
Model-Driven Development of High-Integrity Distributed Real-Time Systems
Using the End-to-End Flow Model

Héctor Pérez, J. Javier Gutiérrez
Computers and Real-Time Group

Universidad de Cantabria
Santander, SPAIN

{perezh, gutierjj}@unican.es

Esteban Asensio, Juan Zamorano, Juan A. de la Puente
Real-Time Systems Group

Universidad Politécnica de Madrid,
Madrid, SPAIN

{easensio, jzamorano, jpuente}@dit.upm.es
Abstract—Building High-integrity Distributed Real-Time
(HDRT) systems requires a rigorous methodology to assist in
the design and development of verifiable software. This paper
describes an approach based on the Model-Driven Engineering
(MDE) paradigm to ease the automatic generation of HDRT
applications from high-level system models. Since those
applications must be amenable to stringent timing analysis,
such as the determination of worst-case execution time or
schedulability analysis, we present the integration of a set of
timing analysis tools with a toolset for MDE. In addition, this
paper explores a new approach to integrating the real-time end-
to-end flow model with the automatic generation of Ravenscar-
compliant source code in distribution middleware.

I. INTRODUCTION1

Developing High-Integrity (HI) systems is considered an
arduous and challenging task accomplished with strong
restrictions and standards compliance. To ease this task,
industrial developers have been using the Ravenscar profile
[1] in safety-critical domains in recent years. This profile is a
subset of rules and coding guidelines for Ada language [2]
that ensure certain properties amenable to static verification
in order to assist in the development of highly efficient,
reliable and certifiable applications.

More recently, Model-Driven Engineering (MDE)
paradigm software development [3] has attracted a high
degree of interest. Under this approach a software system is
built from a set of high-level models, which undergo a series
of transformations that finally result in the executable code.
The OMG has standardized a Model-Driven Architecture
(MDA), which consists of a hierarchy of modelling levels:
• Platform-independent models (PIM) are used to specify

a system independently of the computer platform on top
of which it will run.

• Platform-specific models (PSM) are derived for specific
execution platforms by transforming the PIM taking into
account the particular characteristics of the chosen
platform, abstracted in the form of a platform model
(PM). The implementation code is automatically

generated from the PSM, ideally with no human
intervention.

Applying model-driven engineering to real-time systems
requires the use of appropriate modelling languages and
transformation rules. In particular, all aspects of concurrent
and real-time behaviour which are relevant to the system
being developed must be accurately described and preserved
through model transformations. To this end, the use of a
meta-model based on the Ravenscar profile [1] has proven to
be a very useful concept, enabling static timing analysis
methods to be applied to high-level system models [4] In this
paper, we describe an architecture that eases the automatic
development of High-integrity Distributed Real-Time
(HDRT) systems from their design to their implementation
and schedulability analysis. The approach adapts and
integrates a set of timing analysis tools into an MDE toolset
for hard real-time systems.

On the other hand, although the Ravenscar profile has
been used with great success in many critical applications, it
has mainly been applied for the static analysis of
applications running within a single or multiple nodes but
without considering the communication networks in the
analysis. However, due to the increasing interest within the
community to apply this profile to distributed systems,
several research works have tried to solve the problem of
lack of support for developing distributed systems through
the Ravenscar profile, for instance by restricting the
Distributed Systems Annex (DSA) for Ada language [5] or
by designing a new specific profile [6].

Traditionally, the schedulability analysis has been
performed through the real-time transactional model [7],
which is currently known as end-to-end flow model in the
MARTE specification [8]. Therefore, this paper will explore
the integration of the real-time end-to-end flow model into
the development of HDRT applications by adapting the Ada
API proposed in [9] to the restrictions included in the
Ravenscar profile. This API allows the distribution
middleware to support real-time capabilities using the end-
to-end flow model. Furthermore, an implementation, which
can be integrated with the proposed architecture and MDE
toolset, is also provided as a proof of concept to validate the
correctness of the approach.

1. This work has been funded in part by the Spanish Ministry of Science
and Technology under grant numbers TIN2008-06766-C03-01/03 (RT-
MODEL) and by ESA (ESTEC/Contract No. P1090383).

The document is organized as follows. Section 2 reviews
previous work on the design and development of Ravenscar
distributed systems and the integration of the end-to-end
flow model in distributed Ada. In Section 3, we describe the
integration of timing analysis tools into an MDE toolset for
hard real-time systems. In Section 4, we propose a new API
to make the end-to-end flow model compatible with the
Ravenscar profile. A brief description of how this API has
been integrated into a Ravenscar compliant middleware and
how to automate the configuration of a high-integrity
distributed real-time application are pointed out in Section 5.
Finally, Section 6 draws the conclusions.

II. RELATED WORK
Since the Ravenscar profile is widely used in the

development of HRT systems, it seems natural to consider its
possible use for HDRT systems. Previous research includes
different approaches which can be classified as follows:
• Ravenscar and Ada DSA. These works are mainly

focused on the adaptation of the Ada DSA to be
Ravenscar compliant as discussed in [5] and [6]. The
main disadvantage of this option is the lack of a standard
real-time distributed framework.

• Ravenscar and a custom mechanism to perform the
distribution. Under this approach the HDRT systems are
built by automatically generating source code from
architectural descriptions (i.e. system models). A
representative work which proposes a complete
framework to build HDRT systems can be found in [10].

This paper follows the second approach, extending the
results of the ASSERT1 project, which is summarized in the
next subsection, by adding the end-to-end flow model and a
set of tools for timing analysis.

A The ASSERT development process
One of the main results of the ASSERT project is a new

development process for distributed embedded real-time
systems, and a set of methods and tools supporting the
process. The resulting software is executed on a specialized
platform, the ASSERT Virtual Machine (AVM) [11], which
monitors and enforces real-time properties that cannot be
guaranteed by static analysis at design time.

The ASSERT process is based on MDE concepts, and
includes the following steps, which are carried out in an
iterative way (see Figure 1):
• Modelling phase, in which a system model is built using

three different model views: a functional view, an
interface view, and a deployment view [12]. The former

two views belong to the PIM abstraction level, while the
latter one is part of the PSM.

• Model transformation. A concurrency view, also at the
PSM level, is automatically generated from the model
views. The concurrency view defines the concurrent and
distributed architecture of the system in terms of the
facilities provided by the underlying platform, e.g.
threads, shared data, and messages.

• Feasibility analysis. Timing analysis methods are used
to verify that the required real-time behaviour can be
attained with the system architecture defined by the
PSM. The results of the analysis can be used to iterate on
the physical architecture in order to improve the system
behaviour.

• Code generation. Source code is automatically
generated from the concurrency view and distribution
code is generated according to the virtual machine
distribution model. Code is compiled to run on the
virtual machine execution platform on each computer
node.

The above process is supported by two sets of tools: the
HRT-UML/RCM toolset [12], which uses an abstract version
of the Ravenscar profile as a UML meta-model, and the
TASTE2 toolset [13], which uses AADL [14] as a basic
notation for embedding and integrating models generated
with a variety of engineering tools. In the following, our
work is based on TASTE as it currently has industrial
support from ESA.

A key element of the ASSERT development process is the
feasibility analysis phase. A prototype of the HRT-UML/

1. ASSERT: Automated proof-based System and Software Engineering
for Real-Time systems (available at http://www.assert-project.net). 2. TASTE is available at http://www.semantix.gr/assert/

Functional 
view�

Interface 
view�

Deployment 
view�

Concurrency 
view�

Source 
code�

Modelling phase�

Model transformation�

Feasibility analysis�

Code generation�

PIM� PSM�

Figure 1. The ASSERT process phases and model views

RCM toolset uses an extension of MAST1 [15] for timing
analysis, while TASTE uses Cheddar [16] for the same
purpose. However, Cheddar does not support distribution,
which makes it unsuitable for the kind of systems at which
the ASSERT process is aimed. In Section III we describe
how MAST and other tools can be integrated with TASTE in
order to fully support feasibility analysis for HDRT systems.

B The end-to-end flow model and the endpoints pattern
The work presented in [9] proposed a technique to express
complex scheduling and timing parameters in a distributed
system: the endpoints pattern. This technique was aimed at
supporting the event-driven end-to-end flow model, and was
integrated in different middlewares (for Ada DSA and
CORBA), using interchangeable scheduling policies [17].
The main features of this approach are described below:
• Identification of two different schedulable entities. For

the processing nodes, handler tasks intended to execute
remote calls, and for the network, endpoints or
communication points which are used to transport
messages through the network. Both schedulable entities
are created explicitly with the appropriate scheduling
information.

• Definition of a set of abstract interfaces to ease the
configuration of the end-to-end flows. The APIs allow
the integration of different scheduling policies (e.g.
Fixed Priorities or EDF) and a free assignment of the
scheduling parameters for the schedulable entities.

• Definition of the Event_Id parameter. This parameter
identifies an end-to-end flow in its execution. Once the
application has set the initial event at the beginning of
the end-to-end flow, all the subsequent activities (tasks
or messages) are scheduled according to the associated
event at each moment.

• Internal support for the end-to-end flow model.
Middleware is responsible for updating the scheduling
parameters and managing the chain of events within the

end-to-end flow, hiding the management of the real-time
details from the software engineers. The real-time
configuration of a distributed application following this
model can be generated automatically using CASE
tools.

This approach provides support for the real-time model by
means of the specification of all the resources involved in an
end-to-end flow through a set of Ada APIs:
• Event_Management supporting the description of the

end-to-end flow architecture via event transformations
performed automatically at the transformation points
(see [9]).

• Processing_Node_Scheduling containing the operations
to configure the handler tasks and to assign their
scheduling parameters.

• Network_Scheduling containing the endpoint
configuration and assigning the scheduling parameters
for the messages in the communication networks.

Section IV will describe how to make those APIs
compatible with the Ravenscar profile, in order to enable
TASTE to fully support the end-to-end flow model that is
used by the schedulability analysis tools. This approach
allows the scheduling and analysis of both processors and
communication networks.

III. INTEGRATING FEASIBILITY ANALYSIS IN AN MDE
SOFTWARE PROCESS

A General approach
Feasibility analysis is a crucial activity in the

development of high-integrity real-time systems. It allows
software engineers to detect potential timing problems in
early development phases, and take corrective actions on the
system architecture in order to guarantee that the
implementation will provide the required temporal
behaviour. When an MDE approach is used, feasibility
analysis has to be carried out on system models, as the
implementation code is automatically generated from these.
More specifically, it has to be performed on platform-
specific models, as the temporal behaviour of a system is1. MAST is available at http://mast.unican.es/

functional
view

model
transformation

tool

concurrency
view

Ocarina

implementation
code

AADL

deployment
view

AADL

interface
view AADL

Ada
C

Ada
C

Figure 2. TASTE architecture

highly dependent on the characteristics of the execution
platform. In the case of the ASSERT project, feasibility
analysis is carried out on the concurrency view (Figure 1),
which models the system under development as a set of
concurrent tasks, shared data objects, and communication
messages, all of them with timing and scheduling attributes
such as periods, deadlines, and priorities.

In order to enable static timing analysis of concurrency
models, several conditions have to be fulfilled by the
platform and the concurrency model:

a) The execution platform must exhibit a predictable
temporal behaviour. This is a required condition of
worst-case execution time (WCET) calculations, which
in turn are required by all timing analysis methods.

b) The concurrency model must be amenable to static
timing analysis. Software features that cannot be
analysed or do not have a bounded computation time
must be excluded.

c) The distribution mechanism must also exhibit a
predictable temporal behaviour. in particular, end-to-
end message transmission times must be bounded, and
the bounds must be known or computable from other
system parameters.

The ASSERT development process fulfils all the above
conditions. Condition (a) is ensured by the use of the LEON
architecture for the hardware platform, and the ORK+ kernel
component of the ASSERT Virtual Machine [18]. Condition
(b) is fulfilled by the use of the Ravenscar computational
model as an underlying meta-model at all the abstraction
levels. Condition (c) is ensured by the code generation and
distribution tools, which have been extended to support the
end-to-end flow model as described in Section V.

B A toolset for feasibility analysis of HDRT
The TASTE toolset [13] is an integrated set of tools

supporting the different ASSERT model views. It uses
AADL [14] as a common language for providing an
architectural framework for the different components of a
system. The toolset includes tools for integrating data
specifications, as well as functional code derived from
engineering modelling tools (such as Simulink or SCADE)
into AADL models. C or Ada functional code can also be
manually written by the developers.

A tool is used to derive wrappers for functional code from
the interface view, thus ensuring consistency at the interface
level. An automatic tool is used to perform the model
transformations required to produce the concurrency view
from the PIM views and the deployment view. The Ocarina
tool [10] is then used to generate concurrency and
distribution code skeletons, into which the functional code is
embedded (see Figure 2).

The concurrency view is described in AADL, and consists
of a set of model entities that can be directly implemented in
terms of the underlying execution platform. In AADL terms,
the valid model entities at this level of abstraction are
periodic and sporadic threads communicating by means of
protected data objects. Additional model entities providing
access to the middleware functionality are also part of the
concurrency view. Compliance with the Ravenscar
computational model is ensured by restricting the AADL
constructs at the time of generating the concurrency view.
Custom-defined AADL attributes are used to describe timing
properties, such as periods, deadlines, execution times, and
priorities.

Performing feasibility analysis on the concurrency view
requires two kinds of analysis tools. First, the Worst-Case
Execution Time (WCET) of each model component must be

RapiTime�

aadl2mast� MAST�

mast2aadl�

MAST model�

WCET
data�

concurrency 
view�

schedulability data�

Ocarina�AADL�
Ada 
C�

functional 
code�

rapitime2aadl�

Figure 3. Architecture of the toolset for feasibility analysis of HDRT

analysed. Once all model elements are annotated with their
respective WCET values, schedulability analysis can be
carried out for all execution flows.

We have experimented with two kinds of WCET analysis
tools which can be used in this framework. AiT1 uses a
processor model, whereas RapiTime2 uses timing
measurements on the actual hardware together with coverage
analysis to provide accurate estimates of the execution times
of sequential code blocks [19]. RapiTime was selected as it
is more convenient for automatically generated code. The
tool provides WCET estimates that are recorded in a
database from which a results report is produced.

RapiTime requires the code to be instrumented. We have
modified the original Ocarina scripts in order to include
timing information in the code. The WCET data obtained
with RapiTime are fed back into the concurrency model by
using a tool, rapitime2aadl, which has been built by us to
this purpose. The data are inserted in the AADL concurrency
model as attributes for threads and operations (Figure 3).

Several tools can be used for schedulability analysis as
well. Cheddar [16] was previously integrated with TASTE,
but it only supports centralized systems and is thus
inappropriate for our purposes. On the other hand, MAST
[15] supports response time analysis of distributed systems.
Therefore, we decided to use MAST for the feasibility
analysis phase of the TASTE toolset.

MAST uses a model of real-time systems which is based
on a set of basic concepts: processing resources, scheduling
servers, shared resources, operations, and end-to-end flows,
each of which has different kinds of attributes. In order to
use it with TASTE, we have developed a tool that generates a
MAST model from an AADL concurrency view model. The
tool is called aadl2mast, and generates one or more MAST
model elements for each AADL component.

The conversion tool generates some elements in the
MAST model for each component in the concurrency view.
Table 1 shows some examples of translation relationships
between AADL components and MAST entities.

The rapitime2aadl and aadl2mast tools are based on an
AADL parser developed with lex/yacc. Both tools use this
parser as a common frontend to parse the concurrency view
model, although they do it in different ways. The aadl2mast
frontend searches the AADL components partially listed in
Table 1, from which the backend component of the tool
generates the MAST model entities. On the other hand,
rapitime2aadl uses the parser to find the names of the
subprograms that have WCET attributes in the AADL
model. The tool then looks for the corresponding WCET
values obtained by RapiTime, which are stored in a MySQL

database, and fills out the corresponding AADL attribute
values in the concurrency view model. In this way, the
frontend, i.e. the AADL parser, can be reused for other
possible mappings, although the backends are specific for
MAST and RapiTime.

MAST can be used to apply different timing analysis
techniques to the real-time system model. It produces as a
result worst-case response times for all end-to-end flows, as
well as scheduling parameters such as priorities. The results
are translated again to the AADL code as timing and
scheduling attributes. A tool named mast2aadl is under
development for this purpose.

The current prototype supports only single-node
implementations, as the TASTE toolset does not manage the
priority-based networks supported by MAST. Support for
distribution can be added taking into account the integration
with the end-to-end flow model as it is described in Sections
IV and V, where we will propose the strategy to coordinate
middleware and schedulability analysis tools based on the
end-to-end flow model and including the communication
networks. According to the latter, the analysis tools included
in MAST could be applied to the overall distributed system
(processors and communication networks), following the
holistic approach, introduced by Tindell and Clark in [20],
that considers the entire system as a whole.

IV. INTEGRATION OF THE REAL-TIME END-TO-END FLOW
MODEL WITH THE RAVENSCAR PROFILE

As we have previously mentioned, the endpoints pattern
is not compatible with the Ravenscar profile and should be
adapted to be used in HDRT systems. In particular, the
following restrictions must be considered:
• Focused only on FIFO_Within_Priorities dispatching

policy. The approach proposed in [9] is independent of
the selected policy. However, this flexibility does not
violate this restriction because the choice of available
policies remains implementation-defined. Furthermore,
keeping this flexibility enables future profile extensions
as proposed in [21].

1. AiT is available at http://www.absint.com/ait
2. RapiTime is available at http://www.rapitasystems.com/rapitime

Table 1. AADL-MAST translation

AADL component MAST entity

Processor Processing_Resource

Thread Scheduling_Server
Operation (enclosing)
Transaction (end-to-
end flow)

Protected data Shared_Resource

Passive data Operation

Subprogram Operation (simple)

• The set of tasks in the system is fixed and created at
library level. The Processing_Node_Scheduling
interface provides operations to create handler tasks at
configuration time, which it is not Ravenscar compliant,
and thus requires a review of the proposal in [9].

• Tasks have static scheduling parameters. Although the
current approach allows handler tasks to update their
scheduling parameters at runtime according to the
retrieved Event_Id, this feature is not compatible with
Ravenscar and must be disabled. However, the
transmission of the Event_Id parameter remains
necessary in order to share the same handler task among
multiple end-to-end flows.

Although this model does not violate any further
Ravenscar restrictions, there are some other aspects that
middleware implementations should take into account:
• Prevent the use of task attributes. The middleware

implementation for Ada DSA and CORBA [17] uses
task attributes to store the Event_Id parameter.

• All tasks are non-terminating. Operations to destroy
handler tasks, which are provided by the
Processing_Node_Scheduling interface, must be
disabled.

Each of these considerations must be addressed within the
set of interfaces shown in Figure 4. This figure presents the
Ada package hierarchy for the new API. The modifications
proposed over the original API in [9] are detailed as follows.

A Event Management Interface
Final users should configure the sequence of events within
an end-to-end flow, and the middleware will be in charge of
automatically setting the appropriate event at the
transformation points of the remote call as shown in [9]. This
interface is Ravenscar compliant and therefore it does not
require any modification.

B Processing Node Scheduling Interface
Handler tasks are responsible for awaiting remote requests
and processing them. As we stated before, the proposal in [9]
to create and manage handler tasks relied on the dynamic
creation of tasks which is forbidden for Ravenscar systems.
The new API uses a set of Ada packages instead: a
Processing_Node_Scheduling package to perform the
registration and identification of tasks in the system, and a
set of child packages to create tasks with the appropriate
scheduling parameters.

One child package per scheduling policy is required (see
Figure 4). Since handler tasks must be created explicitly at
library level, the new API considers the creation of tasks
through a generic package which has been demonstrated to
be a suitable approach [22]. This generic package includes
the following parameters and operations:

• Task scheduling parameters: The scheduling parameters
are set statically via a pragma.

• Task properties: Basic properties associated with a task
(e.g. the stack size).

• Wait_For_Incoming_Events: Procedure to wait for an
incoming event at the specified endpoint. A single
handler task could process several requests matching
different end-to-end flows.

• Create_RPC_Endpoint: Function to create the endpoint
where the handler task will listen for incoming requests.

• Process_Event: Procedure to process the received
message and perform the associated job.

Furthermore, this generic package can be completed by
including several optional subprograms; for instance, to
execute the basic initialization operations required within
each middleware implementation or to execute recovery
procedures when any error is detected. Finally, the body of
each child package contains the operations associated with
handler tasks. Each handler task consists of a loop with three
single actions: wait for an incoming event, perform the event
transformation and process the event.

C Network Scheduling Interface
The overall response time of a distributed system is strongly
influenced by the underlying networks and therefore
networks must be scheduled with appropriate techniques.
This API addresses this aspect by making the
communication endpoints visible, and by associating
scheduling parameters to the messages sent through them.
The approach in [9] is already compatible with Ravenscar
systems and thus it can remain unaltered.

V. IMPLEMENTATION OF THE REAL-TIME END-TO-END
FLOW MODEL WITHIN A HI MIDDLEWARE

This section describes how the endpoints pattern has been
integrated into Ocarina and PolyORB-HI [10]. Figure 5
shows the architecture of Ocarina which comprises two
different parts: a frontend, which processes the system model
described in the input file, and a backend, which implements
the strategies to generate the source code for different
targets. The current version supports the AADL modeling

Figure 4. Package hierarchy for end-to-end flow Ravenscar systems

language as input and several targets, such as those based on
the PolyORB-HI middleware, as output.

PolyORB-HI is a lightweight distribution middleware
compatible with the restrictions specified by the Ravenscar
profile. It is distributed with the Ocarina tool as an AADL
runtime that provides all the required resources (i.e. stubs,
skeletons, marshallers and concurrent structures) to build
high-integrity distributed systems. The current software
release provides three runtimes depending on the target
system: PolyORB-HI-C, PolyORB-HI-Ada and PolyORB-
HI-QoS.

To validate the proposed approach, Ocarina and
PolyORB-HI have been extended to provide a new backend
or code generation strategy called PolyORB-HI-Endpoints
(see Figure 5), which, together with the implementation of
the endpoints pattern, presents the following features:
• Automatic code generation. The proposed approach has

been seamlessly integrated within the Ocarina
architecture by developing a new backend to
automatically generate the source code based on the
real-time end-to-end flow model.

• Automatic management and transformation of events. It
comprises an extension of PolyORB-HI to provide
marshalling and unmarshalling primitives for the
Event_Id parameter, and the implementation of the
Event_Management interface which allows the
middleware to internally manage the event associations
at the transformation points.

• Fixed-priority scheduling for the processors. According
to the Ravenscar profile, it includes an implementation
of the Processing_Node_Scheduling interface that has
been developed for fixed-priority policy.

• Fixed-priority scheduling for a new network service. A
new network service has been developed and integrated
in PolyORB-HI to use the handler tasks to directly wait
on the net for incoming requests, thus avoiding I/O
decoupling. Furthermore, a fixed priority version has
been implemented for the Network_Scheduling
interface.

• Adaptation code to integrate the middleware internals
into the proposed model. Middleware built on top of the
endpoints pattern requires some glue code to handle and
map its internal structures consistently and integrate the
management and utilization of the communication
endpoints.

• Real-time configuration code. A configuration file
including the initialization code that has to be run at start
up time is needed. This file is composed of the calls to
the API operations for creating the handler tasks and
endpoints required to support the end-to-end flows of the
application.

A prototype implementation of the PolyORB-HI-
Endpoints backend on x86 architecture and a UDP-based
network has been developed as a proof of concept. The
network uses the 802.1p specification [23] to prioritize
different message streams. This prototype requires the
configuration file to be generated by hand, although
automatic generation of the real-time configuration code
from the PSM is planned.

VI. CONCLUSIONS AND FUTURE WORK

The paper presents an approach that facilitates the
automatic development of HDRT systems. The TASTE
toolset has been taken as a starting point for supporting the
approach. The integration of RapiTime (for WCET
estimation) and MAST (for schedulability analysis) with
TASTE provides the necessary support to perform a static
verification of the end-to-end deadlines in HDRT systems.
Furthermore, the work described in this paper integrates the
real-time end-to-end flow model with the automatic
generation of Ravenscar-compliant source code and the
distribution middleware.

The tools presented in this paper (aadl2mast,
rapitime2aadl, and the PolyORB-HI-Endpoints backend) are
prototypes which have been developed with the sole purpose
of demonstrating the validity of the approach. The
conversion tools between AADL and MAST only include
the MAST features related to processors, and we plan to add
the fixed-priority based communication networks used in
MAST as future work; the new PolyORB-HI-Endpoints
backend provides the basis to support it. Other plans for the
near future include completing the tools in order to provide
full round-trip feasibility analysis considering the WCET
data, and the automatic generation of endpoint configuration
files from AADL models.

The described toolchain has been evaluated to be used for
the development of the on-board computer software of the
UPMSat-2 micro-satellite1 with promising results. The
satellite attitude control algorithms are being developed with

Figure 5. Architecture overview for Ocarina

1. http://www.idr.upm.es/tec_espacial/06_UPMSAT.html

Simulink, and generated code will be integrated with other
manually coded software components using TASTE. The
transformation tools, together with RapiTime and MAST,
will be used to perform timing analysis of the system, in
order to assess their use on a real system.

REFERENCES

[1] A. Burns, B. Dobbing, and T. Vardanega, “Guide for the Use
of the Ada Ravenscar Profile in High Integrity Systems,”
Technical Report YCS-2003-348, University of York (UK),
January 2003. Approved as ISO/IEC JTC1/SC22 TR 42718.

[2] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard
Ploedereder, and Pascal Leroy (Eds.), “Ada 2005 Reference
Manual. Language and Standard Libraries. International
Standard ISO/IEC 8652:1995(E) with Technical Corrigendum
1 and Amendment 1,” LNCS 4348, Springer, 2006.

[3] D.C. Schmidt, “Model-driven engineering,” IEEE Computer,
39(2), 2006.

[4] M. Bordin, and T. Vardanega, “Correctness by construction
for high-integrity real-time systems: A metamodel-driven
approach,” Proc. of the 12th International Conference on
Reliable Software Technologies - Ada- Europe 2007, Geneva
(Switzerland), in LNCS, Vol. 4498, pp. 114-127, Springer,
2007.

[5] N, Audsley, and A, Wellings, “Issues with using Ravenscar
and the Ada distributed systems annex for high-integrity
systems,” Proc. of the 10th International Real-Time Ada
Workshop, pp. 33-39, New York, NY, USA, ACM Press,
2001.

[6] S. Urueña, J. Zamorano, and J.A. de la Puente, “A Restricted
Middleware Profile for High-Integrity Distributed Real-Time
Systems,” Proc. of the 14th International Conference on
Reliable Software Technologies - Ada-Europe 2009, Brest
(France), in LNCS, Vol. 5570, pp. 16-29, Springer, 2009.

[7] K. Tindell, “Adding Time-Offsets To Schedulability
Analysis,” Technical Report YCS_221, 1994.

[8] Object Management Group, “UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE),
RFP. 2009,” OMG document: formal/2009-11-02, 2009.

[9] H. Pérez Tijero, J.J. Gutiérrez, and M. González Harbour,
“Support for a Real-Time Transactional Model in Distributed
Ada,” Proc. of the 14th International Real-Time Ada
Workshop (IRTAW 14), Portovenere (Italy), ACM Ada-
Letters 30, 1, pp. 91-103, 2010.

[10] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the Ocarina
AADL tool suite,” ACM Tr. Embedded Computer Systems,
7(4), pp. 1-25, 2008.

[11] J. Zamorano, and J.A. de la Puente, “Design and
Implementation of Real-Time Distributed Systems with the
ASSERT Virtual Machine,” Proc. of the IEEE International

Conference on Emerging Technologies and Factory
Automation - ETFA, 2010.

[12] S. Mazzini, S. Puri, and T. Vardanega, “An MDE
methodology for the development of high-integrity real-time
systems,” in Design, Automation and Test in Europe, DATE
2009, pp. 1154-1159, IEEE, 2009.

[13] M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras, and J.
Hugues, “The TASTE toolset: Turning human designed
heterogeneous systems into computer built homogeneous
software,” Proc of the 5th Int. Congress on Embedded Real-
Time Software and Systems - ERTS2, 2010.

[14] SAE, “Architecture Analysis and Design Language (AADL) -
AS5506A,” 2009. Available at http://www.sae.org/

[15] M. González Harbour, J.J. Gutiérrez, J.C. Palencia, and J.M.
Drake, “MAST: Modeling and Analysis Suite for Real Time
Applications,” Proc. of the 13th Euromicro Conference on
Real-Time Systems, Delft, The Netherlands, IEEE Computer
Society Press, pp. 125-134, 2001.

[16] F. Singhoff, J. Legrand, L.N. Tchamnda, and L. Marcé,
“Cheddar : a Flexible Real Time Scheduling Framework,”
Proc. of the ACM SIGAda Annual International Conference
on Ada and Related Technologies, SIGAda 2004, Atlanta,
USA, 2004.

[17] H. Pérez Tijero, and J.J. Gutiérrez, “Experience in integrating
interchangeable scheduling policies into a distribution
middleware for Ada,” Proc. of the ACM SIGAda Annual
International Conference on Ada and Related Technologies,
SIGAda 2009, Saint Petersburg, Florida, USA, ACM Ada-
Letters, 29, 3, pp.73-78, 2009.

[18] J.A. de la Puente, J. Zamorano, J.A. Pulido, and S. Urueña,
“The ASSERT Virtual Machine: A predictable platform for
real-time systems,” Proc. of the 17th IFAC World Congress.
IFAC- PapersOnLine, 2008.

[19] G. Bernat, A. Burns, and M. Newby, “Probabilistic timing
analysis: An approach using copulas,” Journal of Embedded
Computing, 1(2), pp. 179-194, 2005.

[20] K. Tindell, and J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems,” Microprocessing &
Microprogramming, Vol. 40, Nos.2-3, pp. 117-134, 1994.

[21] R. White, “Providing Additional Real-Time Capability and
Flexibility for Ada 2005,” Proc. of the 14th International
Real-Time Ada Workshop (IRTAW 14), Portovenere (Italy),
ACM Ada-Letters 30, 1, pp. 135-146, 2010.

[22] M. Bordin, and T. Vardanega, “Automated Model-Based
Generation of Ravenscar-Compliant Source Code,” Proc. of
the 17th Euromicro Conference on Real-Time Systems
(ECRTS’05), pp. 59-67, Washington, DC, USA, IEEE
Computer Society, 2005.

[23] IEEE Std 802.1Q, “Virtual Bridged Local Area Networks,”
Annex G. IEEE Document, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

