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Abstract—A new differential evolution algorithm for single
objective optimization is presented in this paper. The proposed
algorithm uses a self-adaptation mechanism for parameter con-
trol, divides its population into more subpopulations, applies more
DE strategies, promotes population diversity, and eliminates the
individuals that are not changed during some generations. The
experimental results obtained by our algorithm on the benchmark
consisting of 25 test functions with dimensions D = 10, D = 30,
and D = 50 as provided for the CEC 2013 competition and
special session on Real Parameter Single Objective Optimization
are presented.
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I. INTRODUCTION

This paper presents an algorithm for Real Parameter Single
Objective Optimization (RPSOO) [1]. Single objective opti-
mization algorithms serve as a basis of the more complex
optimization algorithms such as multi-objective optimizations
algorithms, niching algorithms, constrained optimization algo-
rithms, and so on [1].

The real-parameter optimization problem can be defined
as follows. We need to find the variables of vector ~x =
{x1, x2, ..., xD}, where D denotes the dimensionality of a
problem, such that their corresponding objective function
f(~x) is optimized (minimized or maximized). Domains of
the variables are defined by their lower and upper bounds
xj,low, xj,upp, where j = 1, 2, ..., D. Therefore, this kind of
optimization is also named as bound-constrained optimization.

Differential Evolution (DE) [2], [3], [4] is a well-known
evolutionary algorithm for optimization in continuous and
discrete domains [5], [6]. Recently, in the literature, it can
be found that this algorithm is highly competitive, especially
in areas, where real-parameters are needed [7], [8], [9], [10].

DE is a population based evolutionary algorithms. Its
initial population is generated at random with a Uniform
distribution over the entire search space. Then DE repeatedly
applies mutation, crossover, and selection operators over the
population to generate a next population. The evolutionary
process stops when stopping criteria is met and then the DE
algorithm reports the best solution found.

Three control parameters are used in the original DE,
proposed by Storn and Price in 1995: the amplification factor
of the difference vector F , the crossover control parameter CR,

and population size NP . All three control parameters are fixed
during the optimization process in the original DE algorithm.
A tuning of the control parameters can be used to find out
good values for them before the actual optimization process
starts. A tuning process might be time consuming, especially,
when it is performed as hand-tuning. In order to overcome
the tuning problems and to improve algorithm’s performance,
adaptive and self-adaptive mechanisms were applied on the DE
control parameters [4], [3].

In the specialized literature, a lot of improved versions of
DE can be found that are dealing with the control parameters
F and CR. Adaptive and/or self-adaptive techniques were
introduced in [11], [12]. Both self-adaptive techniques, known
also as algorithms jDE and SaDE , have a great research
influence onto DE-based algorithms. Moreover, many other
mechanisms have been proposed [13]. Some years ago only
a few researches were related with the third DE control para-
meter, i.e., population size. But more recently, works dealing
with population size i.e. changing population size during the
evolutionary process are increasing [14]. They outlined that
NP plays also an important role among control parameters in
the DE.

A self-adaptive jDE algorithm was introduced in 2006 [11].
jDE-based algorithms were applied to solve large-scale sin-
gle objective optimization problems: CEC 2008 [15], CEC
2010 [16], CEC 2012 [17], large-scale continuous optimization
problems [18]. However, various mechanisms are proposed in
order to changing the DE control parameters adaptively or self-
adaptively [19], [20], [17].

Qin and Suganthan in [12] proposed Self-adaptive Dif-
ferential Evolution algorithm (SaDE), where the choice of a
learning strategy and the two control parameters F and CR
are gradually self-adapted according to the learning experience.
In the specialized literature, usually, control parameters F and
CR are changing in an adaptive or self-adaptive manner [3],
[21], [4].

In this paper, an evaluation of our self-adaptive jDEsoo
algorithm is performed on the benchmark functions provided
for the CEC2013 special session on RPSOO [1], i.e., a
successor of special Session on Real-Parameter Optimization
that has been occurred on CEC2005 [22]. The DE-based
algorithms presented at this competition, like ”DE” [23] and
”L-SADE” [24], were one of the more competitive among
other algorithms in such previous competition [25].



The structure of the paper is as follows. Section II gives
background for this work, where an overview of DE, a descrip-
tion of the self-adaptive control parameters, and outlines of our
previous algorithm are given. Section III presents a new variant
of the algorithm, called jDEsoo. In Section IV experimental
results of the jDEsoo algorithm on single objective benchmark
functions are presented. Section V concludes the paper with
some final remarks.

II. BACKGROUND

In this section, we give some backgrounds that are needed
in Section III.

A. The Differential Evolution

DE is a population-based algorithm. It uses mutation,
crossover and selection operators to generate a next population
from the current population.

Let us briefly explain the original DE algorithm [2]. The
population in generation G consists of NP vectors:

~x
(G)
i = (x

(G)
i,1 , x

(G)
i,2 , ..., x

(G)
i,D ), i = 1, 2, ...,NP ,

1) Mutation: A mutant vector ~v
(G)
i is created by using one

of the DE mutation strategies. The most popular is ’rand/1’
strategy, which can be described as follows:

~v
(G)
i = ~x (G)

r1 + F · (~x (G)
r2 − ~x (G)

r3 ).

Indexes r1, r2, and r3 denote random integers within the set
{1,NP} and r1 6= r2 6= r3 6= i. F is a mutation scale factor
within the range [0, 2], usually less than 1. ~xbest,G denotes the
best vector in generation G.

The other useful DE strategies [3], [4] are:

• ”rand/1”: ~vi,G = ~xr1,G + F (~xr2,G − ~xr3,G),

• ”best/1”: ~vi,G = ~xbest,G + F (~xr1,G − ~xr2,G),

• ”current to best/1”:
~vi,G = ~xi,G +F (~xbest,G − ~xi,G) +F (~xr1,G − ~xr2,G),

• ”best/2”:
~vi,G = ~xbest,G+F (~xr1,G−~xr2,G)+F (~xr3,G−~xr4,G),

• ”rand/2”:
~vi,G = ~xr1,G+F (~xr2,G−~xr3,G)+F (~xr4,G−~xr5,G),

where the indexes r1–r5 represent the random and mutually
different integers generated within the range {1, NP} and also
different from index i.

2) Crossover: A crossover operator forms a trial vector

~u
(G)
i as follows:

u
(G)
i,j =

{

v
(G)
i,j , if rand(0, 1) ≤ CR or j = jrand,

x
(G)
i,j , otherwise,

for i = 1, 2, ...,NP and j = 1, 2, ..., D. The crossover
parameter CR is within the range [0, 1) and presents the
probability of creating components for trial vector from a
mutant vector. Index jrand ∈ {1,NP} is a randomly chosen

integer that is responsible for the trial vector containing at least
one component from the mutant vector.

If the control parameters from the trial vector are out of
bounds, the proposed solutions found in the literature [2], [26]
are: they are reflected into bounds, set on bounds or used as
they are (out of bounds).

The selection mechanism for a minimization problem is
defined as follows:

~x
(G+1)
i =

{

~u
(G)
i , if f(~u

(G)
i ) < f(~x

(G)
i ),

~x
(G)
i , otherwise.

The DE has a greedy selection, while other evolutionary
algorithms have a more sophisticate selection operation.
Fitness values between the population vector and its
corresponding trial vector are compared in DE. This better
vector will survive and become a member of the population
for the next generation.

B. Self-Adaptation of F and CR

The jDE algorithm [11] uses a self-adapting mechanism
of two control parameters. Each individual is extended with
control parameter values F and CR as follows:

~x
(G)
i = (x

(G)
i,1 , x

(G)
i,2 , ..., x

(G)
i,D , F

(G)
i ,CR

(G)
i ).

New control parameters F
(G+1)
i and CR

(G+1)
i are calcu-

lated before the mutation operator as follows [11]:

F
(G+1)
i =

{

Fl + rand1 ∗ Fu, if rand2 < τ1,

F
(G)
i , otherwise,

CR
(G+1)
i =

{

rand3, if rand4 < τ2,

CR
(G)
i , otherwise,

where randj , for j ∈ {1, 2, 3, 4} are uniform random values
within the range [0, 1].

In [11] parameters τ1, τ2, Fl, Fu are fixed to values
0.1, 0.1, 0.1, 0.9, respectively.

III. A NEW VARIANT OF THE ALGORITHM

In this section our new algorithm jDEsoo for solv-
ing real-parameter single objective optimization is presented.
The jDEsoo algorithm includes some good characteristics
and mechanisms that are similar to our previous algorithms
jDElsgo [17] and jDElscop [18] that were used for solving
large-scale global optimization (D was upto 1000).

The pseudo-code of new jDEsoo algorithm is presented
in Algorithm 1. The idea of how to divide a population into
sub-population is depicted in Figure 1.

The new proposed algorithm uses jDE as a basis and
updated it with the following features:

• Dividing the whole population into subpopulations,

• Applying a different DE strategy in each subpopula-
tion,



1: {pop ... population}
2: {NP ... population size}
3: {imin ... index of currently best individual}
4: {~xi ... i-th individual of population}
5: {MaxFEs ... maximum number of function evaluations}
6: {rand(0, 1) ... uniformly distributed random number [0, 1)}
7: Initialization()
8: NP = 30
9: itAge = 1000
10:

11: {** Generate uniformly distributed random population within search space **}
12: for (it = 0; it < MaxFEs; it = it+ 1) do
13: i = it mod NP {mod ... modulo operation}
14:

15: {** Perform one iteration of the jDE using one of three strategies. BIN crossover is used. **}
16:

17: if (rand(0, 1) < 0.5 and i < b1) then
18: {** jDEbest ** }

19: Fl = 0.1 +
√

1
NP

; Fu = 1.0; CRl = 0.7; CRu = 0.9;

20: ~u =jDEbest(imin, pop)
21: else
22: if (i < b2) then
23: {** jDEbin **}
24: Fl = 0.1; Fu = 1.0; CRl = 0.0; CRu = 1.0− 1.0

NP
;

25: ~u =jDEbin(i, pop)
26: else
27: {** jDEbinSec **}
28: Fl = 0.8; Fu = 1.0; CRl = 0.8; CRu = 1.0− 1.0

NP
;

29: r1 = 0.7 ∗ NP+ 0.3 ∗ NP ∗ rand(0, 1);
30: ~u =jDEbinSec(i, pop)
31: end if
32: end if
33: {Bound check; if volatile then set on bound}
34: f(~u) {Function evaluation}
35: {Selection}
36:

37: {** apply aging at every itAge iteration **}
38: if (it mod itAge == (itAge− 1)) then
39: {for every individual test if its age is greater tha 50 then reinitialize is with probability 0.1}
40: end if
41: end for

Algorithm 1: jDEsoo algorithm

• Ensuring the population diversity during generations,

• Aging mechanism.

The initial population is generated at random with a Uni-
form distribution between the lower xj,low and upper xj,upp

bounds defined for each variable xj .

If an individual was not improved for some generations
(we set the value for checking this every 1000 iterations – it is
approx. 33 generations) then it is reinitialized with probability
of 0.1. We set the value for aging to 50. Please note that every
1000 iterations the whole population is tested if aging criteria
is fulfill.

In this paper we used three simple DE strate-
gies ”DE/rand/1/best”, ”DE/rand/1/bin”, and, once again
”DE/rand/1/bin”, and we set b1 = 0.1∗NP and b2 = 0.9∗NP .
The strategies used their own self-adaptive control parameters

F and CR. They have different bound values of Fl, Fu, CRl,
and CRu (see Algorithm 1), which can be calculated outside
the iteration loop since they are constant in the whole search
process.

The reasons of employing ”DE/rand/1/best”,
”DE/rand/1/bin” strategies were made based on our previous
experiences and the suggestion from literature. The ”best”
strategy has fast convergence ability (exploitation), while
”DE/rand/1/bin” has good exploration ability.

We used ”DE/rand/1/bin” strategy two-times, one with
wide range of CR parameter, while the second with higher
value for CR and also F (CRl = 0.8, Fl = 0.8).



TABLE I. PROPERTIES OF THE CEC 2013 BENCHMARK FUNCTIONS [1]

No. Functions f∗

i = fi(x
∗)

1 Sphere Function -1400

Unimodal 2 Rotated High Conditioned Elliptic Function -1300

Functions 3 Rotated Bent Cigar Function -1200

4 Rotated Discus Function -1100

5 Different Powers Function -1000

6 Rotated Rosenbrock’s Function -900

7 Rotated Schaffers F7 Function -800

8 Rotated Ackley’s Function -700

9 Rotated Weierstrass Function -600

10 Rotated Griewank’s Function -500

11 Rastrigin’s Function -400

Basic 12 Rotated Rastrigin’s Function -300

Multimodal 13 Non-Continuous Rotated Rastrigin’s Function -200

Functions 14 Schwefel’s Function -100

15 Rotated Schwefel’s Function 100

16 Rotated Katsuura Function 200

17 Lunacek Bi Rastrigin Function 300

18 Rotated Lunacek Bi Rastrigin Function 400

19 Expanded Griewank’s plus Rosenbrock’s Function 500

20 Expanded Scaffer’s F6 Function 600

21 Composition Function 1 (n=5, Rotated) 700

22 Composition Function 2 (n=3, Unrotated) 800

23 Composition Function 3 (n=3, Rotated) 900

Composition 24 Composition Function 4 (n=3, Rotated) 1000

Functions 25 Composition Function 5 (n=3, Rotated) 1100

26 Composition Function 6 (n=5, Rotated) 1200

27 Composition Function 7 (n=5, Rotated) 1300

28 Composition Function 8 (n=5, Rotated) 1400

Search Range: [-100,100]D
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Fig. 1. Population is divided into more sub-population. Each sub-
population uses its DE strategy.

IV. RESULTS

A. Benchmark Functions

The jDEsoo algorithm was tested on a set of 28 benchmark
functions [1]. The benchmark functions are scalable. The
dimensions of benchmark functions were D = 10, D = 30,
and D = 50, respectively, and 51 runs of algorithm were
needed for each function. The optimal values are known for
all benchmark functions. We used our algorithm as black-box
optimizer as required for this special session.

The general features of these functions are presented in
Table I.

B. Experimental Results

Notice, that in this competition, error values smaller than
10−8 are taken as zero.

In the experiments, parameters of the jDEsoo algorithm
were set as follows:

• F was self-adaptive,



TABLE II. EXPERIMENTAL RESULTS WITH DIMENSION D = 10.

Func. Best Worst Median Mean Std

1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

2 1.0250e+01 6.1157e+03 1.2819e+03 1.7180e+03 1.7072e+03

3 0.0000e+00 1.0375e+01 2.9987e-03 1.6071e+00 2.9930e+00

4 2.3937e-06 2.3242e+00 9.5699e-03 1.2429e-01 3.8021e-01

5 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

6 0.0000e+00 9.8124e+00 9.8124e+00 8.4982e+00 3.3348e+00

7 7.4725e-05 2.1685e+01 6.9981e-02 9.4791e-01 3.2840e+00

8 2.0174e+01 2.0498e+01 2.0355e+01 2.0348e+01 7.6220e-02

9 2.8689e-01 6.0739e+00 2.4698e+00 2.7464e+00 1.3910e+00

10 7.3960e-03 1.5501e-01 6.6444e-02 7.0960e-02 3.5194e-02

11 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

12 1.9899e+00 1.7909e+01 4.9748e+00 6.1144e+00 3.2590e+00

13 9.9496e-01 2.0170e+01 6.6802e+00 7.8102e+00 4.8278e+00

14 0.0000e+00 1.8736e-01 6.2454e-02 5.0208e-02 5.7267e-02

15 2.1581e+02 1.2673e+03 8.9024e+02 8.4017e+02 2.3364e+02

16 5.9909e-01 1.5403e+00 1.1141e+00 1.0991e+00 2.3476e-01

17 0.0000e+00 1.0125e+01 1.0122e+01 9.9240e+00 1.4174e+00

18 1.8121e+01 3.8264e+01 2.7396e+01 2.7716e+01 5.4304e+00

19 0.0000e+00 5.5773e-01 3.3110e-01 3.1993e-01 1.0542e-01

20 1.8668e+00 3.5941e+00 2.7428e+00 2.7178e+00 4.8839e-01

21 1.0000e+02 4.0019e+02 4.0019e+02 3.5113e+02 9.0354e+01

22 5.0955e+00 1.1563e+02 1.0180e+02 9.1879e+01 2.9565e+01

23 4.2360e+02 1.2791e+03 8.1673e+02 8.1116e+02 2.2219e+02

24 1.1476e+02 2.1812e+02 2.1084e+02 2.0851e+02 1.3831e+01

25 2.0000e+02 2.1873e+02 2.0968e+02 2.0955e+02 4.3260e+00

26 1.0398e+02 3.1479e+02 2.0002e+02 1.9301e+02 4.3758e+01

27 3.0000e+02 5.5239e+02 5.0799e+02 4.9412e+02 5.2492e+01

28 1.0000e+02 3.0000e+02 3.0000e+02 2.8824e+02 4.7527e+01

• CR was self-adaptive,

• NP was fixed during the optimization process,
NP init = 30,

• aging was set to 50.

The obtained results (error values f(~x) − f(~x∗)) are pre-
sented in Tables II, III, IV for dimensions 10, 30, and 50,
respectively.

PC Configure:
System: GNU/Linux, CPU: 2.5 GHz, RAM: 4 GB, Language:
C/C++, Algorithm: jDEsoo, Compiler: GNU Compiler (g++).

TABLE V. COMPUTATIONAL COMPLEXITY

D T0 T1 T2 (T2 − T1)/T0

10

0.07966 s

0.6259 s 0.6894 s 0.7967

30 1.8745 s 1.9893 s 1.4404

50 3.1391 s 3.3101 s 2.1456

The algorithm complexity is presented in Table V as
required in [1].

V. CONCLUSIONS

The jDEsoo algorithm was presented in this paper. The
performance of the algorithm was evaluated on the set of
benchmark functions provided for CEC2013 special session
on real-parameter single objective optimization.

The algorithm uses a relatively small population size that
remained fixed for all 28 benchmark functions and dimensions
(D = 10, D = 30, D = 50).

The performance of this algorithm against other algorithm
will be performed by organisers of this special session.
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[18] J. Brest and M. Maučec, “Self-adaptive differential evolution algorithm
using population size reduction and three strategies,” Soft Computing

- A Fusion of Foundations, Methodologies and Applications, vol. 15,
no. 11, pp. 2157–2174, 2011.

[19] L.-A. Gordián-Rivera and E. Mezura-Montes, “A combination of spe-
cialized differential evolution variants for constrained optimization,” in
Advances in Artificial Intelligence–IBERAMIA 2012. Springer, 2012,
pp. 261–270.

[20] A. Zamuda and J. Brest, “Population Reduction Differential Evolution
with Multiple Mutation Strategies in Real World Industry Challenges,”
in Swarm and Evolutionary Computation, ser. Lecture Notes in Com-
puter Science, Rutkowski, L and Korytkowski, M and Scherer, R and
Tadeusiewicz, R and Zadeh, LA and Zurada, JM, Ed., vol. 7269, 2012,
Proceedings Paper, pp. 154–161.

[21] A. W. Mohamed, H. Z. Sabry, and T. Abd-Elaziz, “Real parameter
optimization by an effective differential evolution algorithm,” Egyptian

Informatics Journal, no. 0, pp. –, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1110866513000029

[22] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen,
A. Auger, and S. Tiwari, “Problem Definitions and Evaluation
Criteria for the CEC 2005 Special Session on Real-Parameter

Optimization,” Nanyang Technological University, Singapore and IIT
Kanpur, India, Tech. Rep. #2005005, 2005. [Online]. Available:
http://www.ntu.edu.sg/home/EPNSugan/

[23] J. Rönkkönen, S. Kukkonen, and K. V. Price, “Real-Parameter Opti-
mization with Differential Evolution,” in The 2005 IEEE Congress on

Evolutionary Computation (CEC 2005), vol. 1. IEEE Press, Sept. 2005,
pp. 506 – 513.

[24] A. K. Qin and P. N. Suganthan, “Self-adaptive Differential Evolution
Algorithm for Numerical Optimization,” in The 2005 IEEE Congress

on Evolutionary Computation (CEC 2005), vol. 2. IEEE Press, Sept.
2005, pp. 1785–1791.

[25] N. Hansen, “Compilation of Results on the CEC Benchmark Function
Set,” 2005. [Online]. Available: http://www.ntu.edu.sg/home/epnsugan/
index\ files/CEC\-05/compareresults.pdf

[26] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution,
A Practical Approach to Global Optimization. Springer, 2005.


