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Cooperative relaying and dynamic-spectrum-access/cognitive techniques are promising
solutions to increase the capacity and reliability of wireless links by exploiting the spatial
and frequency diversity of the wireless channel. Yet, the combined use of cooperative
relaying and dynamic spectrum access in multi-hop networks with decentralized control
is far from being well understood.

We study the problem of network throughput maximization in cognitive and cooperative
ad hoc networks through joint optimization of routing, relay assignment and spectrum
allocation. We derive a decentralized algorithm that solves the power and spectrum allo-
cation problem for two common cooperative transmission schemes, decode-and-forward
(DF) and amplify-and-forward (AF), based on convex optimization and arithmetic-geomet-
ric mean approximation techniques. We then propose and design a practical medium
access control protocol in which the probability of accessing the channel for a given node
depends on a local utility function determined as the solution of the joint routing, relay
selection, and dynamic spectrum allocation problem. Therefore, the algorithm aims at
maximizing the network throughput through local control actions and with localized infor-
mation only.

Through discrete-event network simulations, we finally demonstrate that the protocol
provides significant throughput gains with respect to baseline solutions.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction transport capacity, which is however limited by the scar-

city of the available spectrum. Cognitive radio networks

The need to wirelessly share high-quality multimedia
content is driving the need for ever-increasing wireless
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[2,3] have recently emerged as a promising technology to
improve the utilization efficiency of the existing radio
spectrum. Based on the reported evidence that static
licensed spectrum allocation results in highly inefficient
and unbalanced resource utilization, the cognitive radio
paradigm prescribes the coexistence of licensed (or pri-
mary) and unlicensed (secondary or cognitive) radio users
on the same portion of the spectrum. A key challenge in the
design of cognitive radio networks is then dynamic spec-
trum allocation, which enables wireless devices to
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opportunistically access portions of the spectrum as they
become available. Consequently, techniques for dynamic
spectrum allocation have received significant attention in
the last few years, e.g., [4-7].

However, mainstream cognitive radio research has
mostly been focused on infrastructure-based networks,
while the underlying root challenge of devising decentral-
ized spectrum management mechanisms for infrastru
cture-less cognitive ad hoc networks is still substantially
unaddressed. In cognitive networks with multi-hop com-
munication requirements the dynamic nature of the radio
spectrum calls for a new approach to spectrum manage-
ment, where the key networking functionalities such as
routing and medium access control, closely interact and
are jointly optimized with the spectrum management func-
tionality. Since in a spatially distributed ad hoc network
spectrum occupancy is location-dependent the available
spectrum bands may be different at each hop. Hence, con-
trolling the interaction between the routing, medium
access, and the spectrum management functionalities is of
fundamental importance.

Within this context, we additionally consider tech-
niques to leverage the spatial diversity that characterizes
the wireless channel. Spatial diversity is traditionally
exploited by using multiple transceiver antennas to effec-
tively cope with channel fading. However, equipping a
mobile device with multiple antennas may not be practi-
cal. The concept of cooperative communications has been
hence proposed to achieve spatial diversity without requir-
ing multiple transceiver antennas on the same node [8-
10]. In cooperative communications, in their virtual
multiple-input single-output (VMISO) variant, each node is
equipped with a single antenna, and relies on the antennas
of neighboring devices to achieve spatial diversity. There is
a vast and growing literature on information and commu-
nication theoretic problems in cooperative communica-
tions. The reader is referred to [11,12] and references
therein for excellent surveys of the main results in this
area. However, the common theme of most research in this
field is to optimize physical layer performance measures
(i.e., bit error rate and link outage probability) from a broad
system perspective, without modeling in detail how coop-
eration interacts with higher layers of the protocol stack to
improve network performance metrics. For example, [13-
16] investigate the achievable rates and diversity gains of
given cooperative schemes focusing on a single source
and destination pair. Some initial promising work on net-
working aspects of cooperative communications includes
studies on medium access control protocols to leverage
cooperation [17,10], cooperative routing [18-22], optimal
network-wide relay selection [23,24], and optimal stochas-
tic control [25]. However, decentralized spectrum manage-
ment with cooperative devices is a substantially
unexplored area.

In this paper, we consider an infrastructure-less ad hoc
network (illustrated in Fig. 1) of devices endowed with
wideband reconfigurable transceivers that communicate
without an infrastructure and can potentially coexist with
(i) legacy narrowband unlicensed devices (e.g., IEEE
802.11, IEEE 802.15.4, Bluetooth transceivers), and (ii)

primary users operating on licensed portions of the spec-
trum. We make the following contributions:

e Uncoordinated spectrum management. Unlike main-
stream work on cognitive ad hoc networks, we consider
a distributed and dynamic environment, and study the
interactions between cooperation and spectrum
management.

Distributed joint routing, relay selection, and dynamic
spectrum allocation. We formulate a joint routing, relay
selection, and dynamic spectrum allocation problem,
with the objective of maximizing the network through-
put. Given the centralized nature and computational
intractability of the problem, we study decentralized
and localized algorithms for joint dynamic routing,
relay assignment, and spectrum allocation that are
designed to maximize the global objective function of
the centralized problem.

Spectrum and power allocation algorithms for two com-
mon cooperative schemes. We propose spectrum and
power allocation algorithms for two alternative cooper-
ative relaying schemes, decode-and-forward (DF) and
amplify-and-forward (AF), which are building blocks
of the distributed resource allocation algorithm. We
compare the link capacity achievable by the two coop-
erative schemes, and show that DF outperforms AF in
general.

Mapping local to global objectives through stochastic
channel access. We propose a practical implementation
of the proposed algorithm based on a medium access
control protocol that relies on a common control chan-
nel and a frequency-agile data channel. In the proposed
medium access control protocol, the probability of
accessing the channel, and therefore of having priority
in reserving spectrum resources and relays, depends
on a utility function determined as the local solution,
for each individual node, of the joint routing, relay
selection, and dynamic spectrum allocation problem.
The protocol can be seen as a hybrid between tradi-
tional contention-based protocols and utility-based
scheduled channel access schemes.

The rest of the paper is organized as follows. In
Section 2, we review related work. In Section 3, we intro-
duce the system model. In Section 4 we formulate the
cross-layer optimization problem. In Section 5, we discuss
link capacity maximization with and without cooperative
relays. In Section 6, we introduce the decentralized algo-
rithm for joint routing, relay selection and dynamic spec-
trum allocation. Section 7 discusses the cooperative
MAC/routing protocol design and addresses implementa-
tion details. In Section 8 we evaluate the performance of
the proposed protocol. Finally, Section 9 concludes the

paper.
2. Related work

Cooperative transmission has mainly been addressed at
the physical-layer, i.e., by studying the achievable rates or
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Fig. 1. Architecture of the proposed Cognitive Radio Ad Hoc Networks, and its coexistence with legacy narrowband unlicensed users and primary users.

diversity gains of given cooperative schemes [13-16].
Recent work has started investigating
cooperative-transmission-aware routing and the relay
node assignment problem.

In single-hop networks, the focus has mostly been on
relay node selection between each source and destination
pair. For example, Shi, Hou et al. [23] propose an optimal
relay selection algorithm for multiple source-destination
pairs such that the minimum capacity among all source-
destination pairs is maximized. The algorithm achieves
optimal relay assignment with polynomial-time complex-
ity by using a “linear marking” mechanism that is able to
achieve linear complexity at each iteration. In [26], the
authors address the relay assignment problem to extend
the coverage area. They show that cooperative transmis-
sion significantly outperforms direct transmission in terms
of coverage area, transmit power, and spectral efficiency.
Xue et al. [27] consider a system model where a relay node
can be shared by multiple source-destination pairs. They
propose an optimal algorithm that runs in polynomial time
to solve the relay assignment problem with the objective of
maximizing the total capacity of all source-destination
pairs. Along with the proposed algorithm, the authors
show that an optimal relay assignment preferably assigns
a relay node to at most one source node to achieve the
maximum total capacity even if multiple source-destina-
tion pairs are allowed to share a common relay node.

Recent work has also considered multi-hop cooperative
networking. In [21], the authors study the minimum
energy routing problem by exploiting cooperative gain. A
dynamic programming based solution is proposed to find
the route with minimum energy consumption. In [22],
the authors study the problem of power allocation on a
pre-selected route of links enhanced by cooperative relays
to maximize the network lifetime. Yeh et al. [25] formulate
and solve an optimal stochastic control problem with
cooperative relays. In [10,19,20,18,24]| the authors propose
routing solutions with cooperative relaying. For example,

Lakshmanan and Sivakumar [18] investigate how coopera-
tive relaying benefits translate into network level perfor-
mance improvements. An adaptive routing protocol is
proposed with algorithms to determine the choice of the
number of cooperative transmitters such that the diversity
gain and interference trade-off is appropriately leveraged;
and the choice of the cooperation strategy such that the
diversity gain is appropriately used for either an
increase in the range or the rate of the links or both. In
[24], Sharma and Hou study a joint problem of relay node
assignment and multi-hop flow routing, with the
objective to maximize the minimum rate among a set of
concurrent sessions. The problem is formulated as a mixed
integer linear programming and solved by using a
branch-and-cut framework. In contrast, we study the
problem of decentralized spectrum management with
cooperative routing.

In the context of cognitive networks, Zhang et al.
[28,29] demonstrate that cooperative transmissions can
increase the network throughput by jointly exploiting
spatial and spectrum diversity. Simeone et al. [30-32]
propose a cooperative transmission scheme between pri-
mary and secondary users referred to as spectrum leasing,
where secondary users relay the traffic on behalf of pri-
mary users in exchange for opportunities to transmit
their own traffic. Leasing means that the primary users
have an incentive (e.g., monetary rewards as leasing pay-
ments) to allow secondary users to access their licensed
spectrum.

Recent work has also addressed spectrum-aware rout-
ing techniques in cognitive networks with multi-hop com-
munication capabilities. Cesana et al. [33] provide an
excellent overview of routing research on cognitive ad
hoc networks. The survey identifies two main categories
of solutions, i.e., approaches based on a global spectrum
knowledge, and approaches that consider local spectrum
knowledge only as obtained via distributed procedures
and protocols.
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Ekici et al. [34] propose a route-stability-oriented rout-
ing analysis, where a novel definition of route stability is
introduced based on the notion of route maintenance cost.
The maintenance cost represents the effort needed (or pen-
alty paid) to maintain end-to-end connectivity. In [35],
Chowdhury and Felice propose a routing protocol that dis-
covers several paths from source to destination, which are
then combined at the destination to form low-hop count
paths. In case the operational path is affected by a new pri-
mary user activity, the protocol initiates a new partial
route search through RREQ packets. A cross-layer oppor-
tunistic spectrum access and dynamic routing algorithm
is introduced in [6], which can be interpreted as a dis-
tributed solution to a centralized cross-layer optimization
problem. In contrast, in this paper we study the problem
of decentralized joint routing and spectrum allocation by
exploiting the benefits of cooperative relaying.

3. System model

We consider a cognitive ad hoc network consisting of
primary and secondary users. Primary users hold
licenses for specific spectrum bands, and can only
occupy their assigned portion of the spectrum.
Secondary users do not have any licensed spectrum
and opportunistically send their data by utilizing idle
primary spectrum. Let A" = {1,... N} represent a finite
set of secondary users (also referred to as nodes). We
assume that all the secondary users are equipped with
cognitive radios that consist of a reconfigurable transcei-
ver that can tune to a set of contiguous frequency mini-
bands, and a scanner.

3.1. Channel model

The available spectrum is assumed to be organized in
two separate channels. A common control channel (CCC)
is used by all secondary users for spectrum access negoti-
ation. A data channel (DC) is used for data communica-
tion. The data channel consists of a set of discrete
minibands {f i, fiminits - - - fmae1,fmax }> identified by a dis-
crete index. The bandwidth of each miniband is w. For
example, the interval [f;,f;, 5] represents the contiguous
set of minibands selected by secondary user i between
fi and f;, ,5, with bandwidth w - AB, where AB is an inte-
ger. Each secondary user that has packets to send con-
tends for spectrum access on the fixed control channel
fee» Where fo. ¢ [finsfmad- All secondary users in the net-
work exchange local information on the common control
channel. This is in line with the capabilities of existing
prototypes for experimental evaluation of software
defined and cognitive radio technology such as the
USRP2/GNU radio suite [36,37]. Note that a dedicated fre-
quency band is assigned as the CCC, which is always
available to the secondary users so that they can con-
stantly exchange information and update their observa-
tion of the neighboring nodes without interfering
primary users. In this work, we focus on how to utilize
the exchanged information for secondary users to opti-
mize their resource allocation. There is extensive work

on how to design and realize CCC in cognitive radio net-
works. The readers are referred to [38] and the work
therein for more details.

3.2. Transmission mode

Consider the cooperative relaying model shown in
Fig. 2, with source node s, relay node r and destination
node d. Considering multiple orthogonal frequencies, let
f; represent the contiguous set of minibands used by both
s and r. We define P/ and P/ as the transmit power allo-
cated at node s and r, respectively, on miniband f, and
p, = {P/ |fef} and p, = {P/ | f e f;} as the set of allo-
cated power at node s and r. Let SINR/, SINR/, and

ST
SINRfd denote the signal-to-interference-plus-noise power
ratios (SINR) on miniband f of links (s,r), (s,d) and (r,d),

respectively. We have SINR/(P!) = "iLx, SINRI,(P!) = L,
T d

and SINR/,(P) :Péf}”, where L, Ly and L, capture the
d

effects of path-loss, shadowing and frequency nonselective
fading of links (s,r), (s,d) and (r,d), respectively. NI/ and
Nl£ represent the noise plus interference on miniband f

at node r and d, respectively. Note that NI/ and NI} are
not constant. Their values depend on other active trans-
missions. For example, NI/ = N/ +Zke_\fr.k#spl{l‘kf' where
N{ is the receiver noise on frequency f, and the expression
> ken ik #SPkar represents the sum of interferences from all
neighboring transmissions at receiver r. Note that we are
dropping all time dependencies.

We will consider two different cooperative schemes,
i.e., decode-and-forward (DF) and amplify-and-forward (AF).

Decode-and-forward cooperative relaying: In the DF
cooperative relaying scheme, relay r decodes the received
signal from source s in the first time period, and forwards
the data to destination d in the second time period. The
destination jointly decodes the signals received from
source and relay, for example through maximal ratio com-
bining [39]. Assuming the relay can fully decode the source
message, the capacity of the cooperative link between s
and d with relay ris [9]
Co(£,B, By) = 5 min y~{log; (1+ SINRL(P))).

fefs

log, (1 + SINR, (P! + SINR/, (P! )) } (1)

Note that C% is an increasing function of p, and p,,

which means that both source and relay node should

Fig. 2. Illustration of cooperative relaying model.



L. Ding et al./ Computer Networks 83 (2015) 315-331 319

transmit at the maximum power to achieve maximum
capacity. In spatially distributed cognitive networks with
decentralized control, however, different minibands may
have different maximum allowed power limits, and such
constraints are different for different nodes as discussed
in detail in Section V.A. Hence, the capacity of a link
depends on the joint selection of relay node, spectrum,
and power on different minibands.

Amplify-and-forward cooperative relaying: In the AF
cooperative relaying scheme, cooperative relay node r
receives and amplifies (but does not decode) the signal
from source node s in the first time period, and forwards
the signal to destination node d in the second time per-
iod. The destination jointly decodes the two copies of
the signal from two different paths, thereby increasing
the probability of correct detection. We can express the
capacity of a AF cooperative link between s and d with
relay r as [9]

Csdr(f57 Ps; pr = Zlogz ( + SINRf (Pf)
f€f5

SINR/ (P/) - SINR/,(P/)
SINR! (P!) 4 SINR/, (Pf)+1 '

@)

Direct transmission: When cooperative relaying node is
not used, source s transmits to destination d in both time
periods. The capacity of link (s, d) is therefore

= w-log, (1 + SINRL,(P)). 3)

fefs

DIR
sd fs ) ps

Note that the capacity of a cooperative link can be lower
than that of the corresponding direct link (same source and
destination with no relay). In this work, we assume the
channel state information (CSI) and the time-varying inter-
ference introduced by primary users is available at the
receivers. Channel estimation and data detection for coop-
erative communications has been studied for AF schemes
in [40-43], and for DF schemes in [44,45]. There is rich
work in time-varying interference sensing in cognitive
radio system such as [46-48]. We believe the estimation
problem is orthogonal to our problem and addressed in
those papers. We do not look into the problem of channel
state information estimation in this work.

3.3. Queueing dynamics

Traffic flows are, in general, carried over multi-hop
routes. Let the traffic demands consist of a set
S={1,2,...,5} of unicast sessions. Each session s € S is
characterized by a fixed source-destination node pair,
and it can have source and destination at any of the S
nodes. We indicate the arrival rate of session s at node i
as /i (t) at time t.

Each node maintains a separate queue for each session
s for which it is either a source or an intermediate relay.
At time slot t, we define Qj(t) as the number of queued
bits of session s waiting for transmission at secondary
user i. We define rj(t) as the transmission rate on link

(i,j) for session s during time slot t, which is limited by

the link capacity. For Vi e N, the queue is updated as
follows:

+

Qt+1)=|QO)+ > (- Y

keN k=i jeN j#i

ri(6) + 4 (1)

We assume that relay nodes forward packets to the desti-
nation node immediately after receiving the packets from
the source node, i.e., packets are not enqueued at relay
nodes.

4. Problem formulation

Let binary matrix E indicate active links of secondary
users on the data channel, i.e., E; = 1 indicates that link
(i,j) is active, while E; = 0 indicates the link is not active.
Let EV = {E"(f) | f € [fmin-fmax]} TEDTESENL activities of pri-

mary users (input to the problem), i.e., EV(f) = 1 indicates
active primary users’ reception on miniband f, and

EY(f) = 0 indicates no primary users’ reception on f.
We define A = {Af; | i,j,k € N'} as the global AF cooper-
ative relay selection variable. Specifically,

K { 1 if node k is selected as an AF relay for link (i),
U710 otherwise.

(4)

Similarly, define B = {Bj | i,j,k €N} as the global DF
cooperative relay selection variable,

K { 1 if node k is selected as an DF relay for link (i,j),
710 otherwise.
(5)
Note that binary variable Ej; indicates whether or not the
link (i,j) is active in the routing solution, while Aﬁ; and ij.
indicate cooperative relay selection for (i,j). We may assign
a AF or DF relay node to link (i,j) only if it is active, i.e.,
E; = 1. Otherwise, no cooperative relay should be assigned
to (i,j). This constraint can be expressed as
Ej—Y A=Y By >0, VijeN, i#]. (6)
i i
In addition, we assume that each node can be used as

either next hop or cooperative relay at most once at the
same time. This can be expressed as

Z ZA +Z ZB +ZElk+ZEkl

N jeN N jeN leN
ik sk i#k ik I#k I#k

VkeN.

(7)

Then, the capacity of link (i,j) can be expressed as

U 1- ZA ZB CDIR f“pl + ZA uk fhpnpk)

keN keN
k#4ij kAij k?"l

+> BiCh(fi PP, VijeN, i#]. 8)

ke
ki

We define utility Uy of link (i,j) as
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Us(t) = Cy(t) - [Q(0) - @ 0)] ©)
where
s; = arg msax{Qf(t) - Q;(t)}. (10)

In (9), Cj(t) represents the achievable capacity for link
(i,j) as defined in (8) given the current spectrum condition
at time t and the chosen transmission mode, while s} is the
session with maximum differential backlog on link (i,j).
The achievable capacity for cooperative and direct links
under spectrum sharing constraints will be further dis-
cussed in Section 5.1.

The utility function is defined based on the principle
of dynamic back-pressure, first introduced in [49]. It
can be proven [50] that a control strategy that jointly
assigns resources at the physical/link layers and routes
to maximize the weighted sum of differential backlogs
(with weights given by the achievable data rates on
the link) as in (11) is throughput-optimal, in the sense
that it is able to keep all network queues finite for any
level of offered traffic within the network capacity
region.

Our stated goal is to design a distributed cross-layer
control scheme to maximize the network throughput by
jointly, dynamically, and distributively allocating (i) the
next hop (routing), (ii) a cooperative relay, (iii) spectrum,
i.e.,, minibands and power on each miniband, to be used
at transmitter and relay of each network link. To achieve
throughput optimality, the control strategy needs to adapt
to the dynamics of available spectrum resources and net-
work queueing under the constraints introduced by cogni-
tive ad hoc networks. A desirable solution should also let
secondary users utilize dynamically the available spectrum
to provide BER guarantees to both primary and secondary
users. For this reason, an ideal throughput-optimal net-
work controller should, at each decision period (e.g., time
slot), find E, A, B, global spectrum and power allocation
F={fi|ie N} and P = {p; | i € '}, that maximize a sum
of utility functions. This is formally expressed by the prob-
lem below.

P1:Find: F,P, EAB

Maximize : >~ > Uy-E; (11)
ieN jeN j#i

Subject to :

Ev(f)'Pif:Ov ViGN: vfe{fminafmax]? (12>

SINR/, > SINR"(BER") - Ej, VijeN, Vf ef;, (13)

SPI<P¥, vieN, (14)

fef;

fi C {fminafmax]a Vie N7
(6)—(7).
In the problem above, constraint (12) states that no

transmission of secondary users is allowed if there is a
reception activity of primary users on that miniband.

(15)

Intuitively, the more active the primary users are (i.e.,
occupying their licensed frequency bands), the less avail-
able spectrum the secondary users can access. Constraint
(13) imposes that secondary user transmissions should
also satisfy a given BER performance, while sharing the
spectrum with other secondary users. SINR'h denotes the
SINR threshold to achieve a target bit error rate BER". In
(14), P*' represents a constraint on the total power for
each device.

Therefore, ideally, a throughput-optimal policy would
continuously (i.e., at each time slot) assign resources on
each network link by solving problem P1 to optimality.
However, exact solution of P1 requires global knowledge
of all feasible rates and a centralized algorithm to solve a
mixed integer non-linear problem (NP-hard in general)
such as P1 on a time-slot basis. This is clearly unpracti-
cal for real-time decision making. The problem above can
be solved rather efficiently (but, certainly not in real
time) through a combination of branch and bound and
convex relaxation techniques, similar to the algorithm
that we proposed in [51]. However, this is outside the
scope of this paper. The main difficulty in solving prob-
lem P1 is that the capacity region, which captures all
possible routing, scheduling, and resource allocation
strategies, has no easy representation in terms of the
power constraints at the individual links or nodes in
general. It has been shown that the complexity of this
family of schedule problems is worst-case exponential
[52]. The fastest algorithms we know for them are all
exponential, not substantially better than an exhaustive
search, and the problem is NP-hard [52]. Here, based
on the formulation above, we derive distributed and
localized best-response algorithms designed to achieve
an approximate solution to P1 based on real-time dis-
tributed decisions driven by locally collected information.
In addition, we show how the proposed distributed algo-
rithm can be implemented in a practical protocol in
Section 7. Note that, for the sake of simplicity, we will
drop all time dependencies.

In the following sections, we first propose the physical
layer resource allocation solution for link capacity maxi-
mization problem in Section 5. Then we present our dis-
tributed joint routing, relay selection and spectrum
allocation algorithm with the objective of maximizing local
utilities in Section 6.B. A stochastic channel access mecha-
nism is then proposed in Section 6.C to map local to global
objective we aim to maximize in P1.

5. Link capacity maximization under spectrum sharing
constraints

In this section, we first derive the interference condi-
tions under which multiple nodes can transmit simulta-
neously on the shared wireless medium (spectrum
sharing constraints). Then, we discuss link capacity max-
imization for direct and cooperative links under the
derived spectrum sharing constraints. These will consti-
tute the building blocks for the distributed routing, relay
selection, and spectrum allocation algorithm discussed in
Section 6.
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5.1. Spectrum sharing constraints

All network transmitters need to (i) satisfy receiver BER
requirements, (ii) avoid interfering with ongoing
communications.

5.1.1. Minimum required transmit power

Let SINR'h(BER*) represent the minimum SINR that
guarantees a target bit error rate BER", and P;(f) represent
the transmit power of transmitter i on miniband f. The first
constraint for link (i,j) can be expressed by

PLy > SINR™(BER*
0 > SINR (BER'), (16)
NI/

where L; captures the effects of path-loss, shadowing and
frequency nonselective fading of link (i,j), and Nljf repre-
sents the noise plus interference at receiver j on miniband
f.The numerator represents the received power at receiver j.

We define P;"i”f as the value of P{ for which (16) holds

with equality. Thus, P/"™ is the minimum required trans-
mit power of link (i,j) on miniband f. The constraint in
(16) states that the SINR at receiver j needs to be above a
certain threshold to allow receiver j to successfully decode
the signal given its current noise and interference. For clar-
ity, we use Pg‘i"f to denote the minimum required transmit
power of transmitter i for receiver j.

5.1.2. Maximum allowed transmit power

Let P?mf denote the maximum allowed transmit power
on miniband f of transmitter i, i € A. If there is ongoing
reception of primary user on miniband f, i.e., E'(f) =1,
no transmission of i is allowed,

E'(f) P! =0, VieN, Vf € Fnfnal (17)

In the following we will discuss P™* when there is no

primary user’s reception on f, i.e., E'(f) = 0. Denote the
interference on miniband f at a receiver k, (k € NV, k # j),

as NI + AIl,, where NI/ represents noise plus interference

at k before i's transmission, and AI}, represents the addi-
tional interference at k caused by i’s transmission, i.e.,
AL, = P/L.

The second constraint represents the fact that ongoing
reception at node k should not be impaired by i’s transmis-
sion. This can be expressed as

f

L > SINR™(BER"), k e N,k # ik #], (18)
NI + AL,

where Pff represents the signal power being received on
miniband f at receiver k, and j is the intended receiver
of transmitter i in link (i,j). Since this has to be true

for every secondary receiver, the constraint can be
written as

AImax.f
f < k
Pl <min—T, (19
where

P
N =k NI/ keN. (20)
SINR™(BER")
The inequality in (19) states that the interference gener-
ated by i’s transmission on each frequency should not
exceed the threshold value that represents the maximum
interference that can be tolerated by the most vulnerable
of i’s neighbors.
By combining (17) and (19), we obtain

0, E'(f) =1;
min=t—, E'(f)=0.

max.f &
prese

(21)

Hence, for link (i,j), node i’s transmit power needs to be
bounded on each miniband. The expressions in (16) and
(21) define lower and upper bounds, respectively, on the
transmit power for each frequency.

5.2. Distributed spectrum and power allocation

In cognitive ad hoc networks the locally available spec-
trum resources may change from time to time. Hence, link
capacities are time-varying and can be maximized through
(i) dynamic spectrum and power allocation (ii) choice of a
cooperation strategy and a relay. In this section, we derive
algorithms to maximize the link capacities for direct and
cooperative links. These procedures will then be used in
the distributed joint routing, relay selection, and spectrum
allocation algorithm in Section 6.

The objective here is to find a spectrum portion f; (i.e.,
set of contiguous minibands) with corresponding transmit
power p; for node i, and p,, for relay candidate k (i.e., A;]‘- =1,

or Bf-J‘- = 1) to maximize the link capacity as defined in (8).
For the case when transmitter i does not use relay k (i.e.,
ZkAg- + ZkBZ- =0), we assign p, = 0.

5.2.1. Direct transmission

Maximizing the capacity of link (i,j) means selecting
spectrum f; and corresponding transmit power Plf that
maximize the Shannon capacity as defined in (3) under
the spectrum sharing constraints introduced in (16) and
(21) in Section 5.1.

P2.1:Given: P!/, pi/ p
Find: f;, p;

Maximize : ~ C;

Subject to :

PI < PL< P Y ef,
S <P,
fef;

fi C [fmimfmax]'

5.2.2. Decode-and-forward relaying

Consider the DF cooperative transmission of link (i,j)
with relay node k (i.e., Bf-]‘. = 1), power constraints should
be satisfied not only at i but also at k.
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P2.2 : Given : P;nax.f7 Pzwx,f7 Pg_ﬂn,f7 I;%mf7 PBgt

Find : fi7 pi7 pk

Maximize :  Cpy

Subject to :

PP < PL< P Y fefy, (22)
Pt < pl vfef, (23)
PP fet, (24)
> Pl <P, (25)
fef;

ZP{ < Pt (26)
fef;

fi C [fminvfmax]' (27)

For a given spectrum portion f;, problem P2.2 is equivalent
to the following problem.

P2.3: Given :
Find: zp;, pi
Maximize: z
Subject to :

f,‘.,leax'f7 leax.f7 P;r_lin,f7 Pgin\f’ PBgt

Zlog2 + SINR/ (P)) < 0; (28)
fef

Zlogz 1+ SINR/(P/) + SINR(P])) < 0; (29)
fef

and constraints (22)-(27).

SINR/, + SINR{, + 1 + SINR - SINR/, + SINR/ - SINR,

(22)-(27). The main difficulty in solving the problem in
the AF case is introduced by the fact that the objective

function, Cj, is a function of three SINRs that can
not be converted into a concave function. This
makes the problems NP-hard as discussed later. In the
following, we propose an approximation algorithm
to solve the power allocation problem for given a
spectrum f;.

We first define a monomial as a function g : R}, — R:

g(x) =dx®"'xa® . xa" (31)

n

where the constant d > 0 and the exponential constants

a” €R, j=1,2,...,n. A sum of monomials, i.e., a function
of the form
M (1) 2) (n)
X) = > X7 XX (32)
m
whered,, > 0, m=1,2,...,M, is called a posynomial.

Note that with the noise plus interference Nljf at recei-
ver j on miniband f we have

P/L;
SINR/,(P/) = N f‘f :
J

which is a monomial in Pl.f. Similarly, SINR£< and SINRij are

monomials of Pl.f and Pi, respectively. The link capacity in
(2) for given spectrum f; can be expressed as in (30),
where g; and h; are both posynomials, since monomials

(e, SINRf, SINR/, and SINR]) are closed under
multiplication.

We can then express the objective of the power alloca-
tion problem for given f; as max¥ 3" log, %, which is

+ SINRJ, + SINR/, - SINR/.

kj kj

Cuk Pi.P) = Zl

2 & SINR/, -+ SINR]

2YNTp0 & (P, Py)
2 fef; 2 hf(pis )

Problem P2.3 is a convex optimization problem,
because (i) the objective function of P2.3 and constraints
(22)-(27) are all affine functions of the problem variables
Z,p;, Py (ii) the inequality constraint functions (28) and
(29) are twice differentiable, and their Hessians are nega-
tive semidefinite. Clearly, problem P2.1 is also a convex
optimization problem for a given f;. Thus, for given spec-
trum f;, both problems can be solved efficiently in polyno-
mial time by using interior point methods [53,54].

5.2.3. Amplify-and-forward relaying
Similarly, spectrum and power should be allocated

to maximize the link capacity Cl]k under constraints

1
U (30)

equivalent to max log,[ ], ( ) which is in turn equivalent

to min erf( 7). We define g £ ;g Then, g is a posyno-
mial since each g; is a posynomial and the product of
posynomials is again a posynomial. Similarly, we have
another posynomial h£[[;¢h; as the denominator.
Then, the problem can be expressed as

P24 : Given :
Flnd : ph pk
h(p;, i) (33)

g2(pi, py)
Subject to :

fi7 P;nax.f7 Pkmax.f1 ngin‘f7 PBgt

Minimize :
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P < Bl <P, S e, 34
PL <P, Vfef, (35)
S Pl <P, (36)
fef;
> P <P, (37)
fef;

where the objective is a ratio between two posynomials,
and all the constraints are affine functions. Minimizing a
ratio between two posynomials is a nonlinear and noncon-
vex problem and in general an NP-hard problem [55]. Here,
we provide an approximation algorithm to solve it.

1. Set an initial feasible power vector p?, p¢, and n = 1.
2. Compute for each term in g; with p*~' and p}~',

VA0

=TT (38)
(AN )
where uf" is the mth term in g;.
3. Approximate g with a monomial g using o",
~ u ()"
& (PiPr) = H <fa7:n . (39)
m f

In steps (2) and (3), we approximate g, with gy using the
arithmetic-geometric mean approximation, which
enables the algorithm to be provably convergent to a
point satisfying the necessary optimality Karush-Kuh
n-Tucker (KKT) conditions of the original problem. It
is also observed through extensive numerical experi-
ments that the convergence point is often the globally
optimal solution.

4. Solve the approximated ratio using interior point
methods,

[, (he(Pi, Br))
erf,- (& (Pi,Pr)

By approximating the denominator g; with a monomial
gr, but leaving the numerator h; as a posynomial, the
objective function (33) is converted into a posynomial,
since posynomials can be divided by monomials with
the result still a posynomial.

5.n=n+1, and go to step (2) until convergence, i.e.,
(P, p}f) — (PP, pf~")|| < € where € is the error toler-
ance for exit condition, return solution as (p, p}).

(P{’, P) = argmin

Proposition 1. Consider the approximation of a ratio of
posynomials g with g, where g is the monomial approximation
of g using the arithmetic-geometric mean approximation as
in (38) and (39). The solutions of this series of approximations
converge to a point satisfying the necessary optimality KKT
conditions of the original problem.

Proof. See Appendix A. O

The proposed algorithm uses existing research on suc-
cessive approximation and the arithmetic-mean-geome
tric-mean inequality [56]. Algorithm 1 shows the spectrum
and power allocation algorithm for given link (i,j) and
relay candidate k.

Algorithm 1. Spectrum and Power Allocation Algorithm.

1: Given link (i,j), relay candidate k

2:Set C; =0, Aj =0, B =0

3: for each [fl?fHAB} € [fminvfmax] do

4: Derive p; by solving problem P2.1 over [f},f, xz]

5: if () > C; then

6:  C=C"

7: [f;‘p:(~p]ﬂ = [[flfoAB]’pivo]
8: Ai=0Bi=0

9: end if

10: Derive p;, p; by solving P2.3 over [f},f, A3]
11: if Cj > Cj then

12: Cj=Cj

130 6,07, = (If1-f 1 a8l i, P

14:  Af=0Bf=1

15: end if

16: Derive p;, p; by solving P2.4 over [f},f, ]
17: if Cjj > Cj then

18:  Cj=Ci

19: [frv p;7 PL] = HflfoAB]v Pi, pk]

20:  Af=1B=0

21: end if

22: end for

23: Return solution as [f?,p;‘,p,’g,C;},Aﬁ,B{-j‘-}

6. COOP: distributed routing, relay selection, and
spectrum allocation

In this section, we introduce a distributed algorithm,
named COOP, which is designed to provide an approximate
solution to P1 based on real-time distributed decisions dri-
ven by locally collected information.

6.1. Spectrum and power allocation algorithm

We start by introducing the spectrum and power allo-
cation algorithm executed in a distributed fashion at each
secondary user to maximize the link capacity given the
current spectrum condition. Note that a sender may not
always use a relay node, because cooperative transmis-
sion may lead to a lower capacity than direct transmis-
sion. This fact wunderlines the significance of
transmission mode selection, because different relay
nodes may lead to different capacities due to the channel



324 L. Ding et al./ Computer Networks 83 (2015) 315-331

coefficients L, Ly in Fig. 2. Moreover, the available spec-
trum and the corresponding allowed transmit power at
different relay nodes may be different in the
spectrum-agile network, which influences the achievable
capacity as well.

The joint spectrum and power allocation Algorithm 1 is
performed to find optimal spectrum and power allocation
for given link (i,j) and relay candidate m.

6.2. Distributed joint routing and relay selection algorithm

Denote N°(i) as the set of feasible next hops for the
backlogged session s at node i, i.e., the set of neighbors with
positive advance towards the destination of session s. Node
m has positive advance with respect to i iff m is closer to the
destination of session s thani [57]. Every backlogged node i,
once it senses an idle common control channel, performs
the distributed joint routing and relay selection algorithm
(Algorithm 2).

Algorithm 2. Distributed Joint Routing and Relay Selection
Algorithm.

1: At backlogged node i, U =0

2: for each backlogged session s € S do

for j € V(i) do

4: for k € N*(i) do

5 Calculate [f;, p;, py., Cys, Af, BE] using Algorithm

w

6 if Cj - (Q} — Q) > Uy then
7 Uj=Cy-(Qi - Q)

8 [f;.p;, Py = [fi, pi Dy

9: [, = [s,]]

10: end if

11: end for

12: end for

13: end for

14: Set contention window CW; = ®(Uj)
15: Generate backoff counter BC; € [1,2"i™!]

Algorithm 2 calculates the next hop opportunistically
depending on queueing and spectrum dynamics, accord-
ing to the utility function in (9). At every backlogged
node, the next hop is selected with the objective of max-
imizing (9). The combination of next hops leads to a
multi-hop path. The multi-hop path discovery terminates
when the destination is selected as the next hop. If the
destination is in the transmission range of the transmit-
ter (either a source or an intermediate hop for that ses-
sion), the differential backlog between the transmitter
and the destination is no less than the differential back-
logs between the transmitter and any other nodes,
because the queue length of the destination is zero.
Hence, the destination has a higher probability of being
selected as next hop than any other neighboring node
of the transmitter. Note that the transmitter may still
select a node other than the destination as the next

hop even if the destination is in the transmission range.
This can happen, for example, if there is no available
miniband between transmitter and destination, or if the
interference on the minibands at that time is very high,
which results in low link capacity between the
transmitter and the destination. Note that loop-freeness
is considered and ensured in our proposed solution.
Specifically, the set of next hop candidates is restricted
to the neighbors that are estimated to be closer to the
destination than the transmitting node. This avoids loops
but packets may get stuck at nodes with broken forward
links.

6.3. Mapping local to global objectives through stochastic
channel access

Once spectrum selection, power allocation, scheduled
session, next hop (with relay node if cooperative trans-
mission is selected) have been determined by executing
Algorithm 2, i.e. [s*,j*,A(i,j*),B(i,j"). f;, p;, p;], the proba-
bility of accessing the medium is calculated based on
the value of U;. Nodes with higher U; will get a higher
probability of accessing the medium and transmit. Note
that Uy is an increasing function of (Qj — Qj), i.e., links
with higher differential backlog may have larger Uj , thus
have higher probability of being scheduled for
transmission.

This probability is implemented by varying the size of
the contention window at the MAC layer. The transmitting
node i generates a backoff counter BC; chosen randomly
(with a wuniform distribution) within the interval
(1,271, where CW; is the contention window of trans-
mitter i, whose value is a decreasing function ®() of the
utility Uy as below

U
D S
Eka\e',-,k,lej\f ki

where 37\ ienUn represents the total utility of the
neighboring competing nodes. Scalars o« and B can be
designed for specific network size and active sessions
injected into the network to reduce collision. Note that
sender i collects its neighbors utility values by overhear-
ing control packets on the CCC as discussed in
Section 7.

With this mechanism, heavily backlogged queues with
more spectrum resources are given higher probability of
transmission. For a node i that just has completed trans-
mission on the data channel, the value of Q; becomes smal-
ler, which results in a reduced value of Uy which
consequently leads to a lager size of the contention win-
dow. In this way, the node’s level of priority in accessing
spectrum resources is implicitly reduced, which, in turn,
improves fairness. Differential backlog-aware routing can
reduce the probability of forwarding data through a con-
gested node. A large queue size at an intermediate node
is interpreted as an indicator that the path going through
that node is congested and should be avoided, while a
small queue size at an intermediate node indicates low

W, = — +B a>0, >0 (40)
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Fig. 3. COOP Illustration.

congestion on the path going through that node. According
to the proposed routing algorithm, nodes with a smaller
queue size have a higher probability of being selected as
next hop. On the other hand, according to our proposed
medium access control mechanism as discussed later, links
with larger differential backlogs have smaller contention
window size, and thus have higher probability of accessing
the channel and consequently have higher priority in
reserving resources. In this way, congestion is mitigated
by the proposed routing and medium access control
strategy.

We summarized the algorithms we proposed in this
section in Fig. 3. As illustrated in the figure, the physical
layer resource allocation algorithm is executed first to
solve the link capacity maximization problem in
Section 5. Then joint routing and relay selection algorithm
is executed to solve the local utility optimization problem.
Finally, a channel access mechanism is employed to map
local to global objective we aim to maximize in problem
P1.

Our proposed algorithm is based on a randomized con-
troller that assigns opportunities to transmit based on the
current relative value of spectrum utility, defined in (9), for
competing nodes. Links with larger differential backlog
and higher link capacity will have a higher utility, and
hence have higher probability of being scheduled for trans-
mission. The basic idea behind this operation is to adapt
the transmitters’ contention aggressiveness as a function
of sum utilizes we aim to maximize in P1. When the pro-
duct of differential backlog and link capacity becomes
large, the transmitter becomes aggressive in the con-
tention for channel access. The larger utility value
decreases its contention window size thus increases its

probability to access the channel as compared to compet-
ing nodes.

7. Distributed protocol design

In this section, we propose and discuss a cooperative
MAC for cognitive ad hoc networks (CoCogMAC), which
aims at providing nodes with accurate spectrum informa-
tion based on a combination of physical sensing and of
local exchange of information. Scanner-equipped cognitive
radios can detect primary user transmissions by sensing
the data channel. In addition, CoCogMAC combines scan-
ning results and information from control packets (shown
in Fig. 4) exchanged on the control channel that contain
information about transmissions and power used on differ-
ent minibands as well as information on relays. As illus-
trated in Fig. 4, 4 bytes of queue size information and
14 bytes of spectrum information are introduced as addi-
tional overhead in our proposed solution, which is cer-
tainly allowable compared to the benefits in terms of
throughput gains.

CoCogMAC uses a three-way handshaking among the
source, destination and relay. The three-way handshaking
is carried out via exchange of Request-to-Send (RTS),
Clear-to-Send (CTS) and Relay- Ready-to-Relay (RTR)
frames among the source, destination and the selected
relay. Similar to the IEEE 802.11 two-way RTS and CTS
handshake, backlogged nodes contend for spectrum access
on the common control channel (CCC). However,
CoCogMAC's three-way handshake is substantially differ-
ent from the RTS and CTS handshake used in IEEE 802.11.
All control packets have different structure and functions.
Here, we enhance the RTS/CTS packets and introduce RTR

2B 2B 6B 6B 18B 4B
Frame . Rx Tx . .
Control Duration Addr Addr Information Block CRC

Queue AJ e Pmin Spectrum

Spectrum | Time Reservation

Length Reservation | Utility Stamp | Duration
4B 4B 4B 1B 1B 2B 2B
B: Byte

Fig. 4. Control packet format.
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1 SIFS !
: SIFS |
{ RTR l———,
Relay 1 : .
Sender 2 . |
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l:] Packet on common control channel

- Packet on data channel

Fig. 5. Medium access control for cooperative transmissions.

packet to announce the spectrum reservation and transmit
power to the neighboring nodes. Each node makes adap-
tive decisions based on the overheard RTS/CTS/RTR pack-
ets. Fig. 5 illustrates this operation.

The sender informs the receiver and relay of the
selected frequency interval using an RTS packet. On
receiving the RTS packet, the receiver responds by using
a CTS packet after the Short Inter-Frame Space (SIFS) and
tunes its transceiver for data transmission on the fre-
quency specified in the RTS packet. The selected relay
will send out an RTR packet after receiving the RTS and
CTS packets. The RTR packet is used to announce the
spectrum reservation and transmit power to the relay’s
neighbors and inform the receiver of the presence of
the relay. Once RTS/CTS/RTR are successfully exchanged,
sender, relay, and receiver tune their transceivers to the
selected spectrum portion. Before transmitting, they
sense the selected spectrum and, if it is idle, the sender
begins data transmission without further delay. Note that
it is possible that the sender, relay or the receiver finds
the selected spectrum busy just before data transmission.
This can be caused by the presence of primary users, or
by conflicting reservations caused by losses of control
packets. In this case, the node gives up the selected spec-
trum, and goes back to the control channel for further
negotiation. During the RTS/CTS/RTR exchange, if the
sender-selected spectrum can not be entirely used, i.e.,
the receiver just sensed the presence of a primary user,
the receiver will not respond with a CTS. This is also true
for the relay node. The sender will go back to the control
channel for further negotiation once the waiting-for-CTS
timer expires and the RTS retransmission limit is
reached.

Note that CoCogMAC is significantly different from
CoopMAC [17] in the following aspects: (i) different from

CoopMAC, CoCogMAC enables collaborative spectrum
sensing and spectrum reservation in cognitive ad hoc net-
works by exchanging control packets on the common con-
trol channel; (ii) unlike CoopMAC, CoCogMAC is an
adaptive distributed channel access control scheme.
CoCogMAC employs a dynamic contention window size
as discussed in Section 6 to opportunistically give priority
in spectrum reservation to links with higher capacity and
larger differential backlog.

In this work, we assume a separate channel as the con-
trol channel for the handshake of secondary users. We
assume this control channel is different from the set of
frequency-agile data channels, and is not affected by pri-
mary user activities. Recent work also study channel ren-
dezvous [63,64] to migrate the unpredictable changes,
where SUs hop among the available channels until they
find each other in any of the available channels. Then,
SUs determine (via spectrum sensing) which channels are
available and attempt to establish a link on one of those
channels for handshake.

8. Performance evaluation

8.1. The impact of transmission strategies on single link
performance

In this section, we study the impact of relay node loca-
tion and transmission strategies on the performance of
direct and cooperative communications in terms of link
capacity. We study the topology depicted in Fig. 6.

Fig. 7 shows the impact of relay node location and
transmission strategies on link capacity, where the noise
power is set to 0.5 uW for all nodes. As shown in the
figures, the performance of cooperative transmission
depends on the location of the relay node. DF cooperative

dst

Fig. 6. Transmission topology.
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transmission outperforms AF in general. In addition, coop-
erative transmission is not always better than direct trans-
mission, especially when the relay node is far away from
both source and destination as shown in Fig. 7(c).

We then increase the noise power to 5 pW. As shown in
Fig. 8(a) and (b), cooperative transmissions achieve an
overall higher rate compared to direct transmission, and
the performance gain obtained by DF is more visible as
the relay node gets closer to the destination node.

8.2. Network performance evaluation

In this section, we analyze the performance of the pro-
posed solution described in Section 6 (referred to as COOP)
in a multi-hop cognitive ad hoc network. To evaluate
COOP, we have developed an object-oriented packet-level
discrete-event simulator, which models in detail all layers
of the communication protocol stack as described in this
paper. We would like to emphasize that our simulator is
a packet-level simulator (similar to ns-2), which is how-
ever interfaced with the CVX modeling language [65] to
solve at simulation time the resource allocation optimiza-
tion problems discussed in Section 6. Hence, we simulate
in detail the network behavior based on the distributed
decision making as it results from numerical optimization.
Therefore, the results presented in this section are based
on an accurate protocol simulation, and are not mere
numerical results derived from the analytical model.

For simulation purposes, we map the Shannon capacity
to physical data rates as follows. Since the relation
between BER and SINR varies with different modulation
schemes, we consider the class of M-QAM. Specifically,
we consider BPSK, QPSK, 16-QAM and 64-QAM as the
modulation set. The transmitter compares the expected
SINR with a set of pre-defined thresholds to choose the
best modulation scheme. The data rate for BPSK is
2 Mbit/s for a 1 MHz band. The algorithms proposed in
the paper are generic with all options of DF, AF and direct
transmission mode as described in Algorithm 1. In our
simulation scenario DF outperforms AF in general as
shown in Section VIII-A, thus we consider DF as coopera-
tive transmission option in our simulations based on
these observations.

We first compare the performance of COOP with two
alternative schemes, which both rely on the same knowl-
edge of the environment as COOP. In particular, we con-
sider DIRC-Q as the solution where routing with dynamic
spectrum allocation is based on the same utility as COOP
but with direct transmission only, and to routing with
dynamic spectrum allocation (DIRC-S) as the solution
where routing with direct transmission is based on short-
est path without considering differential backlog.

Considering a grid topology of 49 nodes, we initiate ses-
sions between randomly selected but disjoint source-des-
tination pairs. Sessions are CBR sources. We set the
available spectrum to be 54-60 MHz, a portion of the TV
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Fig. 10. (a) Impact of traffic load on throughput; (b) throughput with 20 Mbit/s load per session, 64-node network; (c) fairness index.

band that secondary users are allowed to use when there is
no licensed (primary) user operating on it. We restrict the
bandwidth usable by cognitive radios to be 3 MHz. The
bandwidth of the CCC is 2 MHz. The duration of a time slot
on the CCC is set to 20 ps. Parameters « and f in (40) are
set to 5 and 10 respectively. A larger CW can reduce the
collision rate but may lead to lower utilization of the con-
trol channel caused by backoff. These values are implicitly
optimized based on the network size in the simulation.
We compare the three solutions by varying the number
of sessions injected into the network and plot the network
throughput (sum of individual session throughput).
Fig. 9(a) and (b) show the impact of the number of sessions
injected into the network on the throughput performance.
The traffic load per session is 10 Mbit/s and 20 Mbit/s.
When the traffic load is low, i.e., 10 Mbit/s, DIRC-Q and
DIRC-S obtain similar throughput performance. However,
with higher traffic load, i.e., 20 Mbit/s, COOP and DIRC-Q
perform much better than DIRC-S since DIRC-S restricts
packets forwarding to the receiver that is closest to the
destination, even if the link capacity is very low or the
receiver is heavily congested. In contrast, COOP and
DIRC-Q, by considering both the link capacity and the dif-
ferential backlog, are more flexible and may route packets
along paths that temporarily take them farther from the

destination, especially if these paths eventually lead to
links that have higher capacity and/or that are not as heav-
ily utilized by other traffic. Moreover, as shown in both fig-
ures, the throughput achieved by COOP is the highest due
to the spatial diversity gain exploited by COOP.

Fig. 9(c) shows the delay performance for the three
solutions with traffic load 20 Mbit/s per session. In general,
the delay performance gaps among the three solutions
grow as the number of sessions increases.

We now concentrate on the comparison between COOP
and DIRC-Q. Fig. 10(a) illustrates the network throughput
as the traffic load per flow varies from 1 Mbit/s to
20 Mbit/s. As the per session load increases over
10 Mbit/s, the improvement obtained by COOP is more vis-
ible by opportunistically exploiting spatial diversity.

Figs. 9(b) and 10(b) show the impact of varying number
of sessions when the number of nodes deployed in the net-
work is 64 and 49, respectively. In general, with the same
traffic load, the 64-node network achieves a better perfor-
mance since the available diversity is higher than that of
49-node network. The throughput first increases as the
number of sessions increases. After a certain point, the
throughput starts decreasing. As shown in the two figures,
the throughput of the 64-node network decreases later than
that of 49-node network, since the achievable spatial
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diversity is less in the latter. Fig. 10(c) shows Jain’s fairness
index, calculated as (3r5)%/S* Y (r5)%, where r; is the
throughput of session s, and S is the total number of active
sessions. As shown in the figure, the overall fairness among
competing sessions is improved by COOP and DIRC-Q by
considering the differential backlog.

9. Conclusion

We studied and proposed decentralized and localized
algorithms for joint dynamic routing, relay selection, and
spectrum allocation in cooperative cognitive ad hoc net-
works. We have shown how the proposed distributed algo-
rithms lead to increased throughput with respect to
non-cooperative strategies. The discussion in this paper
leaves several open issues for further research. First, we
will aim at deriving a theoretical lower bound on the per-
formance of the proposed algorithm. Furthermore, we will
evaluate the performance of the algorithm in conjunction
with a congestion control module.

Appendix A. Proof of Proposition 1

To prove this proposition, we first show that the
approximation has several properties. Then we use the
properties to prove the proposition.

hx)  hx)
1. 20 < 70 for all x.

Recall that we first approximate the posynomial

o
g (x) = >_,uf"(x) with monomial g;(x) = Hm( o > f.
Then g=[[g is approximated with monomial
g = [1;& since monomials are closed under multiplica-

tion. In such a way, we approximate 1% Wlth h(" . Thus,

g
the arithmetic-geometric mean 1nequa11ty

5 h
g (%) = &(x) = Hi( o ) leads to 5 < 3.
2. %:Qg; where x* is the optlmal solution of the
approximated problem in the previous iteration.

Since of" = é , vm for any fixed positive x*, then
g(x") =gr(x*), a nd thus g(x*) = g(x*).
h(x h(x)
3. vg(X*) - vg(X*)
This property can be easily verified by taking deriva-

h hx)
tives of and 200"

Now, based on the three properties above, without loss
of generality, we can express the original nonconvex prob-
lem P2.4 as

P3 minimize: z
subject to: X _ 7
X) <

8/—\

<0 (A1)
0,i=1,...b4

|z

i
where the original objective function is moved to the con-

straint % —z < 0 by introducing the auxiliary scalar vari-
able z. Constraints f;(x) <0, i=1,...,4, represent the

inequality constraints (34)-(37), and f;(x)s are affine
functions.

Since '® _

0 Z< 0 is convex, the approximated problem
of P3 can be solved optimally by x* and z*. So there exist

dual optimal 4* € R*"!, together with x* and z*, which sat-
isfy the KKT conditions:

vz JrZ/L*Vf, )42 v@ ; 72*) 0, (A2)
B >0i-0,...4 (A3)
S =0i=1,....4, (A4)
x) N\
<~(x* ) o (AS5)

According to Properties (2) and (3) and V can
be replaced by "*) and vV 1x) respectlvely. Thus, we have

gx )

" hx) 0\ _

vz +Z Vfi(X") + 2 v(g( %) >70, (A6)
>0,i=0,... .4, (A7)
Jfix)=0,i=1,...,4, (A8)
e (hx) N\

(g7 ) =© (A9)

Therefore, the KKT conditions of the original problem
are satisfied.

References

[1] L. Ding, T. Melodia, S. Batalama, J. Matyjas, Distributed routing, relay
selection, and spectrum allocation in cognitive and cooperative ad
hoc networks, in: Proc. of IEEE Intl. Conf. on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), Boston, MA, 2010.

[2] J. Mitola, Cognitive radio architecture evolution, Proc. IEEE (2009)
626-641.

[3] LF. Akyildiz, W.-Y. Lee, K. Chowdhury, CRAHNSs: cognitive radio ad
hoc networks, Ad Hoc Networks J. 7 (5) (2009) 810-836 (Elsevier).

[4] L. Cao, H. Zheng, SPARTA: stable and efficient spectrum access in
next generation dynamic spectrum networks, in: Proc. of IEEE Intl.
Conf. on Computer Communications (INFOCOM), Phoenix, AZ, USA,
2008, pp. 870-878.

[5] Y. Yuan, P. Bahl, R. Chandra, T. Moscibroda, Y. Wu, Allocating
dynamic time-spectrum blocks in cognitive radio networks, in: Proc.
of ACM Intl. Symp. on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2007.

[6] L. Ding, T. Melodia, S.N. Batalama, J. Matyjas, M. Medley, Cross-layer
routing and dynamic spectrum allocation in cognitive radio ad hoc
networks, IEEE Trans. Veh. Technol. 59 (4) (2010) 1969-1979.

[7] A. Abbagnale, F. Cuomo, Connectivity-driven routing for cognitive
radio ad-hoc networks, in: Proc. of IEEE Intl. Conf. on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON), Boston,MA,
2010.

[8] A. Sendonaris, E. Erkip, B. Aazhang, User cooperation diversity - Part
I: System description, IEEE Trans. Commun. 51 (11) (2003) 1927~
1938.

[9] J.N. Laneman, D.N.C. Tse, G.W. Wornell, Cooperative diversity in
wireless networks: efficient protocols and outage behavior, IEEE
Trans. Inform. Theory 50 (12) (2004) 3062-3080.

[10] G. Jakllari, S.V. Krishnamurthy, M. Faloutsos, P.V. Krishnamurthy, O.
Ercetin, A cross-layer framework for exploiting virtual MISO links in
mobile ad hoc networks, IEEE Trans. Mobile Comput. 6 (6) (2007)
579-594.

[11] G. Kramer, 1. Maric, R.D. Yates, Cooperative communications, Found.
Trends Network. 1 (3-4) (2007) 271-425.


http://refhub.elsevier.com/S1389-1286(15)00075-4/h0010
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0010
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0015
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0015
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0030
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0030
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0030
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0040
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0040
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0040
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0045
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0045
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0045
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0050
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0050
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0050
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0050
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0055
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0055

330 L. Ding et al./ Computer Networks 83 (2015) 315-331

[12] KJ. Ray Liu, AK. Sadek, W. Su, A. Kwasinski, Cooperative
Communications and Networking, Cambridge University Press,
Cambridge, UK, 2009.

[13] A. Host-Madsen, J. Zhang, Capacity bounds and power allocation for
wireless relay channels, IEEE Trans. Inform. Theory 51 (6) (2005)
2020-2040.

[14] G. Kramer, M. Gastpar, P. Gupta, Cooperative strategies and capacity
theorems for relay networks, IEEE Trans. Inform. Theory 51 (9)
(2005) 3037-3063.

[15] O. Gurewitz, R.D. Baynast, E.W. Knightly, Cooperative strategies and
achievable rate for tree networks with optimal spatial reuse, IEEE
Trans. Inform. Theory 53 (10) (2007) 3596-3614.

[16] Q. Liu, W. Zhang, X. Ma, Practical and general amplify-and-forward
designs for cooperative networks, in: Proc. of IEEE Intl. Conf. on
Computer Commun. (INFOCOM), San Diego, USA, March 2010.

[17] P. Liu, Z. Tao, S. Narayanan, T. Korakis, S.S. Panwar, CoopMAC: a
cooperative MAC for wireless LANs, IEEE ]. Sel. Areas Commun. 25 (2)
(2007) 340-354.

[18] S. Lakshmanan, R. Sivakumar, Diversity routing for multi-hop
wireless networks with cooperative transmissions, in: Proc. of IEEE
Communications Society Conf. on Sensor, Mesh and Ad hoc
Communications and Networks (SECON), Rome, Italy, 2009.

[19] M. Kurth, A. Zubow, ].-P. Redlich, Cooperative opportunistic routing
using transmit diversity in wireless mesh networks, in: Proc. of IEEE
Intl. Conf. on Computer Communications (INFOCOM), 2008.

[20] J. Zhang, Q. Zhang, Cooperative routing in multi-source multi-
destination multi-hop wireless networks, in: Proc. of IEEE Intl. Conf.
on Computer Communications (INFOCOM), 2008.

[21] A. Khandani, ]. Abounadi, E. Modiano, L. Zheng, Cooperative routing
in static wireless networks, IEEE Trans. Commun. 55 (11) (2007).

[22] S. Savazzi, U. Spagnolini, Energy aware power allocation strategies
for multihop-cooperative transmission schemes, IEEE ]. Sel. Areas
Commun. 25 (2) (2007) 318C327.

[23] Y. Shi, S. Sharma, Y.T. Hou, S. Kompella, Optimal relay assignment for
cooperative communications, in: Proc. ACM Intern. Symp. on Mobile
Ad Hoc Networking and Computing (MobiHoc), Hong Kong SAR,
China, 2008, pp. 3-12.

[24] S. Sharma, Y. Shi, Y.T. Hou, H.D. Sherali, S. Kompella, Cooperative
communications in multi-hop wireless networks: joint flow routing
and relay node assignment, in: Proc. of IEEE Intl. Conf. on Computer
Communications (INFOCOM), San Diego, CA, 2010.

[25] E.M. Yeh, R.A. Berry, Throughput optimal control of cooperative relay
networks, IEEE Trans. Inform. Theory 53 (10) (2007) 3827-3833.

[26] AK. Sadek, Z. Han, K.R. Liu, Distributed relay-assignment protocols
for coverage expansion in cooperative wireless networks, IEEE Trans.
Mobile Comput. 9 (4) (2010) 505-515.

[27] D. Yang, X. Fang, G. Xue, OPRA: optimal relay assignment for
capacity maximization in cooperative networks, in: Proc. IEEE
International Conf. on Comm. (ICC), Kyoto, Japan, 2011.

[28] Q. Zhang, ]. Jia, ]J. Zhang, Cooperative relay to improve diversity in
cognitive radio networks, IEEE Commun. Mag. 47 (2) (2009) 111-117.

[29] J. Zhang, ]. Jia, Q. Zhang, E.M.K. Lo, Implementation and evaluation of
cooperative communication schemes in software-defined radio
testbed, in: Proc. of IEEE Intl. Conf. on Computer Communications
(INFOCOM), San Diego, CA, USA, 2010.

[30] O. Simeone, Y. Bar-Ness, U. Spagnolini, Stable throughput of
cognitive radios with and without relaying capability, IEEE Trans.
Commun. 55 (12) (2007) 2351-2360.

[31] O. Simeone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, R.
Pickholtz, Spectrum leasing to cooperating secondary ad hoc
networks, IEEE Trans. Sel. Areas Commun. 26 (1) (2008) 203-213.

[32] R. Murawski, E. Ekici, Utilizing dynamic spectrum leasing for
cognitive radios in 802.11-based wireless networks, Comput.
Networks 55 (2011) 2646-2657 (Elsevier).

[33] M. Cesana, F. Cuomo, E. Ekici, Routing in cognitive radio networks:
challenges and solutions, Ad Hoc Networks 9 (2011) 228-248.

[34] L Filippini, E. Ekici, M. Cesana, Minimum maintenance cost routing
in cognitive radio networks, in: IEEE International Conf. on Mobile
Adhoc and Sensor Systems (MASS), Macau, 2009.

[35] K.R. Chowdhury, M.D. Felice, SEARCH: a routing protocol for mobile
cognitive radio ad-hoc network, Comput. Commun. 32 (18) (2009)
1983-1997 (Elsevier).

[36] KR. Chowdhury, T. Melodia, Platforms and testbeds for
experimental evaluation of cognitive ad hoc networks, IEEE
Commun. Mag. 48 (2010) 96-104.

[37] P. Nagaraju, L. Ding, T. Melodia, S. Batalama, D. Pados, ]J. Matyjas,
Implementation of a distributed joint routing and dynamic spectrum
allocation algorithm on USRP2 radios, in: IEEE Intl. Conf. on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON), Boston, MA, 2010.

[38] B.F. Lo, A survey of common control channel design in cognitive
radio networks, J. Phys. Commun. 4 (2011) 26-39 (Elsevier).

[39] A. Goldsmith, Wireless Communications, Cambridge University
Press, 2005.

[40] T.CF. Gao, A. Nallanathan, On channel estimation and optimal
training design for amplify and forward relay networks, IEEE Trans.
Wireless Commun. 7 (2008) 1907-1916.

[41] CS. Patel, G.L. Stuber, Channel estimation for amplify and forward
relay based cooperation diversity systems, IEEE Trans. Wireless
Commun. 6 (2007) 2345-2356.

[42] SM.T.N.L. He, Y. Wu, H.V. Poor, Superimposed training-based
channel estimation and data detection for OFDM amplify-and-
forward cooperative systems under high mobility, IEEE Trans. Signal
Process. 60 (2012) 274-284.

[43] Y.QY.W.K. Yang, S. Ding, H. Liu, A low complexity LMMSE channel
estimation method for OFDM-based cooperative diversity systems
with multiple amplify-and-forward relays, EURASIP ]. Wireless
Commun. Netw. 2008 (2008).

[44] D. Chen, J.N. Laneman, Non-coherent demodulation for cooperative
wireless systems, in: Proc. of IEEE GLOBECOM, Dallas, TX, 2004.

[45] T.CF. Gao, A. Nallanathan, Optimal training design for channel
estimation in decode-and-forward relay networks with individual
and total power constraints, IEEE Trans. Signal Process. 56 (2008)
5937-5949.

[46] M.M.S. Ali, N.B. Mehta, Modeling time-varying aggregate
interference in cognitive radio systems, and application to primary
exclusive zone design, IEEE Wireless Commun. 13 (2013) 429-439.

[47] A. Ghasemi, E.S. Sousa, Interference aggregation in spectrum-sensing
cognitive wireless networks, IEEE ]. Sel. Top. Signal Process. 2 (2008)
41-56.

[48] L. Arienzo, D. Tarchi, Statistical modeling of spectrum sensing energy
in multi-hop cognitive radio networks, IEEE Signal Process. Lett. 22
(3) (2015) 356-360.

[49] L. Tassiulas, A. Ephremides, Stability properties of constrained
queueing systems and scheduling policies for maximum
throughput in multihop radio networks, IEEE Trans. Autom.
Control 37 (12) (1992) 1936-1948.

[50] L. Georgiadis, M.J. Neely, L. Tassiulas, Resource allocation and cross-
layer control in wireless networks, Found. Trends Netw. 1 (1) (2006)
1-144, http://dx.doi.org/10.1561/1300000001.

[51] Z. Guan, L. Ding, T. Melodia, D. Yuan, On the effect of cooperative
relaying on the performance of video streaming applications in
cognitive radio networks, in: IEEE Intl. Conf. on Communications
(ICC), Kyoto, Japan, 2011.

[52] G.Sharma, N.B. Shroff, R.R. Mazumdar, On the complexity of scheduling
in wireless networks, in: Proc. of ACM Intl. Conf. on Mobile Computing
and Networking (MobiCom), Los Angeles, CA, 2006.

[53] LE. Nesterov, A. Nemirovskii, Interior-Point Polynomial Algorithms
in Convex Programming, SIAM, Philadelphia, PA, USA, 1994.

[54] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004.

[55] M. Chiang, Nonconvex optimization of communication systems, in:
Advances in Mechanics and Mathematics Special Volumn on
Strang’s 70th Birthday.

[56] B.R. Marks, G.P. Wright, A general inner approximation algorithm for
nonconvex mathematical program, Oper. Res. 26 (4) (1978) 681-
683.

[57] T. Melodia, D. Pompili, LF. Akyildiz, On the interdependence of
distributed topology control and geographical routing in ad hoc and
sensor networks, J. Sel. Areas Commun. 23 (3) (2005) 520-532.

[63] L. DaSilva, I. Guerreiro, Sequence based rendezvous for dynamic
spectrum access, in: Proc. of IEEE Symposia on New Frontiers in
Dynamic Spectrum Access Networks (DySPAN), Chicago, IL, 2008.

[64] N.C. Theis, RW. Thomas, L.A. DaSilva, Rendezvous for cognitive
radios, IEEE Trans. Mobile Comput. 10 (2) (2010) 216-227.

[65] M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex
Programming (Web Page and Software), 2009. <http://stanford.edu/
boyd/cvx>.

Further Reading

[58] L. Jiang, ]J. Walrand, A distributed CSMA algorithm for throughput
and utility maximization in wireless networks, IEEE/ACM Trans.
Network. 18 (3) (2010) 960-972.

[59] J. Ni, R. Srikant, Distributed csmajca algorithms for achieving
maximum throughput in wireless networks, in: Proc. of
Information Theory and Applications Workshop, San Diego, CA,
2009.


http://refhub.elsevier.com/S1389-1286(15)00075-4/h0060
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0060
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0060
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0060
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0065
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0065
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0065
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0070
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0070
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0070
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0075
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0075
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0075
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0085
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0085
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0085
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0105
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0105
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0110
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0110
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0110
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0125
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0125
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0130
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0130
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0130
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0140
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0140
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0150
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0150
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0150
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0155
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0155
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0155
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0160
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0160
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0160
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0165
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0165
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0175
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0175
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0175
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0180
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0180
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0180
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0190
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0190
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0195
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0195
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0195
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0200
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0200
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0200
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0205
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0205
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0205
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0210
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0210
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0210
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0210
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0215
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0215
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0215
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0215
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0225
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0225
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0225
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0225
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0230
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0230
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0230
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0235
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0235
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0235
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0240
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0240
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0240
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0245
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0245
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0245
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0245
http://dx.doi.org/10.1561/1300000001
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0265
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0265
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0265
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0270
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0270
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0270
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0280
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0280
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0280
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0285
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0285
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0285
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0295
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0295
http://stanford.edu/boyd/cvx
http://stanford.edu/boyd/cvx
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0305
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0305
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0305
http://refhub.elsevier.com/S1389-1286(15)00075-4/h0305

L. Ding et al./ Computer Networks 83 (2015) 315-331 331

[60] P.Marbach, A. Eryilmaz, A backlog-based csma-mechanism to achieve
fairness and throughput-optimality in multihop wireless networks,
in: Proc. of Annual Allerton Conference on Communication, Control,
and Computing, Urbana-Champaign, IL, 2008.

[61] S. Rajagopalan, D. Shah, Distributed algorithm and reversible
network, in: Proc. of Annual Conference on Information Sciences
and Systems (CISS), Princeton, NJ, 2008.

[62] AP.M.CJ. Liu, Y. Yi, H\V. Poor, Towards utility-optimal random
access without message passing, Wiley ]. Wireless Commun.
Mobile Comput. 10 (1) (2010) 115-128.

Lei Ding received her Ph.D. degree in
Electrical Engineering from the University at
Buffalo, The State University of New York in
2012. She was the recipient of the State
University of New York at Buffalo Dean’s
Scholarship in 2008. She is currently a
research scientist with the Networks and
Security group at Intelligent Automation, Inc.,
Rockville, Maryland. Her current research
interests are in wireless communications,
network optimization, cross-layer design,
= ‘ s cognitive radio networking, and network
emulation.

Tommaso Melodia (M’'07) received the Ph.D.
degree in electrical and computer engineering
from the Georgia Institute of Technology,
Atlanta, GA, USA, in 2007.

He is an Associate Professor with the
Department of Electrical and Computer
Engineering, Northeastern University, Boston,
MA, USA. His research has been supported by
the National Science Foundation, Air Force
Research Laboratory, and the Office of Naval
Research, among others. His current research
interests are in modeling, optimization, and
experimental evaluation of networked communication systems, with
applications to ultrasonic intra-body networks, cognitive and cooperative
networks, multimedia sensor networks, and underwater networks.

Prof. Melodia was a recipient of the National Science Foundation CAREER
Award and coauthored a paper that was recognized as the ISI Fast
Breaking Paper in the field of Computer Science for February 2009 and of
an ACM WUWNet 2013 Best Paper Award. He was the Technical Program
Committee Vice Chair for IEEE Globecom 2013 and the Technical Program
Committee Vice Chair for Information Systems for [EEE INFOCOM 2013.
He serves on the editorial boards of the IEEE Transactions on Mobile

Computing, the IEEE Transactions on Wireless Communications, the IEEE
Transactions on Multimedia, and Computer Networks.

Stella N. Batalama received the Diploma
degree in Computer Engineering and Science
(5-year program) from the University of
Patras, Greece in 1989 and the Ph.D. degree in
electrical engineering from the University of
Virginia, Charlottesville, VA, in 1994. In 1995
she joined the Department of Electrical
Engineering, State University of New York at
Buffalo, Buffalo, NY, where she is presently a
Professor. From 2009 to 2011, she served as
the Associate Dean for Research of the School
of Engineering and Applied Sciences and since
2010, she is serving as the Chair of the Electrical Engineering Department.
During the summers of 1997-2002 she was Visiting Faculty in the U.S. Air
Force Research Laboratory (AFRL), Rome, NY. From Aug. 2003 to July 2004
she served as the Acting Director of the AFRL Center for Integrated
Transmission and Exploitation (CITE), Rome NY.

Her research interests include small-sample-support adaptive filtering
and receiver design, cooperative and cognitive communications and
networks, covert communications and steganography, robust
spread-spectrum communications and adaptive multiuser detection,
compressive sampling. She was an associate editor for the IEEE
Communications Letters (2000-2005) and the IEEE Transactions on
Communications (2002-2008).

Dr. John D. Matyjas received his Ph.D. in
electrical engineering from State University of
New York at Buffalo in 2004. Currently, he is
serving as the Connectivity & Dissemination
Core Technical Competency Lead at the Air
Force Research Laboratory (AFRL) in Rome,
NY. His research interests include dynamic
multiple-access communications and net-
working, software defined RF spectrum
mutability, statistical signal processing and
optimization, and neural networks. He serves
on the IEEE Transactions on Wireless
Communications Editorial Advisory Board.

Dr. Matyjas is the recipient of the 2012 IEEE R1 Technology Innovation
Award, 2013 AFRL Harry Davis Award for “Excellence in Basic
Research,” and the 2010 IEEE Int'l Communications Conf. Best
Paper Award. He is an IEEE Senior Member, chair of the IEEE Mohawk
Valley Signal Processing Society, and member of Tau Beta Pi and Eta
Kappa Nu.



	Distributed resource allocation in cognitive and cooperative  ad hoc networks through joint routing, relay selection  and spectrum allocation
	1 Introduction
	2 Related work
	3 System model
	3.1 Channel model
	3.2 Transmission mode
	3.3 Queueing dynamics

	4 Problem formulation
	5 Link capacity maximization under spectrum sharing constraints
	5.1 Spectrum sharing constraints
	5.1.1 Minimum required transmit power
	5.1.2 Maximum allowed transmit power

	5.2 Distributed spectrum and power allocation
	5.2.1 Direct transmission
	5.2.2 Decode-and-forward relaying
	5.2.3 Amplify-and-forward relaying


	6 COOP: distributed routing, relay selection, and spectrum allocation
	6.1 Spectrum and power allocation algorithm
	6.2 Distributed joint routing and relay selection algorithm
	6.3 Mapping local to global objectives through stochastic channel access

	7 Distributed protocol design
	8 Performance evaluation
	8.1 The impact of transmission strategies on single link performance
	8.2 Network performance evaluation

	9 Conclusion
	Appendix A Proof of Proposition 1
	References
	Further Reading


