
Efficient Handling of High-Dimensional Feature Spaces by
Randomized Classifier Ensembles

Aleksander Ko.l'cz
Personalogy, Inc.
3365 Orion Drive

Colorado Springs, CO 80906
a.kolcz @ ieee.org

Xiaomei Sun
Department of Computer

Science, University of
Colorado at Colorado Springs

1420 Austin Bluffs Pkwy.
Colorado Spnngs, CO 80918

maysun 1998 @ yahoo.com

Jugal Kalita
Department of Computer

Science, University of
Colorado at Colorado Springs

1420 Austin Bluffs Pkwy.
Colorado Springs, CO 80918

kalita@ pikespeak.uccs.edu

ABSTRACT
Handling massive datasets is a difficult problem not only due
to prohibitively large numbers of entries but in some cases
also due to the very high dimensionality of the data. Often,
severe feature selection is performed to limit the number of
attributes to a manageable size, which unfortunately can
lead to a loss of useful information. Feature space reduction
may well be necessary for many stand-alone classifiers, but
recent advances in the area of ensemble classifier techniques
indicate that overall accurate classifier aggregates can be
learned even if each individual classifier operates on incom-
plete "feature view" training data, i.e., such where certain
input attributes are excluded. In fac% by using only small
random subsets of features to build individual component
classifiers, surprisingly accurate and robust models can be
created. In this work we demonstrate how these types of
architectures effectively reduce the feature space for sub-
models and groups of sub-models, which lends itself to ef-
ficient sequential and/or parallel implementations. Experi-
ments with a randomized version of Adaboost are used to
support our arguments, using the text classification task as
an example.

1. INTRODUCTION
Many challenges faced in data mining are due to the huge

amounts of data available, which presents serious scaling
problems for many machine learning algorithms. Although
commonly the problem is caused by excessively many data
entries, in domains such as text it is compounded by the
very high dimensionality of the data. Much research has
been directed at data pre-processing to eliminate irrelevant
examples and/or features, and for high-dimensional prob-
lems a feature selection stage is often performed to reduce
the number of attributes. Unfortunately, such approaches
may lead to a loss of useful information [19].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD '02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007/...$5.00.

Recent advances in the area of machine learning resulted
in architectures such as Support Vector Machines [17], that
can handle large feature spaces without overfitting, so that
the aspect of feature-space reduction becomes less of an is-
sue. Scalability is a problem, however, and many datasets
are too large to be processed efficiently if an algorithm re-
quires access to all data during the learning process. En-
semble classifier techniques are attractive in this respect,
since robust and accurate classifier aggregates can be learned
even if each individual component classifier operates on in-
complete training data, i.e., such where certain training in-
stances and/or input attributes are eliminated, often at ran-
dom [s].

An under-emphasized property of certain randomized clas-
sifter ensembles, such as Random Forests [8] or Randomized
Boosting [3], is that each individual classifier may be induced
using just a fraction of the available features. In this work we
discuss how this characteristic can be used to build resource-
efficient classifiers in situations where the number of features
is very high. To focus our presentation, we will assume that
the original high-dimensional dataset is too large to fit into
the memory (RAM) space of a computing process, but it is
possible to do so with a reduced number of features (i.e.,
the related problem of excessive numbers of data entries is
ignored). We use the text classification task and a boosting
algorithm to illustrate the effectiveness of our approach.

The paper is organized as follows: In Section 2 we briefly
outline the context of the ensemble randomization ideas used
in our work. Section 3 demonstrates how the architecture
of Random Forests, when combined with depth constrained
tree models, leads to an implicit feature subset selection,
which has important implications for inducing models from
high dimensional data. In Section 4 we discuss the applica-
bility of random feature subset selection to boosting. Section
5 outlines the experimental setup, the results of which are
given in Section 6. The paper is concluded in Section 7.

2. BACKGROUND
Ensemble classifiers have been quite popular in many data

mining applications due to their high accuracy and potential
for efficient parallel implementations. The success of these
techniques rests largely on their ability to combine many
weakly coupled models which are not very accurate when
taken individually but which, as ar~ aggregate, greatly reduce
the overall generalization error rate.

307

Historically, a number of seemingly diverse ensemble schemes
have been proposed, but recently efforts have been made to
explain their properties under within a common framework,
which can be viewed as statistical sampling from a model
space where adequate model coverage is achieved via appro-
priate randomization of the learning set and/or the learning
process [8][3]. Decision trees have been used predominantly
as the ensemble base learner, and approaches based on ran-
dom perturbat ions of the training set (bagging [6] and arcing
[7]) received particularly much attention. Adaboost [11], a
technique related to arcing t ha t does not explicitly depend
of randomization, has been especially well acclaimed.

Dietterich [9], instead of randomizing the training set, ran-
domized the process of tree construction whereby, when de-
ciding how to best split a tree node, all possibilities are
ranked according to their utility, and a split is chosen at
random from a small set of the most promising candidates I .
Note tha t such an approach requires a complete training set
(with all features) to be present for splitting each node of
the tree. A different variant of randomization, which relaxes
this constraint, is due to Amit et al. [3] and Breiman [8].
In [3] it is suggested to built each tree using random sub-
sets of all possible a t t r ibute- threshold combinations when
splitting each node of the tree. Breiman [8] proposed a sim-
ilar process, where a random subset of at t r ibutes is selected
prior to executing each split (the two approaches are equiv-
alent when all features are binary). In bo th [3] and [8] the
authors also propose unifying frameworks for different types
of classifiers ensembles (under the name of Multiple Ran-
domized Classifiers (MRCL) in [3] and under the term of
Random Forests in [8]).

The ideas outlined in this paper are directly based on
the types of randomization proposed by Amit et al. [3]
and Breiman [8]. In the general discussion we will focus
on the architecture of Random Forests, whose algorithmic
implementation clearly puts emphasis on random selection
of input features. We will then t reat Randomized Boosting
of [3] as a natural extension of Random Forests, and use
Randomized Boosting as the platform for our experiments.

I t is interesting to note tha t the idea of using random
subsets of features in classifier system design has a long his-
tory. Bledsoe and Browining [5] applied it to built optical
character-recognition systems using random access memo-
ries, by randomly interconnecting the address lines of each
memory module to the image matrix. Their architecture be-
came known as the N-tuple network [15] (since N randomly
selected features were utilized by each model), and has been
used with success in several pa t tern recognition applications
(e.g., [1][2]). As will be shown, under certain circumstances,
the new architectures such Random Forests can be seen to
extend the basic N-tuple idea.

3. RANDOM FORESTS AS FEATURE SUB-
SET SELECTORS

3.1 Single-model effects
Although the definition of a Random Forest, as stated in

[8], is quite general and has much in common with tha t of
MRCL, we focus on its special instance Forest-RI, which is

XFor axis-parallel splits, a candidate combines the a t t r ibute
(i.e., feature) to be split with a particular threshold value at
which the a t t r ibute 's range is to be divided.

one of algorithmic embodiments of a Random Forest pro-
posed by Breiman. We will thus narrowly unders tand a
Random Forest as a classifier ensemble tha t consists of a
number of trees, each grown without pruning such tha t only
a random subset of F features is "seen" when splitting each
node of the tree. For a given input, the Random Forest en-
semble produces its output via uniform voting to choose the
most popular class.

We begin with an observation tha t when the dimension-
ality of the feature space is large, by selecting only a small
random subset of features for each split, the tree, as a whole,
may have an opportunity to see only a small subset of the
feature space. It is important to note tha t this limiting
effect applies to the learning stage. Naturally, even a tradi-
tionally learned tree may effectively depend on just a small
subset of features - t ha t is, those which have been selected
for splitting during tree construction.

Let us assume tha t a binary tree model is constrained
to implement S splits (i.e., it has S internal nodes and its
depth is at most S) only. If a random subset of F features
(out of the total number of N available) is used to determine
each split, then the total number of features seen by the tree
during the learning process can be estimated as:

E = N (1 - (1 - ~ -) s) (1)

For the special case of a s tump (i.e., S = 1) the effect is
particularly dramatic, since only F features are seen by each
tree model. The severity of this feature subset selection
depends on the total number of features, N, the complexity
of the tree models (as determined by S) and the size of the
feature window, F, used for each split. For example, for
N = 10 ,000 ,_F= 100, a n d S = 10eq. (1) yields E = 9 5 6 ,
i.e., only about; 10% of features being visited by each tree.
Since the time-complexity of each node split is usually linear
with respect to the number of a t t r ibutes involved, the overall
speed-up with respect to a tree grown using all features can
be expected to be proportional to ~ .

The above suggests tha t by knowing the average fraction
of features, E, likely to be visited during the tree construc-
tion, we can a t tempt to speed up and /or simplify the learn-
ing process for each tree by handing it a random subset of
features of size E, in advance, without otherwise modifying
the tree-growing algorithm in any way. The advantage of
such an approach is evident in cases where the entire train-
ing set is too big to be contained in the computer 's memory,
but where the training set slice corresponding to the ran-
dom feature window (of size E) may do so. Also, note tha t
each tree component of a Random Forest can be seen as per-
forming a variant of N-tuple sampling of the input feature
space.

3.2 Group effects
Let us assume tha t E << N, which may occur if the in-

dividual tree models are severely constrained (e.g., S = 1)
and/or when the number of available features is quite large.
Since individual trees sample the feature space indepen-
dently from one another, the binomial model used to es-
t imate E in eq. (1) can be used to est imate the number
of unique features seen by a collection of K trees. Here E
takes the place of F, while K takes the place of S, and the
expected number of unique features visited by at least one

308

tree in the collection is estimated as

EK N (1 - (1 . ~) K) = - (2)

If EK is significantly smaller than N for some value of K
(e.g., EK/N < 0.5) then, for large feature spaces, an attrac-
tive strategy of growing a randomized tree ensemble might
be to construct it in blocks of K trees, where each block
sees only EK of the original input features (and assuming,
of course, tha t the learning set with EK features does not ex-
ceed the available memory resources of the running process).
Note tha t the algorithm used to grow each individual tree
remains the same.

Since the order in which the tree models are created is
irrelevant (with exceptions, such as boosting), the process
of building a large ensemble of trees for a high-dimensional
problem might be parallelized by mapping the tree ensemble
onto number of machines, each growing a collection of K
trees over a reduced feature space (i.e., where the number
of a t t r ibutes is reduced, via random sampling, from N to
EK). In practice, for efficiency reasons one might want to
grow more than K trees per block. This will result in the
trees grown within a common block being more correlated
with each other than with trees grown over different feature
windows. An ensemble consisting of T trees implemented
in this way may underperform one constructed using the
original algorithm, although the effects might be negligible
if the "overloading" performed within each block is not too
extreme.

To summarize, in cases where the complete training set
with all features is too big to fit into computer 's memory
(i.e., RAM), one might construct a Random Forest by:

• Step 1: choosing a random subset of F features (as-
suming tha t the feature-reduced training set overcomes
the RAM limitations);

• Step 2: building K random trees by sampling from the
pre-selected features only;

• Step 3: repeating steps 1 and 2 for a predefined num-
ber of times, or till the desired level of accuracy, or
a convergence criterion has been reached. For parallel
implementations, each sequence of steps 1 and 2 might
be executed on a separate machine.

A suitable value of F might determined via cross-validation
or heuristically. As demonstrated in [8], Random Forests are
not overly sensitive to the choice of F and for rich feature
datasets, good results are achieved for F << N.

4. A P P L I C A T I O N T O B O O S T I N G
The popular Adaboost algorithm [11] (and its arcing vari-

ants [7]) is an apparent exception among other ensemble
classifier schemes, since it requires the component classifiers
to be built in a sequential fashion, and is.thus more difficult
to implement in parallel. The power of boosting stems from
its continuous reweighting of training instances, so tha t dif-
ficult to classify examples receive more priority over time.
Despite its sequential and deterministic nature, it has been
argued in ([8] and [3]) tha t Adaboost can be seen as a spe-
cial form of a Random Forest, or MRCL, since in the limit
of many iterations it can be viewed as a special type of sta-
tistical sampling from a classifier distribution.

Typically, the problem of scaling up boosting has been at-
tacked in the context of datasets having excessive numbers of
training instances. A few effective parallelization approaches
have been put forward, based on combining the arcing vari-
ant of boosting with synchronizing the way in which weights
are assigned to individual training instances among the par-
allel nodes [14][20]. Adaboost assigns non-uniform weights
to its component classifiers but, as reported for example in
[7][3][14], the weights assigned by boosting can be substi-
tu ted with uniform weights (which simplifies parallelization
[14][20]) with little effect on the aggregate classifier perfor-
mance. In purely sequential implementations, it has been
proposed to modify arcing such tha t only much smaller sub-
sets (in terms of the number of instances) of the original
training data are selected for each iteration [13] (a simi-
lar approached using adaptive resampling was described in
[10]). One can see tha t this lat ter approach bears strong
similarity to the idea of using only small subsets of total
features when building each model in Random Forests.

Focusing on the use of trees as base learners, Amit et al.
[3] extended the randomization idea to boosting by defining
Randomized Boosting, where during each boosting iteration
a component tree classifier uses random subsets of features
when choosing the node splits, jus t as in the case of Ran-
dom Forests. For some data sets, Randomized Boosting
was even reported to outperform standard (i.e., determinis-
tic) boosting. Clearly, the feature subset selection aspects
of Random Forests discussed in Section 3 apply to Random-
ized Boosting as well. In fact, Randomized Boosting can
be seen as combining two approaches building classifier en-
sembles: boosting and randomization of tree decision splits.
Interestingly, Breiman reported in [8] tha t practical imple-
mentations of Random Forests seem to perform bet ter when
combined with bagging, which could be seen as "Random-
ized Bagging".

The experiments performed in [3] used shallow trees in the
form of stumps even for fairly moderate numbers of features
and, indeed, to effectively apply Adaboost to multi-class
feature-rich problems, such as text categorization, Schapire
and Singer proposed to use stumps, in a collection of algo-
ri thms termed BoosTexter [16]. Boosting with stumps as
base learners has also been reported in [3][10] and [12], for
example. In the following experimental section we adapted
the Real Adaboost.MH (we will drop the Real prefix for
brevity) algorithm from BoosTexter [16] to be used with
Randomized Boosting. Adaboost .MH utilizes a stump as
the base weak learner and applies uniform weights to all
component classifiers; the reader is referred to [16] for full
details. The randomized version of Adaboost.MH simply
uses just a random subset of F features during each boost-
ing iteration, as discussed in Section 3.

5. E X P E R I M E N T A L S E T U P
To evaluate the effectiveness of Randomized Boosting, and

demonstrate the value of the associated feature subset selec-
tion, a number of text classification experiments were per-
formed using the well-known Reuters-215782 document cor-
pus. The text medium was chosen~ since it represents a
naturally high dimensional domain, common in many data
mining applications. Following [16], we used the popular
Mod-Apte split [41 of the Reuters corpus and focused on the

Zhttp: / /www.research.at t .com/-lewis/reuters21578.html

309

6 of the most populous categories {acq, com, earn , econ,
engr, gar l} , where documents belonging to multiple cate-
gories were removed, leaving the 6,089 training documents
and 3,044 test documents. For pre-processing, all charac-
ters were converted to lower case, and words were defined
as sequences of characters delimited by whitespace, which
produced N = 6,502 unique features. Words are treated as
binary attributes, i.e., only the presence/absence of a word
in a document was taken into account.

The text categorization performance was measured by
means of the macro- and micro-averaged F1 metric, often
used in the information-retrieval community, defined as

F1 ---- 2 precis ion, recall
precision -t- recall

where precision is the ratio of the correctly classified doc-
uments for a given class to the total number of documents
classified as belonging to that class, while recall is the ratio
of the correctly classified documents for a given class to the
total number of documents belonging to that class. In the
case of macro-averaging, F1 is first measured when distin-
guishing each class from all others and then the results are
averaged. Conversely, in micro-averaging, the contingency
tables corresponding to all one-against-others classifiers are
merged and then the overall average is computed. More
details can be found in [18].

Given this data set, three sets of experiments were per-
formed:

tI001 001 01 I

Figure 1: Micro -averaged F1 t e s t - s e t a c c u r a c y o f
r a n d o m i z e d A d a b o o s t . M H for different choices of al-
pha .

• Standard Adaboost using Adaboost.MH.

• Randomized Boosting based Adaboost.MH for differ-
ent values of the feature window size, F. For each value
of F, 10 runs of the experiment where performed with
different random seeds, and the results were averaged.

• "Overloaded" Randomized Boosting, where instead of
performing the randomization step at every iteration,
it was performed at every I iterations for different set-
tings of I. Overloading can be considered a special case
of the block-oriented approach to the ensemble imple-
mentation (see Section 3.2), where E is made equal to
F. It results in running deterministic boosting for I
iterations on the feature-reduced data, before a new
random feature subset is selected.

• Block oriented randomized boosting based on Adaboost.MH
for a selection of the feature block size EK, and the
feature window size, F.

6. RESULTS
Standard Adaboost.MH achieved the micro and macro-

averaged F1 test-set accuracy of 0.92 and, 0.95, respectively.
Little change in accuracy occurred beyond 500 iterations,
and for all subsequent experiments the overall number of
boosting iterations (however divided between blocks, etc.)
was kept at 500.

For Randomized Boosting, the dependence of the test-set
F1 measure on the number of boosting iterations and dif-
ferent choices of F is depicted in Figures 1 and 2 where,
instead of showing the absolute values of F, we used their
relative values, with the total number of features used as a
reference, i.e., a = F / N , where c~ E (0, 1). Note that for

= 1 Randomized Boosting is equivalent to deterministic

0001 001 ~1 I

Figure 2: M a c r o - a v e r a g e d F1 t e s t - s e t a c c u r a c y o f
r a n d o m i z e d A d a b o o s t . M H for dif ferent choices o f al-
pha .

310

I 10 100 1~

t~ , vzd b1~m

1

Og6

G9

~S5

08

07

O~

Q.55

05

iiiiiiiiiiiiiiiii~

Figure 3: Micro-averaged F1 test-set accuracy of
randomized Adaboos t .MH for a lpha=0.1 and dif-
f e r e n t overloading factors. The x-axis indicates the
number of boost ing rounds performed for each r a n -
d o m feature subset.

Figure 4: Macro-averaged F1 test-set accuracy of
randomized A d a b o o s t . M H for a lpha=0.1 and dif-
ferent overloading factors. The x-axis indicates the
number of boost ing rounds performed for each ran-
dom feature subset .

boosting. For each value of o~, 10 runs of 500 iterations
were performed using different random seeds. Clearly, for
this data set, randomized boosting using just 10% of to-
tal features at each iteration achieves performance largely
equivalent to tha t of s tandard boosting using all features,
while resulting in a 10-fold overall speedup.

In experiments with the overloaded and block-oriented
Randomized Boosting, we used the fixed setting of o~ = 0.1.
To overload Randomized Boosting, we performed I boost-
ing iterations for each random choice of features (with I
ranging from 2 to 500), while keeping the overall number of
iterations at 500. The results are shown in Figures 3 and 4,
which suggest tha t moderate overloading does not seem to
harm the overall accuracy of the predictor, which may lead
to more efficient implementations when dealing with large
high-dimensional datasets.

To evaluate the effects of larger-sized blocks, we used
K = 5 blocks, each sampling ~ = 50% of the available fea-
tures. Within each block, Randomized Boosting was run for
100 iterations, so tha t the overall number of boosting itera-
tions was kept at 500, as in the previous experiments. Six
replicates of the experiment were performed, using differ-
ent random seeds in each case. The averaged performance
after 500 iterations was slightly lower tha t for s tandard Ad-
aboost.MH and regular Randomized Boosting, but as shown
in Figures 5 and 6 the accuracy of the block-oriented algo-
r i thm was still rising at the point of termination. There-
fore, achieving higher accuracy could be a mat ter of a trade-
off between the memory resources required to implement a
block of models, and the run-time cost of a single iteration,
which could be exploited in parallel implementations.

7. CONCLUSIONS
We have shown that , for depth-constrained tree models,

the algorithmic procedures of randomized classifier ensem-
bles of Random Forests and Randomized Boosting implic-
itly lead to an effective reduction in the number of input
features actually used during the construction of each tree.

This limits the amount of resources necessary to construct
each component classifier of an ensemble, and can be ex-
tremely useful when working with large high-dimensional
datasets tha t do not easily fit into the memory space avail-
able to running processes. Since each model needs to see
only a fraction of the overall features, a methodology anal-
ogous to one used in N-tuple networks can be used to apply
random feature-wise masks to the input data before passing
it on to individual models. Moreover, the reduced feature
requirements of a single model extend to groups of models as
well, which can be exploited in bo th sequential and parallel
randomized ensemble implementations.

Using a text categorization task as the test-bed, practical
experiments with a randomized version with Adaboost.MH
showed that Randomized Boosting using only 10% of the
original number of features achieves accuracy levels of com-
parable s tandard Adaboost .MH without requiring more it-
erations. Further efficiency improvements are possible by
performing several boosting iterations using the same ran-
dom feature subset (i.e., overloading) and, for problems with
particularly many features, by performing two-stage ran-
domization of features (i.e., blocking). The latter case is
more amenable to parallel implementations but there are
trade-offs between the number of iterations necessary for
good accuracy, the size of a feature window used and the
block overloading factor. Such issues can be resolved by
taking into account the particulars of the dataset and the
availability of the computational resources.

Although we addressed only the problem of handling datasets
with large numbers of a t t r ibutes (and ignored the possibil-
ity of processing excessive number of data entries), it would
be interesting to examine the effectiveness of combining ran-
domized feature subset selection with adaptive sampling ap-
proaches (e.g., those used in [13] and [10]) to handle datasets
with both large numbers of features and large numbers of
data instances.

8. REFERENCES
[1] I. Aleksander and T. J. Stonham. A guide to pat tern

311

°%
O.14S i

o.ll

o.IW ~

o.F

a.l~ ' I

. . !

I +i,i~:+:2~i; ':' ~.:~

+ + ~+;::+

+
+

++++~++~ +++++++++++++%?~+

+++~.~ +++ .. +++++ ~+ + ++++++++ ++ ++++++++ ++ ++
+++++ ++ ++++++++ ++++ + +++++ +..~++++

~o~na

F igure 5: Micro -averaged F1 t e s t - se t accuracy of
b lock-or i en ted r a n d o m i z e d A d a b o o s t . M H for al-
p h a = 0 . 1 . Here , 100 r a n d o m i z e d i t era t ions pro-
ceeded w i t h i n blocks , w i t h each b lock hav ing access
to a r a n d o m 50% s ubs e t o f t o t a l features . T h e b locks
w e r e e x e c u t e d in s e q u e n c e , w i t h t h e t e s t - se t perfor-
m a n c e b e i n g u p d a t e d at t h e e n d of each block.

.... :~:!~
O.llr ~ +...++++
o.iiii ~ +

®

+i'~+ +̧:̧+

~ t ! ':t

~:~:::

4" " g ~ :

Figure 6: M a c r o - a v e r a g e d F1 t e s t - se t accuracy
of b lock-or iented r a n d o m i z e d A d a b o o s t . M H for al-
p h a = 0 . 1 . Here , 100 r a n d o m i z e d . i terat ions pro-
c ee d e d w i t h i n b locks , w i t h each b lock hav ing access
to a r a n d o m 50% s ubs e t of t o t a l f eatures . T h e b locks
were e x e c u t e d in s e q u e n c e , w i t h t h e t e s t - se t perfor-
m a n c e b e i n g u p d a t e d at t h e e n d of each block.

recognition using random-access memories, lEE
Proceedings-E Computers and Digital Techniques,
2(1):29-40, 1979.

[2] I. Aleksander, W. Thomas, and P. Bowden. WISARD,
a radical new step forward in image recognition.
Sensor Rev., 4(3):120-124, 1984.

[3] Y. Amit, G. Blanchard, and K. Wilder. Multiple
randomized classifiers: MRCL. Technical Report 446,
Depertment of Statistics, University of Chicago, 2000.

[4] C. Apt~, F. Damerau, and S. M. Weiss. Automated
learning of decision rules for text categorization. ACM
Transactions on Information Systems, 12(3):233-251,
1994.

[5] W. Bledsoe and I. Browning. Pattern recognition and
reading by machine. In IRE Joint Computer
Conference, pages 225-232, 1959.

[6] L. Breiman. Bagging predictors. Machine Learning,
24(2):123-140, 1996.

[7] L. Breiman. Arcing classifiers. The Annals of
Statistics, 26(3):801-849, 1998.

[8] L. Breiman. Random forests. Machine Learning,
24(2):5-32, 2001.

[9] T. G. Dietterich. An experimental comparison of three
methods of constructing ensembles of decision trees:
Bagging, boosting, and randomization. Machine
Learning, 40(2):139-157, 2000.

[10] C. Domingo and O. Watanabe. Scaling up a
boosting-based learner via adaptive sampling. In
Proceedings of the 2000 Pacific-Asia Conference on
Knowledge Discovery and Data
Mining(PAKDD-2000), pages 317-328, 2000.

[11] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In Proceedings of the
Thirteenth International Machine Learning
Conference, pages 148-156, 1996.

[12] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting. The
Annals of Statistics, 38(2):337-374, 2000.

[13] D. Pavlov, J. Mao, and B. Dom. Scaling-up support
vector machines using boosting algorithm. In
Proceedings of the 2000 International Conference on
Pattern R.ecognition, 2000.

[14] J. A. Reichler and H. D. Harris. Parallel online
continuous arcing and a new framework for wrapping
parallel ensembles. In Proceedings of IJCAI 2001:
International Joint Conference on Artificial
Intelligence, Workshop on Wrappers for Performance
Enhancement in Knowledge Discovery in Databases,
pages 148-156, 2001.

[15] R. Rohwer and M. Morciniec. The theoretical and
experimental status of the N-tuple classifier. Neural
Networka, 11(1):1-14, 1998.

[16] R. E. Schapire and Y. Singer. BoosTexter: A
boosting-based system for text categorization.
Machine Learning, 39(2-3):135-168, 2000.

[17] V. N. Vapnik. Statistical Learning Theory. John
Wiley, New York, 1998.

[18] Y. Yang and X. Liu. A re-examination of text
categorization methods. In Proceedings of the 22nd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages

312

42-49, 1999.
[19] Y. Yang and J. P. Pedersen. A comparative study on

feature selection in text categorization. In Proceedings
of the Fourteenth International Conference on
Machine Learning (ICML '97), pages 412-420, 1997.

[20] C. Yu and D. B. Skillicorn. Parallelizing boosting and
bagging. Technical Report 2001-442, Depertment of
Computing and Information Science, Queen's
University, Kingston, Canada, 2001.

313

	Untitled

