ 
Figure 6: Four-PE SoC with SoCDMMU. 

I Bus I Arbiter 

This SoC is used for a handheld device that can be used for 
communication as well as other personal applications (e,g., Video 
Player) like the example that is described in [16]. The device also 
uses OFDM. Table 5 shows the memory requirements for the 
MPEG-2 video player [15] and the OFDM receiver [10]. We 
assume that other applications take up 13.9 Mbytes leaving 2.1 
Mbytes available for the OFDM receiver or the MPEG player 
(depending on which is running). Table 6 compares the execution 
time of the raallocO function in cycles to that of the 
asc partition_createO and the asc_partition gainO functions that 
utilize the SoCDMMU. Table 7 compares the execution time of 
thefreeO function in cycles to that of the ascpartition_freeO that 
utilizes the SoCDMMU.Table 8 shows the number of cycles 
required to free the memory used by the MPEG-2 player and 
allocate the memory required by the OFDM receiver when the 
switching takes place. From the results, we can see that using the 
SoCDMMU yields more than 440% speedup (4.4x as shown in 
Table 6). Note that in the fully-shared memory multiprocessor, the 
mallocO and free() functions used for the comparison are 
optimized for speed for embedded applications; normal malloc() 
andfreeO implementations (e.g., gclib) may have larger execution 
times. Further, note that the execution time given for mallocO and 
free() was done assuming the other applications are not also 
requesting memory; if they were, the execution time for mallocO 
andfreeO would be longer. Finally, also note that the fully shared 
memory system is exactly the same as Figure 6 without the 

SoCDMMU (note that the SoCDMMU area is roughly equivalent 
to 64KB of DRAM area or 8KB of SRAM area). 

Table 5: Required Memory Allocations 

MPEG-2 Player 
2 Kbytes 
500 Kbytes 
5 Kb~es 
1500 Kbytes 
1.5 Kbytes 
0.5 Kbytes 

OFDM Receiver 
34 Kbytes 
32 Kbytes 
1 Kbytes 
1.5 Kbytes 
32 Kbytes / 
8 Kbytes 
32 Kbytes 

Table 6: Execution Times of maUocO and the SoCDMMU 
allocation. 

Execution Time 
mallocO 106 cycles 
SoCDMMU allocation 28 cycles 
Speed up 3.78x 

Table 7: Execution Times offreeO and the SoCDMMU 
de-allocation. 

Execution Time 
I free() 83 cycles 
I SocDMMU de-allocation 14 cycles 
I Speed up 5.9x 

Table 8: Execution Times 

Using the SOCDMMU Using SDT malloc 0 and free 0 
280 cycles 1240 cycles 
Speedup 4.4x 

6. C O N C L U S I O N  

In this paper, we described an approach to handle on-chip 
memory allocation between PEs in an SoC. Our approach is based 
on hardware SoCDMMU that provides a dynamic, fast way to 
allocate/de-allocate the global on-chip memory. Moreover, the 
SoCDMMU allocation/de-allocation of the memory blocks is 
completely deterministic, which makes it suitable for real-time 
SoC applications. We showed how an RTOS might be adapted to 
support the SoCDMMU. Also, we showed an example where our 
approach gives a 440% overall speedup in application transition 
time when compared to a fully shared memory system with the 
same memory organization and number of processors. 
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