
Steiner Forest Orientation Problems

Marek Cygan∗ Guy Kortsarz† Zeev Nutov‡

November 20, 2011

Abstract

We consider connectivity problems with orientation constraints. Given a directed graph D and

a collection of ordered node pairs P let P [D] = {(u, v) ∈ P : D contains a uv-paths}. In the Steiner

Forest Orientation problem we are given an undirected graph G = (V,E) with edge-costs and a set

P ⊆ V × V of ordered node pairs. The goal is to find a minimum-cost subgraph H of G and an

orientation D of H such that P [D] = P . We give for this problem a 4-approximation algorithm.

In the Maximum Pairs Orientation problem we are given a graph G and a multi-collection of

ordered node pairs P on V . The goal is to find an orientation D of G such that |P [D]| is maximum.

Generalizing the result of [1] for |P | = 2, we will show that for a mixed graph G (that may have

both directed an undirected edges), one can decide in nO(|P |) time whether G has an orientation D

with P [D] = P (for undirected graphs this problem admits a polynomial time algorithm for any P ,

but it is NP-complete on mixed graphs). For undirected graphs, we will show that one can decide

whether G admits an orientation D with |P [D]| ≥ k in O(n + m) + 2O(k·log log k) time; hence this

decision problem is fixed parameter tractable, which answers an open question from [2]. We also

show that Maximum Pairs Orientation admits ratio O(log |P |/ log log |P |), which is usually better

than the ratio O(log n/ log log n) of [6].

Finally, we will also show that the following node-connectivity problem can be solved in poly-

nomial time: given a graph G = (V,E) with edge-costs, s, t ∈ V , and an integer `, find a min-cost

subgraph H of G with an orientation D such that D contains ` internally-disjoint st-paths, and `

internally-disjoint ts-paths.

1 Introduction

1.1 Problems considered and our results

We consider connectivity problems with orientation constraints. Unless stated otherwise, graphs

are assumed to be undirected (and may not be simple), but we also consider directed graphs, and

even mixed graphs, which may have both directed an undirected edges. Given a mixed graph H, an

∗Institute of Informatics, University of Warsaw, Poland, cygan@mimuw.edu.pl. Partially supported by National

Science Centre grant no. N206 567140, Foundation for Polish Science and ONR Young Investigator award when

at the University at Maryland.
†Rutgers University, Camden, guyk@camden.rutgers.edu. Partially supported by NSF support grant award

number 0829959.
‡The Open University of Israel, nutov@openu.ac.il.

1

orientation of H is a directed graph D obtained from H by assigning to each undirected edge one of

the two possible directions. For a mixed graph H on node set V and a multi-collection of ordered node

pairs (that is convenient to consider as a set of directed edges) P on V let P [H] denote the subset of

the pairs (or edges) in P for which H contains a uv-path. We say that H satisfies P if P [H] = P ,

and that H is P -orientable if H admit an orientation D that satisfies P . We note that for undirected

graphs it is easy to check in polynomial time whether H is P -orientable, c.f. [8] and Section 3 in this

paper.

Our first problem is the classic Steiner Forest problem with orientation constraints.

Steiner Forest Orientation

Instance: A graph G = (V,E) with edge-costs and a set P ⊆ V × V of ordered node pairs.

Objective: Find a minimum-cost subgraph H of G with an orientation D that satisfies P .

Theorem 1.1 Steiner Forest Orientation admits a 4-approximation algorithms.

Our next bunch of results deals with maximization problems of finding an orientation that satisfies

the maximum amount of the demand.

Maximum Pairs Orientation

Instance: A graph G and a multi-collection of ordered node pairs (i.e., a set of directed edges) P on V .

Objective: Find an orientation D of G such that |P [D]| is maximum.

Let k Pairs Orientation be the decision problem of determining whether Maximum Pairs Orientation

has a solution of value at least k. Let P -Orientation be the decision problem of determining whether

G is P -orientable (this is the k Pairs Orientation with k = |P |). As was mentioned, for undirected

graphs P -Orientation can be easily decided in polynomial time. Arkin and Hassin [1] proved that that

on mixed graphs, P -Orientation is NP-complete, but it is polynomial time solvable for |P | = 2. We

widely generalize the result of [1] as follows.

Theorem 1.2 Given a mixed graph H and P ⊆ V ×V one can decide in nO(|P |) time whether H is P -

orientable; namely, P -Orientation with a mixed graph H can be decided in nO(|P |) time. In particular,

the problem can be decided in polynomial time for any instance with constant |P |.

In several papers, c.f. [11], it is stated that any instance of Maximum Pairs Orientation admits

a solution D such that |P [D]| ≥ |P |/(4 log n). Furthermore Gamzu et al. [6] show that Maximum

Pairs Orientation admits an O(log n/ log logn)-approximation algorithm. In [2] it is shown that k

Pairs Orientation is fixed parameter tractable1 when parameterized by the maximum number of pairs

that can be connected via one node. They posed an open question if the problem is fixed parameter

tractable when parameterized by k. Our next result answers this open question and improves the

bounds of [11, 6].

Theorem 1.3 Any instance of Maximum Pairs Orientation admits a solution D, that can be computed

in polynomial time, such that |P [D]| ≥ |P |/(4 log2(3|P |)). Furthermore

1In the parameterized complexity setting, an instance of a decision problem comes with an integer parameter k. A

problem is said to be fixed parameter tractable (w.r.t. k) if there exists an algorithm that decides any instance (|I|, k) in
time f(k)poly(|I|) for some (usually exponential) computable function f .

2

(i) k Pairs Orientation can be decided in O(n + m) + 2O(k·log log k) time; thus it is fixed parameter

tractable when parameterized by k.

(ii) Maximum Pairs Orientation admits an O(log |P |/ log log |P |)-approximation algorithm.

Note that there are values of |P | that are much smaller than n for which exhaustive search can-

not be performed in polynomial time, say |P | = 2
√
logn. For this value of |P |, we can get ratio

O(
√

log n/ log logn), which is better than the ratio O(log n/ log log n) of Gamzu et al. [6].

One may also consider “high-connectivity” orientation problems, to satisfy prescribed connectivity

demands. Many papers considered edge-connectivity orientation problems, c.f. [10]. Almost nothing is

known about node-connectivity orientation problems. We consider the following simple but nontrivial

variant.

` Disjoint Paths Orientation

Instance: A graph G = (V,E) with edge-costs, s, t ∈ V , and an integer `.

Objective: Find a min-cost subgraph H of G with an orientation D such that D contains ` internally-

disjoint st-paths, and ` internally-disjoint ts-paths.

Checking whether ` Disjoint Paths Orientation admits a feasible solution can be done in polyno-

mial time using the characterization of feasible solutions of Egawa, Kaneko, and Matsumoto [3] (see

Theorem 5.1 in Section 5); we use this characterization to prove the following.

Theorem 1.4 ` Disjoint Paths Orientation can be solved in polynomial time.

Theorems 1.1, 1.2, 1.3, and 1.4, are proved in sections 2, 3, 4, and 5, respectively.

1.2 Previous and related work

Let λH(u, v) denote the (u, v)-connectivity in a graph H, namely, the maximum number of pairwise

edge-disjoint uv-paths in H. Similarly, let κH(u, v) denote the maximum number of pairwise internally

node-disjoint uv-paths in H. Given edge-connectivity demand function r = {r(u, v) : (u, v) ∈ V ×V },
we say that H satisfies r if λH(u, v) ≥ r(u, v) for all (u, v) ∈ V × V ; similarly, for node connectivity

demands, we say that H satisfies r if κH(u, v) ≥ r(u, v) for all (u, v) ∈ V × V .

Survivable Network Orientation

Instance: A graph G = (V,E) with edge-costs and edge/node-connectivity demand function r =

{r(u, v) : (u, v) ∈ V × V }.
Objective: Find a minimum-cost subgraph H of G with orientation D that satisfies r.

So far we assumed that the orienting costs are symmetric; this means that orienting an undirected

edge connecting u and v in each one of the two directions is the same, namely, that c(u, v) = c(v, u).

This assumption is reasonable in practical problems, but in a theoretic more general setting, we might

have non-symmetric costs cuv 6= cvu. Note that the version with non-symmetric costs includes the

min-cost version of the corresponding directed connectivity problem, and also the case when the input

graph G is a mixed graph. For example, Steiner Forest Orientation includes the Directed Steiner Forest

3

problem, which is Label-Cover hard to approximate; this is why we considered the symmetric costs

version.

Khanna, Naor, and Shepherd [10] considered several orientation problems with non-symmetric

costs. They showed that when D is required to be k-edge-outconnected from a given roots s (namely,

D contains k-edge-disjoint paths from s to every other node), then the problem admits a polynomial

time algorithm. In fact they considered a more general problem of finding an orientation that covers

an intersecting supermodular function; further generalization of this result due to Frank, T. Király,

and Z. Király was presented in [5]. For the case when D should be strongly connected, [10] obtained

a 4-approximation algorithm; note that our Steiner Forest Orientation has more general demands, but

we consider symmetric edge-costs. For the case when D is required to be k-edge-connected, k ≥ 2,

[10] obtained a pseudo-approximation algorithm that computes a (k − 1)-edge-connected subgraph of

cost at most 2k times the cost of an optimal k-connected subgraph.

We refer the reader to [4] for a survey on characterization of graphs that admit orientations

satisfying prescribed connectivity demands, and here mention only the following central theorem, that

can be used to obtain a pseudo-approximation for edge-connectivity orientation problems.

Theorem 1.5 (Well-Balanced Orientation Theorem, Nash-Williams [12])

Any undirected graph H = (V,EH) has an orientation D for which λD(u, v) ≥
⌊
1
2λH(u, v)

⌋
for all

(u, v) ∈ V × V .

We note that given H, an orientation as in Theorem 1.5 can be computed in polynomial time. It

is easy to see that if H has an orientation D that satisfies r then H satisfies the demand function q

defined by q(u, v) = r(u, v) + r(v, u). Theorem 1.5 implies that edge-connectivity Survivable Network

Orientation admits a polynomial time algorithm that computes a subgraph H of G and an orientation

D of H such that c(H) ≤ 2opt and λD(u, v) ≥
⌊
1
2(r(u, v) + r(v, u))

⌋
for all (u, v) ∈ V × V . This is

achieved by applying Jain’s [9] algorithm to compute a 2-approximate solution H for the corresponding

undirected edge-connectivity Survivable Network instance with demands q(u, v) = r(u, v)+r(v, u), and

then computing an orientation D of H as in Theorem 1.5. The above algorithm also applies for non-

symmetric edge-costs, invoking an additional cost factor of maxuv∈E c(v, u)/c(u, v). Summarizing, we

have the following observation, which we failed to find in the literature.

Corollary 1.6 Edge-connectivity Survivable Network Orientation (with non-symmetric costs) admits

a polynomial time algorithm that computes a subgraph H of G and an orientation D of H such that

c(H) ≤ 2opt · maxuv∈E c(v, u)/c(u, v) and λD(u, v) ≥
⌊
1
2(r(u, v) + r(v, u))

⌋
for all (u, v) ∈ V × V .

In particular, the problem admits a 2-approximation algorithm if both the costs and the demands are

symmetric.

2 Proof of Theorem 1.1

For a mixed graph or an edge set H on a node set V and X,Y ⊆ V let δH(X,Y) denote the set of

all (directed and undirected) edges in H from X to Y and let dH(X,Y) = |δH(X,Y)| denote their

number; for brevity, δH(X) = δH(X, X̄) and dH(X) = dH(X, X̄), where X̄ = V \X.

Given an integral set function f on subsets of V we say that H covers f if dH(X) ≥ f(X) for all

4

X ⊆ V . Define a set-function fr by fr(∅) = fr(V) = 0 and for every ∅ 6= X ⊂ V

fr(X) = max{r(u, v) : u ∈ X, v ∈ X̄}+ max{r(v, u) : u ∈ X, v ∈ X̄} . (1)

Note that the set-function fr is symmetric, namely, that fr(X) = fr(X̄) for all X ⊆ V .

Lemma 2.1 If H has an orientation D that satisfies an edge-connectivity demand function r then H

covers fr.

Proof: Let X ⊆ V . By Menger’s Theorem, any orientation D of H that satisfies r has at least

max{r(u, v) : u ∈ X, v ∈ X̄} edges from X to X̄, and at least max{r(v, u) : u ∈ X, v ∈ X̄} edges from

X̄ to X. The statement follows. �

Recall that in the Steiner Forest Orientation problem we have r(u, v) = 1 if (u, v) ∈ P and r(u, v) = 0

otherwise. We will show that if rmax = maxu,v∈V r(u, v) = 1 then the inverse to Lemma 2.1 is also

true, namely, if H covers fr then H has an orientation that satisfies r; for this case, we also give a

4-approximation algorithm for the problem of computing a minimum-cost subgraph that covers fr.

We do not know if these results can be generalized for rmax ≥ 2.

Lemma 2.2 For rmax = 1, if H covers fr then H has an orientation that satisfies r.

Proof: Observe that if (u, v) ∈ P (namely, if r(u, v) = 1) then u, v belong to the same connected

component of H. Hence it sufficient to consider the case when H is connected. Let D be an orientation

of H obtained as follows. Orient every 2-edge-connected component of H to be strongly connected

(recall that a directed graph is strongly connected if there is a directed path from any its node to

the other); this is possible by Theorem 1.5. Now we orient the bridges of H. Consider a bridge e of

H. The removal of e partitions V into two connected components X, X̄. Note that δP (X, X̄) = ∅ or

δP (X̄,X) = ∅, since fr(X) ≤ dH(X) = 1. If δP (X, X̄) 6= ∅, we orient e from X to X̄; if δP (X̄,X) 6= ∅,
we orient e from X̄ to X; and if δP (X, X̄), δP (X̄,X) = ∅, we orient e arbitrarily. It is easy to see that

the obtained orientation D of H satisfies P . �

We say that an edge-set or a graph H covers a set-family F if dH(X) ≥ 1 for all X ∈ F . A

set-family F is said to be uncrossable if for any X,Y ∈ F the following holds: X ∩ Y,X ∪ Y ∈ F
or X \ Y, Y \ X ∈ F . The problem of finding a minimum-cost set of undirected edges that covers

an uncrossable set-family F admits a primal-dual 2-approximation algorithm, provided the inclusion-

minimal members of F can be computed in polynomial time [7]. It is known that the undirected

Steiner Forest problem is a particular case of the problem of finding a min-cost cover of an uncrossable

family, and thus admits a 2-approximation algorithm.

Lemma 2.3 Let H = (V, J ∪ P) be a mixed graph, where edges in J are undirected and edges in P

are directed, such that for every uv ∈ P both u, v belong to the same connected component of the graph

(V, J). Then the set-family F = {S ⊆ V : dJ(S) = 1 ∧ dP (S), dP (S̄) ≥ 1} is uncrossable, and its

inclusion minimal members can be computed in polynomial time.

Proof: Let C be the set of connected components of the graph (V, J). Let C ∈ C. Any bridge e of C

partitions C into two parts C ′(e), C ′′(e) such that e is the unique edge in J connecting them. Note

that the condition dJ(S) = 1 is equivalent to the following condition (C1), while if the condition (C1)

5

holds then the condition dP (S), dP (S̄) ≥ 1 is equivalent to the following condition (C2) (since no edge

in P connects two distinct connected components of (V, J)).

(C1) There exists CS ∈ C and a bridge eS of CS , such that S is a union of one of the sets X ′ =

C ′S(eS), X ′′ = C ′′S(eS) and sets in C \ {CS}.

(C2) dP (X ′, X ′′), dP (X ′′, X ′) ≥ 1.

Hence we have the following characterization of the sets in F : S ∈ F if, and only if, conditions

(C1),(C2) hold for S. This implies that every inclusion-minimal members of F is C ′(e) or C ′′(e),

for some bridge e of C ∈ C. In particular, the inclusion-minimal members of F can be computed in

polynomial time.

Now let X,Y ∈ F (so conditions (C1),(C2) hold for each one of X,Y), let CX , CY ∈ C be the

corresponding connected components and eX , eY the corresponding bridges (possibly CX = CY , in

which case we also may have eX = eY), and letX ′, X ′′ and Y ′, Y ′′ be the corresponding partitions of CX

and CY , respectively. Since eX , eY are bridges, at least one of the sets X ′∩Y ′, X ′∩Y ′′, X ′′∩Y ′, X ′′∩Y ′′

must be empty, say X ′ ∩ Y ′ = ∅. Note that the set-family F is symmetric, hence to prove that

X ∩ Y,X ∪ Y ∈ F or X \ Y, Y \ X ∈ F , it is sufficient to prove that A \ B,B \ A ∈ F for any

pair A,B such that A ∈ {X, X̄}, B ∈ {Y, Ȳ }. E.g., if A = X and B = Ȳ , then A \ B = X ∩ Y and

B\A = V \(X∪Y), hence A\B,B\A ∈ F together with the symmetry of F implies X∩Y,X∪Y ∈ F .

Similarly, if A = X̄ and B = Ȳ , then A\B = Y \X and B \A = X \Y , hence A\B,B \A ∈ F implies

Y \X,X \Y ∈ F . Thus w.l.o.g. we may assume that X ′ ⊆ X and Y ′ ⊆ Y , see Figure 1, and we show

that X \ Y, Y \X ∈ F . Note that X ∩ Y is a (possibly empty) union of some sets in C \ {CX , CY }.
Thus X \ Y is a union of X ′ and some sets in C \ {CX , CY }. This implies that conditions (C1),(C2)

hold for X \ Y , hence X \ Y ∈ F ; the proof that Y \X ∈ F is similar. This concludes the proof of

the lemma. �

Lemma 2.4 Given a Steiner Forest Orientation instance, the problem of computing a minimum-cost

subgraph H of G that covers fr admits a 4-approximation algorithm.

Proof: The algorithm has two phases. In the first phase we solve the corresponding undirected Steiner

Forest instance with the same demand function r. The Steiner Forest problem admits a 2-approximation

algorithms, hence c(J) ≤ 2opt. Let J be a subgraph of G computed by such a 2-approximation

algorithm. Note that fr(S) − dJ(S) ≤ 1 for all X ⊆ V . Hence to obtain a cover of fr it is sufficient

to cover the family F = {S ⊆ V : fr(S)− dJ(S) = 1} of the deficient sets w.r.t. J . The key point is

that the family F is uncrossable, and that the inclusion-minimal members of F can be computed in

polynomial time. In the second phase we compute a 2-approximate cover of this F using the algorithm

of [7]. Consequently, the problem of covering fr is reduced to solving two problems of covering an

uncrossable set-family.

To show that F is uncrossable we us Lemma 2.3. Note that for any uv ∈ P both u, v belong to

the same connected component of (V, J), and that fr(S) − dJ(S) = 1 if, and only if, dJ(S) = 1 and

dP (S), dP (S̄) ≥ 1, hence F = {S ⊆ V : dJ(S) = 1 ∧ dP (S), dP (S̄) ≥ 1}. Consequently, by Lemma 2.3,

the family F is uncrossable and its inclusion-minimal members can be computed in polynomial time.

This concludes the proof of the lemma. �

6

X

Y’

YeX

X’

Y

e

Figure 1: Illustration to the proof of Lemma 2.3; components distinct from CX , CY are shown by gray

ellipses.

7

The proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

The following (essentially known) statement is straightforward.

Lemma 3.1 Let G be a mixed graph, let P be a set of directed edges on V , and let C be a subgraph

of G that admits a strongly connected orientation. Let G′, P ′ be obtained from G,P by contracting C

into a single node. Then G is P -orientable if, and only if, G′ is P ′-orientable. In particular, this is

so if C is a cycle.

Corollary 3.2 P -orientation (with an undirected graph G) can be decided in polynomial time.

Proof: By repeatedly contracting a cycle of G, we obtain an equivalent instance, by Lemma 3.1.

Hence we may assume that G is a tree. Then for every (u, v) ∈ P there is a unique uv-path in G,

which imposes an orientation on all the edges of this path. Hence if suffices to check that no two pairs

in P impose different orientations of the same edge of the tree. �

Our algorithm for mixed graphs is based on a similar idea. We say that a mixed graph is an

ori-cycle if it admits an orientation that is a directed simple cycle. We need the following statement.

Lemma 3.3 Let G = (V,E ∪ A) be a mixed graph and let G′ be obtained from G by contracting

every connected component of the undirected graph (V,E) into a single node. If there is a directed

cycle (possibly a self-loop) C ′ in G′ then there is an ori-cycle C in G, and such C can be found in

polynomial time.

Proof: If C ′ is also a directed cycle in G, then we take C = C ′. Otherwise, we replace every node vX
of C ′ that corresponds to a contracted connected component X of (V,E) by a path, as follows. Let

a1 be the arc entering vX in C ′ and let a2 be the arc leaving vX in C ′. Let v1 be the head of a1 and

similarly let v2 be a the tail of a2. Since X is a connected component in (V,E), there is a v1v2-path

in (V,E), and we replace X by this path. The result is the required ori-cycle C (possibly a self-loop)

in G. It is easy to see that such C can be obtained from C ′ in polynomial time. �

By Lemmas 3.3 and 3.1 we may assume that the directed graph G′ obtained from G by contracting

every connected components of (V,E), is a directed acyclic multigraph (with no self-loops). Let

p = |P |. Let f : V → V (G′) be the function which for each node v of G assigns a node f(v) in G′ that

represents the connected component of (V,E) that contains v (in other words the function f shows a

correspondence between nodes before and after contractions).

The first step of our algorithm is to guess the first and the last edge for each pair i of the p pairs

in P , by trying all nO(p) possibilities. If for pair i an undirected edge is selected as the first or the

last one on the corresponding path, then we orient it accordingly and move it from E to A. Thus by

functions last,first : {1, . . . , p} → A we denote the guessed first and last arc for each of the p paths.

Now we present a branching algorithm with exponential time complexity which we later turn to

nO(p) time by applying memorization. Let π be a topological ordering of G′. By cur : {1, . . . , p} → A

we denote the most recently chosen arc from A for each of the i-paths (initially cur(i) = first(i)).

8

In what follows we consider subsequent nodes vC of G′ with respect to π and branch on possible

orientations of the connected component C of G. We use this orientation to update the function cur

for all the arguments i such that cur(i) is an arc entering a node mapped to vC .

Let vC ∈ V (G′) be the first node w.r.t. to π which was not yet considered by the branching

algorithm. Let I ⊆ {1, . . . , p} be the set of indices i such that cur(i) = (u, v) ∈ A for f(v) = vC , and

cur(i) 6= last(i). If I = ∅ than we skip vC and proceed to the next node in π. Otherwise for each

i ∈ I we branch on choosing an arc (u, v) ∈ A such that f(u) = vC , that is we select an arc that

the i-path will use just after leaving the connected component of G corresponding to the node vC
(note that there are at most |A||I| = nO(p) branches). Before updating the arcs cur(i) for each i ∈ I
in a branch, we check whether the connected component C of (V,E) consisting of nodes f−1(vC) is

accordingly orientable by using Lemma 3.2 (see Fig. 2). Finally after considering all the nodes in π

we check whether for each i ∈ {1, . . . , p} we have cur(i) = last(i). If this is the case our algorithm

returns YES and otherwise it returns NO in this branch.

a2 b2

b1
a1

a3

vC

a1

a2

b1

b2

C

Figure 2: Our algorithm considers what orientation the connected component C (of (V,E)) will have.

Currently we have cur(1) = a1,cur(2) = a2 and cur(3) = a3, hence I = {1, 2}. If in a branch we set

new values cur(1) = b1 and cur(1) = b2 then by Lemma 3.2 we can verify that it is possible to orient C

in such a way there is a path from the end-point of a1 to the start-point of b1 and from the end-point

of a2 to the start-point of b2. However the branch when new values cur(1) = b2 and cur(2) = b1 will

be terminated since it is not possible to orient C accordingly.

The correctness of our algorithm follows from the invariant that each node vC is considered at most

once since and all the updated values cur(i) are changed to arcs that are to the right with respect to

π.

To improve the currently exponential time complexity we observe that we can apply the standard

technique of memorization since when considering a node vC it is not important what orientations

previous nodes in π have, because all the relevant information is stored in the cur function. Hence in

a state of memorization we store the index of the currently considered node in π and current values

of the function cur, which leads to nO(p) states and nO(p) total time complexity.

9

4 Proof of Theorems 1.3

Lemma 4.1 There exists a linear time algorithm that given an instance of Maximum Pairs Orientation

or of k Pairs Orientation, transforms it into an equivalent instance such that the input graph is a tree

with at most 3p− 1 nodes.

Proof: As is observed in [8], and also follows from Lemma 3.1, we can assume that the input graph

is a tree; such tree can be constructed in linear time by contracting 2-edge-connected components. If

a leaf of the tree does not belong to any pair in P , it can be discarded. If a leaf v belongs to exactly

one pair in P , then without loss of generality we may contract the edge incident to v. If a node v has

degree 2 in the tree and does not belong to any pair, we contract one of the edges incident to v; this is

since in any inclusion minimal solution, one of the two edges enters v if, and only if, the other leaves

v. It is not hard to verify that the described reduction can be performed in linear time.

We claim that after these reductions are implemented, the tree G′ obtained has at most 3p − 1

nodes. Let ` be the number of leaves and t the number of nodes of degree 2 in G′. As each node of

degree less than 3 in G′ is an si or ti, ` + t ≤ 2p. Since each leaf belongs to at least two pairs in P ,

` ≤ p. The number of nodes of degree at least 3 is at most `− 1 and so |V (G′)| ≤ 2`+ t− 1 ≤ 3p− 1.

�

After applying Lemma 4.1, the number of nodes n of the returned tree is at most 3p−1. Therefore,

by [11], one can find in polynomial time a solution D, such that |P [D]| ≥ p/(4 log2 n) ≥ p/(4 log2(3p)).

Therefore, if for a given k Pairs Orientation instance we have k ≤ p/(4 log2(3p)), then clearly it is a YES

instance. However if k > p/(4 log2(3p)), then p = Θ(k log k). In order to solve the k Pairs Orientation

instance we consider all possible
(
p
k

)
subsets P ′ of exactly k pairs from P , and check if the graph is

P ′-orientable. Observe that(
p

k

)
≤ pk

k!
≤ pk

(k/e)k
≤ pk

(p/(4e log2(3p)))
k

= (4e log2(3p))
k = 2O(k log log k)

where the second inequality follows from the Stirling’s formula. Therefore the running time is O(m+

n) + 2O(k log log k), which proves (i).

Combining Lemma 4.1 with the O(log n/ log log n)-approximation algorithm of Gamzu et al. [6]

proves (ii), and consequently the proof of Theorem 1.3 is complete.

5 Proof of Theorem 1.4

We need the following characterization due to [3] of feasible solutions to ` Disjoint Paths Orientation.

Theorem 5.1 ([3]) Let H = (V,EH) be an undirected graph and let s, t ∈ V . Then H has an

orientation D such that κD(s, t), κD(t, s) ≥ ` if, and only if,

λH\C(s, t) ≥ 2(`− |C|) for every C ⊆ V \ {s, t} with |C| < ` . (2)

Furthermore, if H satisfies (2), then an orientation D of H with κD(s, t), κD(t, s) ≥ ` can be computed

in polynomial time.

10

Now, let us use the following version of Menger’s Theorem for node and edge capacitated graphs;

this version can be deduced from the original Menger’s theorem by elementary constructions.

Lemma 5.2 Let s, t be two nodes in a directed/undirected graph H = (V,E) with edge and node

capacities {u(a) : a ∈ E ∪ (V \ {s, t}}. Then the maximum number of st-paths such that every a ∈
E∪(V \{s, t}) appears in at most u(a) of them equals to min{u(A) : A ⊆ E∪(V \{s, t}), λH\A(s, t) = 0}.
�

From Lemma 5.2 we deduce the following.

Corollary 5.3 An undirected graph H = (V,E) satisfies (2) if, and only if,

H contains 2` edge-disjoint st-paths such that every v ∈ V \{s, t} belongs to at most 2 of them . (3)

Proof: Assign capacity u(e) = 1 to every e ∈ E and capacity u(v) = 2 to every v ∈ V \ {s, t}. By

Lemma 5.2, (3) is equivalent to the condition

min{u(C ∪ F) : F ⊆ E,C ⊆ (V \ {s, t}), λH\(C∪F)(s, t) = 0} ≥ 2` .

Since u(C) = 2 for all C ⊆ V \ {s, t} and u(F) = |F | for all F ⊆ E, the latter condition is equivalent

to the condition

min{|F | : F ⊆ E, λ(H\C)\F (s, t) = 0} ≥ 2`− 2|C| for every C ⊆ V \ {s, t} with |C| < ` .

The above condition is equivalent to (2), since for every C ⊆ V \ {s, t} we have min{|F | : F ⊆
E, λ(H\C)\F (s, t) = 0} = λH\C(s, t), by applying Menger’s Theorem on the graph H\C. The statement

follows. �

Now consider the following problem.

Node-Capacitated Min-Cost k-Flow

Instance: A graph G = (V,E) with edge-costs, s, t ∈ V , node-capacities {bv : v ∈ V \ {s, t}}, and an

integer k.

Objective: Find a set Π of k edge-disjoint paths such that every v ∈ V \ {s, t} belongs to at most bv
paths in Π.

From Corollary 5.3, we see that ` Disjoint Paths Orientation is a particular case of Node-Capacitated

Min-Cost k-Flow when H is undirected, k = 2`, and all node capacities are 2.

Node-Capacitated Min-Cost k-Flow can be solved in polynomial time, for both directed and undi-

rected graphs, by reducing the problem to the standard Edge-Capacitated Min-Cost k-Flow problem.

For directed graphs this can be done by a standard reduction of converting node-capacities to edge-

capacities: replace every node v ∈ V \ {s, t} by the two nodes v+, v−, connected by the edge v+v−

having the same capacity as v, and redirect the heads of the edges entering v to v+ and the tails

of the edges leaving v to v−. The undirected case is easily reduced to the directed one, by solving

the problem on the bidirection graph of G, obtained from G by replacing every undirected edge e

connecting u, v by a pair of antiparallel directed edges uv, vu of the same cost as e.

The proof of Theorem 1.4 is complete.

11

References

[1] E. Arkin and R. Hassin. A note on orientations of mixed graphs. Discrete Applied Mathematics,

116(3):271–278, 2002.

[2] B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann. Exploiting bounded signal flow

for graph orientation based on cause-effect pairs. In Proceedings of the First international ICST

conference on Theory and practice of algorithms in (computer) systems, pages 104–115, 2011.

[3] Y. Egawa, A. Kaneko, and M. Matsumoto. A mixed version of Menger’s theorem. Combinatorica,

11:71–74, 1991.

[4] A. Frank and T. Király. Combined connectivity augmentation and orientation problems. Discrete

Applied Mathematics, 131(2):401–419, 2003.

[5] A. Frank, T. Király, and Z. Király. On the orientation of graphs and hypergraphs. Discrete

Applied Mathematics, 131:385400, 2003.

[6] I. Gamzu, D. Segev, and R. Sharan. Improved orientations of physical networks. In WABI, pages

215–225, 2010.

[7] M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. Williamson. Improved

approximation algorithms for network design problems. In SODA, pages 223–232, 1994.

[8] R. Hassin and N. Megiddo. On orientations and shortest paths. Linear Algebra and Its Applica-

tions, pages 589–602, 1989.

[9] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Com-

binatorica, 21(1):39–60, 2001.

[10] S. Khanna, J. Naor, and B. Shepherd. Directed network design with orientation constraints. In

SODA, pages 663–671, 2000.

[11] A. Medvedovsky, V. Bafna, U. Zwick, and R. Sharan. An algorithm for orienting graphs based

on cause-effect pairs and its applications to orienting protein networks. In WABI, pages 222–232,

2008.

[12] Nash-Williams. On orientations, connectivity and odd vertex pairings in finite graphs. Canad. J.

Math., 12:555–567, 1960.

12

