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ABSTRACT 
Handling massive datasets is a difficult problem not only due 
to prohibitively large numbers of entries but in some cases 
also due to the very high dimensionality of the data. Often, 
severe feature selection is performed to limit the number of 
attributes to a manageable size, which unfortunately can 
lead to a loss of useful information. Feature space reduction 
may well be necessary for many stand-alone classifiers, but 
recent advances in the area of ensemble classifier techniques 
indicate that  overall accurate classifier aggregates can be 
learned even if each individual classifier operates on incom- 
plete "feature view" training data, i.e., such where certain 
input attributes are excluded. In fac% by using only small 
random subsets of features to build individual component 
classifiers, surprisingly accurate and robust models can be 
created. In this work we demonstrate how these types of 
architectures effectively reduce the feature space for sub- 
models and groups of sub-models, which lends itself to ef- 
ficient sequential and/or parallel implementations. Experi- 
ments with a randomized version of Adaboost are used to 
support our arguments, using the text classification task as 
an example. 

1. INTRODUCTION 
Many challenges faced in data mining are due to the huge 

amounts of data available, which presents serious scaling 
problems for many machine learning algorithms. Although 
commonly the problem is caused by excessively many data 
entries, in domains such as text it is compounded by the 
very high dimensionality of the data. Much research has 
been directed at data pre-processing to eliminate irrelevant 
examples and/or features, and for high-dimensional prob- 
lems a feature selection stage is often performed to reduce 
the number of attributes. Unfortunately, such approaches 
may lead to a loss of useful information [19]. 
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Recent advances in the area of machine learning resulted 
in architectures such as Support Vector Machines [17], that 
can handle large feature spaces without overfitting, so that  
the aspect of feature-space reduction becomes less of an is- 
sue. Scalability is a problem, however, and many datasets 
are too large to be processed efficiently if an algorithm re- 
quires access to all data during the learning process. En- 
semble classifier techniques are attractive in this respect, 
since robust and accurate classifier aggregates can be learned 
even if each individual component classifier operates on in- 
complete training data, i.e., such where certain training in- 
stances and/or input attributes are eliminated, often at ran- 
dom [s]. 

An under-emphasized property of certain randomized clas- 
sifter ensembles, such as Random Forests [8] or Randomized 
Boosting [3], is that  each individual classifier may be induced 
using just a fraction of the available features. In this work we 
discuss how this characteristic can be used to build resource- 
efficient classifiers in situations where the number of features 
is very high. To focus our presentation, we will assume that 
the original high-dimensional dataset is too large to fit into 
the memory (RAM) space of a computing process, but it is 
possible to do so with a reduced number of features (i.e., 
the related problem of excessive numbers of data entries is 
ignored). We use the text classification task and a boosting 
algorithm to illustrate the effectiveness of our approach. 

The paper is organized as follows: In Section 2 we briefly 
outline the context of the ensemble randomization ideas used 
in our work. Section 3 demonstrates how the architecture 
of Random Forests, when combined with depth constrained 
tree models, leads to an implicit feature subset selection, 
which has important implications for inducing models from 
high dimensional data. In Section 4 we discuss the applica- 
bility of random feature subset selection to boosting. Section 
5 outlines the experimental setup, the results of which are 
given in Section 6. The paper is concluded in Section 7. 

2. BACKGROUND 
Ensemble classifiers have been quite popular in many data 

mining applications due to their high accuracy and potential 
for efficient parallel implementations. The success of these 
techniques rests largely on their ability to combine many 
weakly coupled models which are not very accurate when 
taken individually but which, as ar~ aggregate, greatly reduce 
the overall generalization error rate. 
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Historically, a number of seemingly diverse ensemble schemes 
have been proposed, but  recently efforts have been made to 
explain their properties under within a common framework, 
which can be viewed as statistical sampling from a model 
space where adequate model coverage is achieved via appro- 
priate randomization of the learning set and/or  the learning 
process [8][3]. Decision trees have been used predominantly 
as the ensemble base learner, and approaches based on ran- 
dom perturbat ions of the training set (bagging [6] and arcing 
[7]) received particularly much attention. Adaboost [11], a 
technique related to arcing t ha t  does not explicitly depend 
of randomization, has been especially well acclaimed. 

Dietterich [9], instead of randomizing the training set, ran- 
domized the process of tree construction whereby, when de- 
ciding how to best split a tree node, all possibilities are 
ranked according to their utility, and a split is chosen at 
random from a small set of the most promising candidates I . 
Note tha t  such an approach requires a complete training set 
(with all features) to be present for splitting each node of 
the tree. A different variant of randomization, which relaxes 
this constraint, is due to Amit et al. [3] and Breiman [8]. 
In [3] it is suggested to built  each tree using random sub- 
sets of all possible a t t r ibute- threshold  combinations when 
splitting each node of the tree. Breiman [8] proposed a sim- 
ilar process, where a random subset of at t r ibutes is selected 
prior to executing each split (the two approaches are equiv- 
alent when all features are binary). In bo th  [3] and [8] the 
authors also propose unifying frameworks for different types 
of classifiers ensembles (under the name of Multiple Ran- 
domized Classifiers (MRCL) in [3] and under the term of 
Random Forests in [8]). 

The ideas outlined in this paper are directly based on 
the types of randomization proposed by Amit et al. [3] 
and Breiman [8]. In the general discussion we will focus 
on the architecture of Random Forests, whose algorithmic 
implementation clearly puts emphasis on random selection 
of input features. We will then t reat  Randomized Boosting 
of [3] as a natural  extension of Random Forests, and use 
Randomized Boosting as the platform for our experiments. 

I t  is interesting to note tha t  the idea of using random 
subsets of features in classifier system design has a long his- 
tory. Bledsoe and Browining [5] applied it to built optical 
character-recognition systems using random access memo- 
ries, by randomly interconnecting the address lines of each 
memory module to the image matrix. Their architecture be- 
came known as the N-tuple network [15] (since N randomly 
selected features were utilized by each model), and has been 
used with success in several pa t tern  recognition applications 
(e.g., [1][2]). As will be shown, under certain circumstances, 
the new architectures such Random Forests can be seen to 
extend the basic N-tuple idea. 

3. RANDOM FORESTS AS FEATURE SUB- 
SET SELECTORS 

3.1 Single-model effects 
Although the definition of a Random Forest, as stated in 

[8], is quite general and has much in common with tha t  of 
MRCL, we focus on its special instance Forest-RI, which is 

XFor axis-parallel splits, a candidate combines the a t t r ibute  
(i.e., feature) to be split with a particular threshold value at 
which the a t t r ibute 's  range is to be divided. 

one of algorithmic embodiments of a Random Forest pro- 
posed by Breiman. We will thus narrowly unders tand a 
Random Forest as a classifier ensemble tha t  consists of a 
number of trees, each grown without pruning such tha t  only 
a random subset of F features is "seen" when splitting each 
node of the tree. For a given input, the Random Forest en- 
semble produces its output  via uniform voting to choose the 
most popular class. 

We begin with an observation tha t  when the dimension- 
ality of the feature space is large, by selecting only a small 
random subset of features for each split, the tree, as a whole, 
may have an opportunity to see only a small subset of the 
feature space. It is important  to note tha t  this limiting 
effect applies to the learning stage. Naturally, even a tradi- 
tionally learned tree may effectively depend on just  a small 
subset of features - t ha t  is, those which have been selected 
for splitting during tree construction. 

Let us assume tha t  a binary tree model is constrained 
to implement S splits (i.e., it has S internal nodes and its 
depth is at most S) only. If a random subset of F features 
(out of the total  number  of N available) is used to determine 
each split, then the total  number  of features seen by the tree 
during the learning process can be estimated as: 

E = N ( 1 -  ( 1 - ~ - )  s )  (1) 

For the special case of a s tump (i.e., S = 1) the effect is 
particularly dramatic, since only F features are seen by each 
tree model. The severity of this feature subset selection 
depends on the total  number  of features, N, the complexity 
of the tree models (as determined by S) and the size of the 
feature window, F, used for each split. For example, for 
N =  10 ,000 ,_F=  100, a n d S =  10eq.  (1) yields E = 9 5 6 ,  
i.e., only about; 10% of features being visited by each tree. 
Since the time-complexity of each node split is usually linear 
with respect to the number  of a t t r ibutes  involved, the overall 
speed-up with respect to a tree grown using all features can 
be expected to be proportional to ~ .  

The above suggests tha t  by knowing the average fraction 
of features, E, likely to be visited during the tree construc- 
tion, we can a t tempt  to speed up and /or  simplify the learn- 
ing process for each tree by handing it a random subset of 
features of size E, in advance, without otherwise modifying 
the tree-growing algorithm in any way. The advantage of 
such an approach is evident in cases where the entire train- 
ing set is too big to be contained in the computer 's  memory, 
but  where the training set slice corresponding to the ran- 
dom feature window (of size E)  may do so. Also, note tha t  
each tree component of a Random Forest can be seen as per- 
forming a variant of N-tuple sampling of the input feature 
space. 

3.2 Group effects 
Let us assume tha t  E << N, which may occur if the in- 

dividual tree models are severely constrained (e.g., S = 1) 
and/or  when the number of available features is quite large. 
Since individual trees sample the feature space indepen- 
dently from one another, the binomial model used to es- 
t imate E in eq. (1) can be used to est imate the number  
of unique features seen by a collection of K trees. Here E 
takes the place of F, while K takes the place of S, and the 
expected number  of unique features visited by at least one 
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tree in the collection is estimated as 

EK N ( 1 -  (1 . ~ ) K )  = - (2) 

If EK is significantly smaller than N for some value of K 
(e.g., EK/N < 0.5) then, for large feature spaces, an attrac- 
tive strategy of growing a randomized tree ensemble might 
be to construct it in blocks of K trees, where each block 
sees only EK of the original input features (and assuming, 
of course, tha t  the learning set with EK features does not ex- 
ceed the available memory resources of the running process). 
Note tha t  the algorithm used to grow each individual tree 
remains the same. 

Since the order in which the tree models are created is 
irrelevant (with exceptions, such as boosting), the process 
of building a large ensemble of trees for a high-dimensional 
problem might be parallelized by mapping the tree ensemble 
onto number  of machines, each growing a collection of K 
trees over a reduced feature space (i.e., where the number 
of a t t r ibutes  is reduced, via random sampling, from N to 
EK). In practice, for efficiency reasons one might want to 
grow more than K trees per block. This will result in the 
trees grown within a common block being more correlated 
with each other than with trees grown over different feature 
windows. An ensemble consisting of T trees implemented 
in this way may underperform one constructed using the 
original algorithm, although the effects might be negligible 
if the "overloading" performed within each block is not too 
extreme. 

To summarize, in cases where the complete training set 
with all features is too big to fit into computer 's  memory 
(i.e., RAM), one might construct a Random Forest by: 

• Step 1: choosing a random subset of F features (as- 
suming tha t  the feature-reduced training set overcomes 
the RAM limitations); 

• Step 2: building K random trees by sampling from the 
pre-selected features only; 

• Step 3: repeating steps 1 and 2 for a predefined num- 
ber of times, or till the desired level of accuracy, or 
a convergence criterion has been reached. For parallel 
implementations, each sequence of steps 1 and 2 might 
be executed on a separate machine. 

A suitable value of F might determined via cross-validation 
or heuristically. As demonstrated in [8], Random Forests are 
not overly sensitive to the choice of F and for rich feature 
datasets, good results are achieved for F << N. 

4. A P P L I C A T I O N  T O  B O O S T I N G  
The popular Adaboost algorithm [11] (and its arcing vari- 

ants [7]) is an apparent  exception among other ensemble 
classifier schemes, since it requires the component classifiers 
to be built  in a sequential fashion, and is.thus more difficult 
to implement in parallel. The power of boosting stems from 
its continuous reweighting of training instances, so tha t  dif- 
ficult to classify examples receive more priority over time. 
Despite its sequential and deterministic nature, it has been 
argued in ([8] and [3]) tha t  Adaboost  can be seen as a spe- 
cial form of a Random Forest, or MRCL, since in the limit 
of many iterations it can be viewed as a special type of sta- 
tistical sampling from a classifier distribution. 

Typically, the problem of scaling up boosting has been at- 
tacked in the context of datasets having excessive numbers of 
training instances. A few effective parallelization approaches 
have been put  forward, based on combining the arcing vari- 
ant of boosting with synchronizing the way in which weights 
are assigned to individual training instances among the par- 
allel nodes [14][20]. Adaboost  assigns non-uniform weights 
to its component classifiers but, as reported for example in 
[7][3][14], the weights assigned by boosting can be substi- 
tu ted with uniform weights (which simplifies parallelization 
[14][20]) with little effect on the aggregate classifier perfor- 
mance. In purely sequential implementations, it has been 
proposed to modify arcing such tha t  only much smaller sub- 
sets (in terms of the number  of instances) of the original 
training data are selected for each iteration [13] (a simi- 
lar approached using adaptive resampling was described in 
[10]). One can see tha t  this lat ter  approach bears strong 
similarity to the idea of using only small subsets of total 
features when building each model in Random Forests. 

Focusing on the use of trees as base learners, Amit et al. 
[3] extended the randomization idea to boosting by defining 
Randomized Boosting, where during each boosting iteration 
a component tree classifier uses random subsets of features 
when choosing the node splits, jus t  as in the case of Ran- 
dom Forests. For some data  sets, Randomized Boosting 
was even reported to outperform standard (i.e., determinis- 
tic) boosting. Clearly, the feature subset selection aspects 
of Random Forests discussed in Section 3 apply to Random- 
ized Boosting as well. In fact, Randomized Boosting can 
be seen as combining two approaches building classifier en- 
sembles: boosting and randomization of tree decision splits. 
Interestingly, Breiman reported in [8] tha t  practical imple- 
mentations of Random Forests seem to perform bet ter  when 
combined with bagging, which could be seen as "Random- 
ized Bagging". 

The experiments performed in [3] used shallow trees in the 
form of stumps even for fairly moderate numbers of features 
and, indeed, to effectively apply Adaboost  to multi-class 
feature-rich problems, such as text categorization, Schapire 
and Singer proposed to use stumps, in a collection of algo- 
ri thms termed BoosTexter [16]. Boosting with stumps as 
base learners has also been reported in [3][10] and [12], for 
example. In the following experimental section we adapted 
the Real Adaboost.MH (we will drop the Real prefix for 
brevity) algorithm from BoosTexter [16] to be used with 
Randomized Boosting. Adaboost .MH utilizes a stump as 
the base weak learner and applies uniform weights to all 
component classifiers; the reader is referred to [16] for full 
details. The randomized version of Adaboost.MH simply 
uses just  a random subset of F features during each boost- 
ing iteration, as discussed in Section 3. 

5. E X P E R I M E N T A L  S E T U P  
To evaluate the effectiveness of Randomized Boosting, and 

demonstrate the value of the associated feature subset selec- 
tion, a number of text  classification experiments were per- 
formed using the well-known Reuters-215782 document cor- 
pus. The text medium was chosen~ since it represents a 
naturally high dimensional domain, common in many data  
mining applications. Following [16], we used the popular 
Mod-Apte split [41 of the Reuters corpus and focused on the 

Zhttp: / /www.research.at t .com/-lewis/reuters21578.html 
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6 of the most populous categories {acq, com, earn ,  econ, 
engr,  gar l} ,  where documents belonging to multiple cate- 
gories were removed, leaving the 6,089 training documents 
and 3,044 test documents. For pre-processing, all charac- 
ters were converted to lower case, and words were defined 
as sequences of characters delimited by whitespace, which 
produced N = 6,502 unique features. Words are treated as 
binary attributes, i.e., only the presence/absence of a word 
in a document was taken into account. 

The text categorization performance was measured by 
means of the macro- and micro-averaged F1 metric, often 
used in the information-retrieval community, defined as 

F1 ---- 2 precis ion,  recall 
precision -t- recall 

where precision is the ratio of the correctly classified doc- 
uments for a given class to the total number of documents 
classified as belonging to that  class, while recall is the ratio 
of the correctly classified documents for a given class to the 
total number of documents belonging to that  class. In the 
case of macro-averaging, F1 is first measured when distin- 
guishing each class from all others and then the results are 
averaged. Conversely, in micro-averaging, the contingency 
tables corresponding to all one-against-others classifiers are 
merged and then the overall average is computed. More 
details can be found in [18]. 

Given this data set, three sets of experiments were per- 
formed: 

tI001 001 01  I 

Figure  1: Micro -averaged  F1 t e s t - s e t  a c c u r a c y  o f  
r a n d o m i z e d  A d a b o o s t . M H  for different  choices  of  al- 
pha .  

• Standard Adaboost using Adaboost.MH. 

• Randomized Boosting based Adaboost.MH for differ- 
ent values of the feature window size, F.  For each value 
of F, 10 runs of the experiment where performed with 
different random seeds, and the results were averaged. 

• "Overloaded" Randomized Boosting, where instead of 
performing the randomization step at every iteration, 
it was performed at every I iterations for different set- 
tings of I. Overloading can be considered a special case 
of the block-oriented approach to the ensemble imple- 
mentation (see Section 3.2), where E is made equal to 
F.  It results in running deterministic boosting for I 
iterations on the feature-reduced data, before a new 
random feature subset is selected. 

• Block oriented randomized boosting based on Adaboost.MH 
for a selection of the feature block size EK, and the 
feature window size, F.  

6. RESULTS 
Standard Adaboost.MH achieved the micro and macro- 

averaged F1 test-set accuracy of 0.92 and, 0.95, respectively. 
Little change in accuracy occurred beyond 500 iterations, 
and for all subsequent experiments the overall number of 
boosting iterations (however divided between blocks, etc.) 
was kept at 500. 

For Randomized Boosting, the dependence of the test-set 
F1 measure on the number of boosting iterations and dif- 
ferent choices of F is depicted in Figures 1 and 2 where, 
instead of showing the absolute values of F,  we used their 
relative values, with the total number of features used as a 
reference, i.e., a = F / N ,  where c~ E (0, 1). Note that  for 

= 1 Randomized Boosting is equivalent to deterministic 

0001 001 ~1 I 

Figure  2: M a c r o - a v e r a g e d  F1 t e s t - s e t  a c c u r a c y  o f  
r a n d o m i z e d  A d a b o o s t . M H  for dif ferent  choices  o f  al- 
pha .  
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Figure 3: Micro-averaged F1 test-set accuracy of  
randomized Adaboos t .MH for a lpha=0.1  and dif- 
f e r e n t  overloading factors. The  x-axis indicates the 
number  of  boost ing rounds performed for each r a n -  
d o m  feature subset.  

Figure 4: Macro-averaged F1 test-set accuracy of  
randomized A d a b o o s t . M H  for a lpha=0.1  and dif- 
ferent overloading factors. The  x-axis indicates the 
number  of  boost ing rounds performed for each ran- 
dom feature subset .  

boosting. For each value of o~, 10 runs of 500 iterations 
were performed using different random seeds. Clearly, for 
this data  set, randomized boosting using just  10% of to- 
tal  features at  each iteration achieves performance largely 
equivalent to tha t  of s tandard boosting using all features, 
while resulting in a 10-fold overall speedup. 

In experiments with the overloaded and block-oriented 
Randomized Boosting, we used the fixed setting of o~ = 0.1. 
To overload Randomized Boosting, we performed I boost- 
ing iterations for each random choice of features (with I 
ranging from 2 to 500), while keeping the overall number of 
iterations at 500. The results are shown in Figures 3 and 4, 
which suggest tha t  moderate overloading does not seem to 
harm the overall accuracy of the predictor, which may lead 
to more efficient implementations when dealing with large 
high-dimensional datasets. 

To evaluate the effects of larger-sized blocks, we used 
K = 5 blocks, each sampling ~ = 50% of the available fea- 
tures. Within each block, Randomized Boosting was run for 
100 iterations, so tha t  the overall number of boosting itera- 
tions was kept at 500, as in the previous experiments. Six 
replicates of the experiment were performed, using differ- 
ent random seeds in each case. The averaged performance 
after 500 iterations was slightly lower tha t  for s tandard Ad- 
aboost.MH and regular Randomized Boosting, but  as shown 
in Figures 5 and 6 the accuracy of the block-oriented algo- 
r i thm was still rising at  the point of termination. There- 
fore, achieving higher accuracy could be a mat ter  of a trade- 
off between the memory resources required to implement a 
block of models, and the run-time cost of a single iteration, 
which could be exploited in parallel implementations. 

7. CONCLUSIONS 
We have shown that ,  for depth-constrained tree models, 

the algorithmic procedures of randomized classifier ensem- 
bles of Random Forests and Randomized Boosting implic- 
itly lead to an effective reduction in the number of input 
features actually used during the construction of each tree. 

This limits the amount  of resources necessary to construct 
each component classifier of an ensemble, and can be ex- 
tremely useful when working with large high-dimensional 
datasets tha t  do not easily fit into the memory space avail- 
able to running processes. Since each model needs to see 
only a fraction of the overall features, a methodology anal- 
ogous to one used in N-tuple networks can be used to apply 
random feature-wise masks to the input data  before passing 
it on to individual models. Moreover, the reduced feature 
requirements of a single model extend to groups of models as 
well, which can be exploited in bo th  sequential and parallel 
randomized ensemble implementations. 

Using a text  categorization task as the test-bed, practical 
experiments with a randomized version with Adaboost.MH 
showed that  Randomized Boosting using only 10% of the 
original number  of features achieves accuracy levels of com- 
parable s tandard Adaboost .MH without requiring more it- 
erations. Further efficiency improvements are possible by 
performing several boosting iterations using the same ran- 
dom feature subset (i.e., overloading) and, for problems with 
particularly many features, by performing two-stage ran- 
domization of features (i.e., blocking). The latter case is 
more amenable to parallel implementations but  there are 
trade-offs between the number  of iterations necessary for 
good accuracy, the size of a feature window used and the 
block overloading factor. Such issues can be resolved by 
taking into account the particulars of the dataset and the 
availability of the computational resources. 

Although we addressed only the problem of handling datasets 
with large numbers of a t t r ibutes  (and ignored the possibil- 
ity of processing excessive number  of data  entries), it would 
be interesting to examine the  effectiveness of combining ran- 
domized feature subset selection with adaptive sampling ap- 
proaches (e.g., those used in [13] and [10]) to handle datasets 
with both  large numbers of features and large numbers of 
data  instances. 
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