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SUMMARY Modern microprocessors achieve high application perfor-
mance at the acceptable level of power dissipation. In terms of power to
performance trade-off, the instruction window is particularly important.
This is because enlarging the window size achieves high performance but
naive scaling of the conventional instruction window can severely increase
the complexity and power consumption. In this paper, we propose low-
power instruction window techniques for contemporary microprocessors.
First, the small reorder buffer (SROB) reduces power dissipation by de-
ferred allocation and early release. The deferred allocation delays the
SROB allocation of instructions until their all data dependencies are re-
solved. Then, the instructions are executed in program order and they
are released faster from the SROB. This results in higher resource utiliza-
tion and low power consumption. Second, we replace a conventional issue
queue by a direct lookup table (DLT) with an efficient tag translation tech-
nique. The translation scheme resolves the instruction dependency, espe-
cially for the case of one producer to multiple consumers. The efficiency of
the translation scheme stems from the fact that the vast majority of instruc-
tion dependency exists within a basic block. Experimental results show
that our proposed design reduces the power consumption significantly for
SPEC2000 benchmarks.
key words: instruction window, superscalar, low-power microarchitecture,
reorder buffer, issue queue

1. Introduction

Enlarging the size of instruction windows can lead to per-
formance improvement. However, naive scaling of the con-
ventional instruction window severely affects the complex-
ity and power consumption. In fact, Folegnani and Gonza-
lez [11] showed that the reorder buffer and the issue queue,
constituting the instruction window, is the most complex
and power-dense parts in dynamically scheduled processors.
Thus, much research has been conducted to increase the
size of the instruction window without negatively impacting
power consumption. In this context, we propose two tech-
niques for reducing power dissipation of the reorder buffer
(ROB) and the issue queue, respectively. The proposed tech-
niques are orthogonal at the microarchitecture level, and
thus they are also complementary and work together to im-
prove each other.

The ROB keeps a copy of all in-flight instructions and
speculative results until they retire, and thus the ROB be-
comes a complex multi-ported structure. The K-instruction
processor, the early load retirement, the cherry, and the runa-
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head execution have been proposed by Cristal [3], Kirman
[4], Martinez [5], and Mutlu [8], respectively. The K-
instruction processor [3] proposed the concept of early re-
leasing ROB resources via checkpointing. For the case of
a long-latency operation, the processor takes a checkpoint
and releases the ROB resource early. This achieves high
resource utilization without significantly increasing energy
consumption, but it closely depends on multicheckpointing.
The early load retirement [4] mechanism combines regis-
ter checkpointing and early release of the load instruction.
This allows instructions dependent on the long-latency load
to execute sooner. However, this scheme is still based on
checkpointing and it requires the checkpointing overhead.
The cherry [5] is developed to recycle physical registers
and load/store queue entries aggressively using combination
of ROB and periodic checkpointing. The runahead execu-
tion [8] proposed to realize large instruction windows by
reducing the penalties from long-latency memory instruc-
tions. When the instruction window is blocked by the long-
latency instruction, the architectural state of the load in-
struction is checkpointed and its dependent instruction are
nullified. Then, the instructions following the blocking op-
eration are executed quickly. This scheme gives increased
performance of larger instruction windows. However, these
four approaches commonly make use of checkpointing and
a large amount of storage spaces. Our proposed method,
called small reorder buffer (SROB), is distinct from these
above approaches in that we achieve early release without
depending on any checkpointing. This feature gives us rela-
tively good performance with a low power dissipation.

The issue queue is examined every cycle to choose
ready instructions for simultaneous execution. The wake-
up logic in the issue queue consists of a large number of
comparators and they are used to compare each broadcast
tag with every source operand tag. Therefore, the power
and performance optimization of issue queue in dynamically
scheduled processors requires a careful balance between re-
ducing the power consumption and improving on its per-
formance. To this end, the direct tag search (DTS), the N-
use, and the IQ pointer — tag associative buffer (IQP-TAB)
scheme have been proposed by Weiss [20], Canal [19], and
Weinraub [10], respectively. The DTS [20] is the first pro-
posal to limit power dissipation by avoiding associative tag
search at instruction wake-up logic. It uses a RAM-based
structure instead of a CAM for issue queue. The structure
is indexed by result operand tag to perform the result for-
warding. The drawback of the DTS approach is that only
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one instruction can be referenced from the direct tag search
table. The N-use [19] scheme is the retrospection of the
DTS. It improves the limitation of the DTS by using set-
associative memory which is possible to store up to N in-
structions in N-use table. However, this architecture still
make use of associative storage for N-use table and it re-
quires the CAM buffer to resolve resource conflicts occur-
ring from the RAM-based issue queue. This is because only
less than N instructions can be stored in one issue queue slot.
In N-use scheme, the aspect of power consumption is not in-
vestigated because the target of the approach is to reduce the
complexity of the issue logic. The IQP-TAB [10] scheme is
recently proposed to focus on power saving in issue window.
It also replaces the CAM-based issue queue with a RAM,
and uses two additional structures — a table of addresses to
the issue queue and a small, fully associative buffer. The
dependency relation up to one or two consumers for each
producer instruction can be represented using RAM-based
IQ and the IQ pointer (IQP), but the others still have to be
processed in power-consuming CAM buffer. And it is nec-
essary to make the size of the CAM buffer large enough to
support those overflowed instructions. Moreover, each row
in the CAM buffer contains only one consumer for a pro-
ducer instruction. This means that several rows may be used
for representing one dependency relations if a producer has
a lot of consumer instructions. As a result, the front-end
pipeline stalls due to the buffer full in issue queue.

In this paper, we introduce energy-efficient techniques
for instruction window. First, we focus on the fact that many
instructions waste ROB resources without doing any useful
work during data dependency resolution. To reduce such
wasteful usage of resource and energy, we introduce the
novel concept of a small reorder buffer (SROB). The SROB
executes only dependent instructions in program order and
releases the instructions faster. This results in higher re-
source utilization and low power consumption. The power
reduction stems from deferred allocation and early release.
The deferred allocation technique inserts instructions into
the SROB only after fulfilling the data dependency. The
SROB releases instructions earlier immediately after the ex-
ecution completes, because precise exception is trivial un-
der in-order execution. Second, in order to deal with the
power problem on issue queue, we focus on a well known
fact that the vast majority of instruction dependency exists
within a basic block. In practice, a basic block is comprised
of about 6 instructions on average [22]. Based on these
characteristics, we propose a bit-vector based tag transla-
tion unit (TTU). It resolves collisions of instruction depen-
dency when an issue queue slot is already occupied by an-
other instruction. The TTU replaces the complex associative
tag matching operation in conventional CAM buffer by sim-
ple bit-vector checking operation. In this structure, a row is
associated with each issue queue slot and divided into two
groups of six bits. Each bit corresponds to the relative dis-
placement from producer to consumer in issue queue. The
bit-vector based TTU executes in parallel and consumes less
power than the conventional architecture because of struc-

tured nature. Exploiting the above technique, we reduce
power consumption by 24.45% on average over IQP-TAB
scheme.

The rest of this paper is organized as follows. Section 2
presents a brief review of the existing approaches related to
instruction issue logic. Section 3 describes our modified re-
order buffer architecture, the SROB, and the concept of de-
ferred allocation and early release. Section 4 provides the
explanation of the DLT issue queue is illustrated. We eval-
uate its performance and power consumption in Sect. 5. Fi-
nally, we conclude by summarizing our results in Sect. 6.

2. Related Work

A wealth of work has been undertaken to design a low power
instruction window architecture. We begin with categoriz-
ing and summarizing a number of related works for power
reduction of the ROB and the issue queue.

Bell [1] and cristal [2] propose the concept of out-of-
order commit. Instructions from a few ROB slots in Bell’s
approach are allowed to retire out-of-order under certain
conditions. However, instructions are still retired only when
they meet six necessary commit conditions such that they
have completed and are guaranteed to retire safely. Cristal’s
proposal describes the out-of-order commit processor which
increases the capacity of future processors by augmenting
the number of in-flight instructions. It exploits a new check-
pointing mechanism that is capable of keeping thousands of
in-flight instructions at a practically constant cost.

Recently, three works takes checkpointing approach to
deal with the scalability problems of processor resources.
Martinez [5] propose a scheme to recycle physical registers
and load/store queue entries aggresively. It makes use of
a combination of ROB and periodic checkpointing to re-
alize precise exceptions. Akkary [6] and Cristal [3] pro-
pose ROB-less semi ROB-less micro-architectures based on
a multicheckpointing scheme. Our approach is distinct from
these approaches in that we achieve high resource utilization
and precise exception by early release of the ROB entries
without any checkpoints.

The concept for runahead execution was first proposed
by Dundas [7] to improve the data cache performance on
in-order execution. More recently Mutlu [8] extends the
concept for out-of-order execution processors. Mutlu pro-
poses a runahead execution to realize large instruction win-
dows by reducing the penalties from long-latency memory
instructions. When the instruction window is blocked by
the long-latency instruction, the architectural register state
is checkpointed and retires early. By this way, the instruc-
tions following the blocking operation are executed quickly.
This work is close to our early release scheme in SROB, but
it is different in that we eliminate the use of the checkpoint-
ing.

Ponomarev [15], Folegnani [11], Buyuktosunoglu [13],
and Jones [12] proposed mechanisms to dynamically adjust
the sizes of the instruction window based on periodic sam-
pling of their occupancies. They try to achieve significant
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power savings with minimal impact on performance. They
present an adaptive issue queue design by dynamically shut-
ting down and re-enabling blocks of the issue queue. By
shutting down unused blocks of the issue queue, they are
able to proportionately reduce the energy dissipated. How-
ever, extra overhead exists when activating the previously
disabled partitions of issue queue. Moreover, additional
hardware and control logics for monitoring and sampling
the utilization of the IQ are necessary.

In a slightly different context, Ehrhart [16] and Ernst
[17] completely eliminate the CAM structures by proposing
wakeup free scheduling. These schemes commonly utilize
prediction to obtain instruction arrival time by compile-time
and run-time information. They support a selective replay
mechanism to resolve the mis-predicted instructions that ex-
ecute too early. However, the prediction mechanism is sub-
ject to varying degrees of uncertainty and is not reliable for
non-deterministic events, such as a cache miss.

Weinraub [10], Canal [19], and Chen [27] limit asso-
ciative tag search at instruction wakeup to reduce power
dissipation. These approaches use an associative mapping
table, instead of CAM, for issue queue. The associative
mapping table commonly requires resolving resource con-
flicts since only one particular tag can be stored in one issue
queue slot. Moreover, it is difficult to keep the size of the
mapping table as small as that of CAM due to inherent in-
struction dependency in a program. As a result, the CAM
buffer overflow still results in large power consumption.

3. The Small Reorder Buffer

In general, the function of the reorder buffer (ROB) is to put
the instructions back into the original program order after
the instructions have finished execution possibly out of or-
der. The ROB maintains an ordered list of the instructions
and takes into account recovery and precise exception. Con-
ventionally, the instructions are inserted into both the issue
queue and the ROB. The instructions stay in the ROB until
the instruction commits. As soon as the dependency of an
instruction is fulfilled, the processor executes the instruction
sequentially in program order. In addition to the ordinary
ROB, we propose the concept of the small ROB (SROB),
as depicted in Fig. 1. Figure 1 shows the overall pipeline
architecture in which the colored components represent the

Fig. 1 DLT pipeline architecture.

modified (or newly added) parts in this work. The processor
decodes fetched instructions (FETCH) and assigns physical
registers to hold their results. This register renaming process
(RR) maps the architected registers into a larger set of phys-
ical registers. Decoded instructions (DECODE) are inserted
in both instruction window and reorder buffer (ROB) at dis-
patch time in program order. For load and store instructions,
they are assigned to entries in load-store queues (LSQ). In-
structions leave the instruction queue when they are issued,
and free their reorder buffer entries when they commit. Re-
order buffer holds the result of an instruction between the
time the operation associated with the instruction completes
and the time the instruction commits. The fuctional units
(FU) can execute an operation of a certain type. The sys-
tem retrieves the operands from register file (RF), and stores
the operands into the register file. The stand-alone rename
registers (SARR) are split register file to implement the re-
name buffers. In Fig. 1, each entry in the SROB has the same
structure as the ordinary ROB. However, the SROB man-
ages only dependent instructions, while an ordinary ROB
processes the rest of the instructions such as control instruc-
tions, independent instructions, and load/store instructions.
The execution of dependent instructions is serialized inher-
ently by the true dependency. Most of these instructions
will wait for a long time to resolve their data dependencies,
even if we put the dependent instructions into the general
ROB. Figure 2 shows the example of instruction allocation
in the ROB and the SROB. Consequently, the instructions
waiting in the ROB do not any useful work and severely
affect the power consumption and the instruction level par-
allelism (ILP). This is because the ROB is a complex multi-
ported structure and represents a significant source of power
dissipation. Moreover, if the dependent instructions are in
a long dependency chain, power and performance problem
gets worse.

3.1 Deferred Allocation and Early Release

In order to resolve the power and performance problems,
we prevent dependent instructions from moving through the
ROB at dispatch time. The instructions wait for issue on
the instruction queue, not on the ROB. After the instruc-

Fig. 2 Instruction allocation in reorder buffer.
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tion dependency is fulfilled, the instructions can go to the
SROB. As a result, one instruction of a dependency chain
executes in the SROB at a time naturally as shown in Fig. 2.
We call this the deferred allocation of the SROB. Moreover,
the instructions in the SROB are released earlier and the re-
sult of the instruction is written into rename buffers immedi-
ately after the execution completes. Then, the result values
in the rename buffer are written into the architectural reg-
ister file at the commit state. Since the instructions in the
SROB are executed in program order, we need not maintain
the order of instructions and thus we have to take the re-
sults only. For implementation of the deferred allocation, we
need to check whether an instruction is in a certain depen-
dency chain or not. However, facilitating such a hardware
checker causes complexity at the front-end. So, we take
a straightforward approach to realize a simple instruction
classification at the decoding stage. Our classifier checks
only the operand availability of each instruction. If operands
are available, the instruction is independent. Otherwise, the
instruction is dependent and it thus goes to the SROB. This
classification mechanism is very simple, yet able to capture
in a uniform way all the dependency chains through a given
microarchitectural execution of a program.

3.2 Mechanism for In-Order Commit

In conventional reorder buffer architecture, a processor only
looks at the bottom of the centralized reorder buffer and it
commits the instruction reaching the bottom of the reorder
buffer to the architectural register. We have a slightly differ-
ent commit mechanism based on sequence numbers which
is similar to a timestamp scheme. The commit mechanism
must take into account the following three different buffers:
(1) stand-alone rename registers (SARR); (2) small reorder
buffer (SROB); and (3) reorder buffer (ROB). The SARR is
a split register file to implement the rename buffer. Although
we also use the ROB in our architecture, the ROB only keeps
track of a subset of instructions such as control instructions
or independent instructions. Therefore, we need to separate
the rename buffers from the ROB and facilitate the SARR
to cover all types of instructions. Nevertheless, this is not
severe limitation because recent processors except the Intel
Pentium typically incorporate the stand-alone rename regis-
ter scheme [28]. In our commit mechanism, the fetch unit
tags each instruction with a sequence number that is unique
for a processor. The number is increased by one for each in-
struction. The sequence number ensures that the instructions
retire in order. This is necessary because the instructions are
waiting for retirement from three different distributed stor-
ages in our architecture. Looking for an eligible instruction
to commit is achieved by the min seq scheduling logic. The
min seq scheduler determines the candidate instruction by
comparing the sequence numbers among the three buffers.
As a result, an instruction retires at commit stage only if
it meets the condition that all lower numbered instructions
are already committed. This strategy serializes the commit
sequence among all in-flight instructions. In addition, the

comparator that determines the minimum sequence number
has compensation logic. This is because the sequence num-
ber register becomes zero when it overflows; we provide a
compensation mechanism to handle the relative order of in-
flight instructions correctly.

3.3 Enforcing Precise Exceptions

The SROB also provides precise exception. The precise ex-
ception occurs when an exception is raised and the proces-
sor state looks exactly as if the instructions were executed
sequentially in strict program order. Since the ROB in our
configuration manages only subsets of all instructions, pro-
viding precise exception only in the ROB is not enough.
In order to deal with precise exception for all instructions,
we use a straightforward strategy to enforce precise excep-
tion in the SROB. If an exception is detected, the SROB
just holds the instruction and the status flags until all un-
completed instructions prior to the instruction are executed
and retired. Then, the exception is processed and the opera-
tions are re-executed where necessary to process the excep-
tion. Due to the true data dependency, the instructions in the
SROB are executed in order. The precise exception during
in-order execution is trivial.

However, this straightforward approach is only proper
to sequentially executed instructions such as in the SROB.
Providing precise exception in conventional ROB is still
necessary because the SROB in our configuration manages
only subsets of all instructions. When an exception occurs
in the ROB, retiring all instructions prior to the excepting in-
struction is the state of the art solution. After handling from
the exception, the processor resumes executing instructions
in the correct state.

4. The DLT Issue Window

In this section, we describe the design and the structure of
our DLT issue window (DLT IW)†. To realize the DLT is-
sue window, we use the Alpha 21264 architecture as the
base platform. Figure 1 also shows the proposed architec-
ture for the DLT-based microarchitecture. The fetch stage
includes the I-cache, branch prediction and the instruction
fetch queue. Instructions go through register rename unit
before entering the issue window. Then, the instructions are
inserted into a DLT IW slot at which the one of the source
operand pointed. The instructions wait at the DLT IW un-
til their source operands are ready. On each cycle, the result
operand tags of instruction are broadcasted through the com-
mon data bus (CDB) to wake up consumer instructions. At
that time, the issue window matches the tags against their
unready source operands. The DLT IW wakes up the de-
pendent instructions. They proceed with the register read,
execution, and memory/writeback stages. The TTU snoops
result operand tags passing by and translates them. In Fig. 3,

†The terms ‘issue queue’ and ‘issue window’ are used inter-
changably in this paper.
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Fig. 3 Example code segment and its allocation into DLT issue window.

we see an example of the instruction allocation in DLT IW
for a sample code segment. In this example code segment,
the red circled numbers represent the non-ready operands.
We assume that the physical registers, p0, p4, and p2 are al-
ready available at the begining. When an instruction is dis-
patched, an entry is allocated in DLT IW depending on the
non-ready source operand. For example, the second instruc-
tion in Fig. 3 goes to the first DLT slot because the operand
p1 is a non-ready source operand. The fifth instruction is
located to the eighth slot since the operand p8 is not avail-
able at the time. If the DLT IW slot is already occupied
by another instruction, the DLT allocation scheme attempts
to place the instruction for an available entry as near from
the producer instruction as possible. For instance, the third
instruction goes to the second DLT slot because another in-
struction is already allocated in the first slot. Specifically,
we leverage the instruction to be placed, if possible, within
six issue window slots of the desired location and the TTU
maintains the location mapping. If placement is not avail-
able within six DLT IW slots, we put the instruction in any
blank DLT slot and the TTU maintains the mapping. The
TTU resolves collisions on DLT IW slot allocation by tag
translation using the location mapping. Later, the result of
the producer instruction comes from the functional unit and
the result operand number is used directly as an index to
look for the consumer instruction. The ① and ② in Fig. 3
show the cases when both operands are not available and
when two consecutive instructions need the same operands.
Since only one particular tag and its corresponding instruc-
tion can be stored in one DLT IW slot, we call this resource
conflict or overflow in issue window. The handling of the re-
source conflict involves two specialized hardware structures
and they are shown in Fig. 4. Figure 4 describes the orga-
nization of DLT IW and TTU. The DLT issue window (IW)
makes use of three different bit flags to represent status in-
formation for each DLT entry: valid, ready, and double bits.
A valid bit maintained for each instruction queue entry indi-
cates whether the entry contains valid information or not. A
ready bit represents whether all of source registers are avail-
able or not. If a ready bit is set, the instruction can be issued
for the execution. A double bit indicates that an instruction

Fig. 4 DLT IW allocation.

Fig. 5 A bit-vector structure.

needs two source operands. If both operands of an instruc-
tion are not ready, our DLT scheme does not replicate the
same instruction into both queue entries (refer to case ② in
Fig. 4). Instead, our DLT scheme just puts the information
into only one of them, and sets the double bit. From then
on, TTU takes over the burden of tag translation. For in-
stance, tag 10 goes to slot 9 in addition to slot 10 when tag
10 appears in the CDB.

4.1 STT and STT Bit-Vectors

The TTU consists of snoopy tag translator (STT) bit-vectors.
The STT consists of a small number of associatively-
addressed retention latches for snooping the result on the
CDB. It is designed to attract a certain flow from the CDB
and look up the tag from the table. If a tag match occurs,
the STT generates another result tag corresponding to the
operand. For instance, when an instruction is followed by
another instruction having the same source operand already
dispatched in DLT, rename logic places the second instruc-
tion at any available entry in DLT as case in case ① in
Fig. 4. Meanwhile, the STT records the mapping between
the source and the true allocated index. With this tag trans-
lation mechanism, the complex associative tag matching op-
eration is replaced by simple direct table lookup operation.

Another important structure in the TTU is the STT bit-
vectors (STT-BV). The STT-BV execute in parallel and con-
sume less power than STT because of their structured na-
ture. When a result operand tag shows upon CDB, STT-BV
is checked. If it is set, another result operand tag is gener-
ated by TTU. A Bit-Vector is 12 bits wide. It is associated
with each DLT slot which is divided into two groups of 6 bits
as shown in Fig. 5. The first six bits represent instruction de-
pendency in reverse order. The second six bits represent it
in forward order. The STT-BV width is determined to be
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6 because the vast majority of instruction dependency ex-
ists within a basic block. In practice, a basic block is com-
prised of an average of 6 instructions [22]. Each bit corre-
sponds to the relative displacement of the dependency. For
instance, the first entry in STT-BV (refer to ①’ in Fig. 4)
has 000000:100000. This indicates the first instruction also
needs the value of tag number 1. In case of ②’, it means that
the first previous instruction also requires the same result,
tag number 10. Assuming the number of physical register
tags is 32, the STT-BV can handle dependencies for up to
384 (32 X 12) entries. Unlike this case, the STT is able
to handle only 32 entries. When allocating the DLT entry
for an incoming consumer instruction, the DLT scheme at-
tempts to place the instruction for an available entry as close
to the producer instruction as possible. Specifically, the in-
struction is placed within six DLT slots on either side. This
is because a higher hit ratio on STT-BV is better than more
hits on STT in terms on power. If a location is not available
within six DLT IW slots, we put the instruction in any blank
slot and insert mapping into the STT instead.

To support tag translation, we need additional struc-
tures: a tag generator, a row decoder, and a STT-gating
logic. The tag generator accesses STT-BV to check a set
bit and generates an additional result operand tag. The aver-
age instruction per cycle (IPC) on 4-way issue/commit con-
figuration is about 2.07 in our experiment and more or less
in the other experiments. This means that the CDB band-
width is under-utilized for a significant portion of time, un-
less there is a high fetch/decode/issue rate. Thus, the tag
generator can generate additional two or more tags on av-
erage per cycle. Figure 6 illustrates that the tag generator
reads a tag passing through the CDB and generates a new
tag in the available lane of the CDB. The row decoder se-
lects one line of the STT-BV table depending on the result
operand tag value. The STT-gating logic is attached to con-
trol the data flow between the CDB and the STT. The STT
and the STT-BV maintain the exclusion property for their
stored entries. Thus, tag search matches only one of them.
Since the STT consumes more power than the STT-BV, the
STT-gating logic limits access to the STT unless a match
will actually occur. To do so, the logic has a set of select
bits corresponding to each physical register tag. When a

Fig. 6 Detailed structure of tag generator and STT-gating logic.

tag mapping entry is added, the select bit is set to allow tag
search. When the tag mapping is used, the corresponding
select bit is cleared. Therefore, the tag search is limited by
the existence of a tag mapping entry in STT.

5. Experimental Result

All tests and evaluations were performed with programs
from the SPEC2000 CPU benchmark suite on Sim-
Panalyzer [6]. The Sim-Panalyzer is a cycle accurate and
architecture level power simulator which is built on the Sim-
pleScalar simulator. The total power dissipation in a CMOS
circuit can be expressed as the sum of three main compo-
nents.

Total Power = VIleak +CV2 f + ACV2 f

In order to calculate power using the above equation, the
Sim-Panalyzer make use of both analytical and experimen-
tal models. We need to count how much switching has hap-
pened for each module during simulation. Then, we mul-
tiply the unit power for a micro-architectural block by the
number of accesses. The Sim-Panalyzer lumps the issue
queue, the reorder buffer, and the physical register file into
a register update unit (RUU). In order to better model the
power consumption of contemporary microprocessor archi-
tecture, we split the RUU into the reorder buffer and the
issue queues. To evaluate the performance of the DLT archi-
tecture, we use the Alpha 21264 architecture as the baseline
platform. The Alpha is an out-of-order-issue microproces-
sor that can fetch and execute up to four instructions per cy-
cle. It also features dynamic scheduling and speculative ex-
ecution to maximize performance. The Alpha pipeline con-
tains four integer execution units. The two of the integer ex-
ecution units can perform memory address calculations for
load and store operations. The 21264 pipeline also contains
two floating-point execution units to perform add, divide,
square root, and multiply functions. The 21264 pipeline
has 7 stages which consist of instruction fetch, branch pre-
diction, register renaming, instruction issue, register access,
execution and writeback. The architecture parameters used

Table 1 Simulated architecture parameters.
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Fig. 7 The number of recovered entries in SROB and Baseline.

in our Sim-Panalyzer simulations are listed in Table 1. The
parameters such as iw:size, stt:size, and rn:size in Table 1
are only available in DLT architecture. The iw:size means
the entry size of issue queue. The stt:size is the queue entry
size in STT. If the stt:size is large, more power is consumed.
If the size is too small, a full buffer frequently occurs, re-
sulting in performance degradation. In this experiment, we
maintain the size of STT as half the issue window (IW) size:
16 entries for STT for a DLT of size 32, and 32 entries for
STT for a DLT of size 64. The rn:size is for adjusting the
range of register renaming. It indicates how many physi-
cal registers are mapped to logical register names. Without
register renaming, running a binary executable compiled for
32 registers on 64 register machine will repetitively make
use of first 32 registers only. This is because the renamed
register tag is used as an index to lookup the IW in DLT
architecture. This technique avoids recompilation overhead
when a binary executes on different architecture in terms of
pyhsical register size. The srob:size configures the size of
the SROB buffer. The reason we set this parameter as 4 is to
make the SROB size equal to the issue/commit bandwidth.
If the size is more or less than the bandwidth, it may result
in performance bottleneck or resource waste. The iqp:size
and tab:size are only applicable in the IQP-TAB scheme.

Figure 7 represents the number of entries to be recov-
ered when a mis-prediction or an exception occurs. Our
early release technique reduces 39.4% of the wrong-path in-
structions which are remaining in reorder buffer. The re-
duced entries contribute to power efficiency because recov-
ery consumes power to squash the unnecessary entries for a
wrong path instruction. However, the results of bzip, gap,
apsi, and perlbmk have minimal impact to power dissipa-
tion because the absolute differences are not significant in
contrast to the proportional differences shown in Fig. 7.

Figure 8 shows an average of IPC attained by SpecFP
and SpecInt applications in simulations. The results are nor-
malized to the baseline values. The performance degrada-
tion is due to the SROB contention. The exception is that
apsi delivers even better performance while maintaining an
effective power consumption level (4.9% less than the base-
line power).

Figure 9 represents the evaluated power dissipation.
The SROB method achieved power reduction to 11.2% of
baseline power. The power reduction stems from deferred

Fig. 8 IPC achieved with SROB and Baseline.

Fig. 9 The power dissipation in SROB and Baseline.

Fig. 10 STT and STT-BV utilization and the total number of conflicts on
IW size 32.

allocation and early release in the SROB. The power sav-
ings come with a performance penalty of only 3.7% on av-
erage. We note that power saving of the 11.2% is not total
system savings, but a portion of the total system savings.
The savings only applies to the power saving in the ROB
unit. However, the overall power savings in the perspective
of total system are not negligible. This is because the ROB
consumes the most significant amount of energy among all
structures. In fact, it takes 27.1% of total system power dis-
sipation. At the same time, we achieved power reduction of
the ROB unit to 11.2%. Therefore, the overall power sav-
ings in the perspective of total system are 3.04%.

Figures 10 and 11 show the STT-BV/STT occupancy
ratio and the total number of conflicts in DLT IW. The occu-
pancy ratio is cumulatively defined as the proportion of the
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Fig. 11 STT and STT-BV utilization and the total number of conflicts on
IW size 64.

Fig. 12 Buffer overflow count on IW size 32.

Fig. 13 Buffer overflow count on IW size 64.

sum of 2STT-BV Occupancy over the sum of STT Occu-
pancy. The conflict in IW directly affects power consump-
tion. This is because it causes the IW allocation scheme
to resolve the conflicts through TTU and the resolution in-
volves a power consuming operation such as STT access. In
our approach, many IW slot conflicts are processed in STT-
BV rather than STT; 49.77% on average for DLT size 32,
and 47.53% on average for DLT size 64. A high hit ratio on
STT-BV is better than high hit ratio on STT because of it
gives rise to a power reduction opportunity.

Figures 12 and 13 show the effectiveness of using STT-
BV. The STT overflow count is total number of event that
the STT is full. This factor directly affects IPC, resulting in
application performance degradation. This is because when

Table 2 Power dissipation and access delay of additional logic circuits.

Fig. 14 Power consumption on IW size 32.

the STT is full, the front-end† in a microprocessor stops ex-
ecuting until it is resolved.

We implemented the additional logic structures above
using Verilog HDL. These designs have been synthesized
with the Synopsys Design Compiler [7] targeted towards
a 0.18 micron TSMC library. For the sake of simplicity,
logic structures are designed on the assumption of single
port I/O. For multi-port I/O, we designed another version
of the tag generator to support for up to 4 ports. It con-
sumes 9.86 mW of dynamic power and 36.16 nW of leakage
power. Similarly, the extension to multi-port design for the
other structures can be achieved within a reasonable range
of power consumption. As shown in Table 2, we measured
power dissipation, area estimation, and access delay. The
result shows that the STT-BV consumes 76.1% less power
than the STT. This is because the STT is made up of content
addressable memory (CAM), whereas the STT-BV is com-
posed of RAM. For the STT-BV, the total power consump-
tion are estimated as follows: 1.0560 mW (STT-gating) +
366.3912 mW (Row Decoder) + 5.2750 mW (Tag Genera-
tor) + 1.2551 mW (STT-BV line). For the STT, the STT
has to lookup all entries for every operation due to its inher-
ent structure. Thus, the total power dissipation are at least
1.2551 mW *32, since the STT must access all 32 STT-BV
cells at every time. This gives under-estimated results in
terms of the STT power consumption because the real CAM
structure is more complex than the STT-BV structure.

Figures 14 and 15 show the evaluated power dissipation

†Front-end denotes the mechanisms responsible for supplying
instructions to the execution units (back-end). The front-end in-
cludes fetch unit, register renaming unit, branch predictor, and
other support structures.
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Fig. 15 Power consumption on IW size 64.

on IW size 32 and 64, respectively. In the graph, our scheme
is 24.45% more effective than IQP-TAB. This is because our
approach considerably reduces the amount of buffer over-
flow. The power consumption is primarily affected by the
number of buffer overflow. However, in our approach, the
majority of tag translation is processed on STT-BV, instead
of STT. Thus, the amount of buffer overflow is reduced and
power dissipation is low. This trend continues as the number
of DLT entries increases. Actually, the same experiment on
IW size 64 saved even more power (39.5%).

6. Conclusion

At the microarchitecture level, we proposed two orthogo-
nal techniques for reducing the power dissipation on in-
struction window. The small reorder buffer (SROB) reduces
power dissipation by deferred allocation and early release.
These two techniques result in higher resource utilization
and low power consumption. Therefore, up to 3.04% of
power saving comes with an average of only 3.7% perfor-
mance penalty. In current version of implementation, we
limited the role of the SROB to process only dependent in-
structions. The power saving will be much increased if the
SROB approach is extended to all types of instructions as fu-
ture work. Even though there is a little performance penalty,
our SROB technique for reducing the power dissipation is
still meaningful, especially on the embedded computing. In
the embedded environment, the energy saving is the most
critical due to the limited battery capacity.

In addition, we proposed a power-efficient technique
for resolving the dependency relation of one producer to
multiple consumers. The tag translation scheme is for re-
solving the instruction dependency by bit-vector based over-
flow handling. This structure significantly increases total ca-
pacity to handle the data dependency. In fact, the STT-BV
was set to handle the dependency up to 384 (32 X 12) entries
in our environment. Thus, the bit-vector structure is physi-
cally small, but has very large capacity to represent depen-
dency relation. Consequently, it decreases a large amount
of power dissipation by utilizing the small and power ef-
ficient bit-vector structure. Experimental results achieved
using our proposed design reduced power consumption by

an average of 24.45%.
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