
Multi-Query Stream Processing on FPGAs

Mohammad Sadoghi, Rija Javed, Naif Tarafdar, Harsh Singh, Rohan Palaniappan, Hans-Arno Jacobsen
Middleware Systems Research Group (msrg.org)

University of Toronto, Canada

I. INTRODUCTION

The need for efficient real-time data analytics is an integral

part of a growing number of data management technologies

such as intrusion detection [1], algorithmic trading [6], and

(complex) event processing [5]. What is common among all

these scenarios is a predefined set of continuous queries and

an unbounded event stream of incoming data that must be

processed against the queries in real-time.

The challenges for today’s real-time data analytics platforms

are to meet the ever growing demands in processing large

volumes of data at predictably low latencies across many

application scenarios. The volume of traffic on the Internet

has undergone an immense increase over the last decade

which is apparent in deployments of high communication

bandwidth links across the globe (e.g., OC192 at 9.92Gbit/s).

While according to Gilbert’s law, communication bandwidth is

projected to double every 9 to 10 months, conventional com-

putation system architectures are showing signs of saturation

in terms of offering the necessary processing power to sustain

demands imposed by future Internet bandwidth growths.

The need for more processing bandwidth is the key ingre-

dient in enabling innovation in high-throughput real-time data

analytics to process, analyze, and extract relevant information

from streams of events. Therefore, as proliferation of data and

bandwidth continues, it is becoming essential to expand the

research horizon to go beyond the conventional software-based

approaches and adopt other key enabling technologies such

as reconfigurable hardware in form of Field Programmable

Gate Arrays (FPGAs). An FPGA is a cost-effective hardware

acceleration solution that has the potential to excel at analytics-

based computations due to its inherent parallelism. FPGAs

can exploit low-level data and functional parallelism in ap-

plications with custom, application-specific circuits that can

be re-configured, even after the FPGA has been deployed. In

addition, FPGAs can meet the required elasticity in scaling

out to meet increasing throughput demands.

We propose an FPGA-based real-time data analytics plat-

form that supports line-rate processing of data streams over a

collection of continuous queries. Our contributions are three-

folds. (1) We propose high-throughput, custom circuits to

implement the relational algebra (i.e., selection, projection, and

join) over a window of input events in order to effectively pro-

cess a single SPJ (Select-Project-Join) query in reconfigurable

hardware. The hardware implementation enables a high degree

of parallelism and pipelining beyond the reach of software-

based implementations. The custom circuits serve as a library

of operators. (2) We introduce a novel multi-query optimiza-

tion technique inspired from highly parallelizable rule-based

system designs by mapping an SPJ-query into a Rete-like

operator network [2]. We exploit the overlap among SPJ query

plans by constructing a single global query plan to be executed

in hardware. (3) We develop software-to-hardware multi-query

processing techniques that map a set of SPJ queries into a

Rete-like global query plan. Subsequently, the global plan is

converted into Hardware Description Language (HDL) code

using our “hardware library” of custom building blocks for the

various relational algebra operators. These mapping techniques

are akin to a compiler that can process a query expressed in our

language into a custom circuit that processes event streams.

Moreover, in our design, we exploit parallelism while

sustaining the onboard multi-giga bit throughput rates. First,

owing to the inherent parallel nature of Rete-like processing,

we synthesize custom logic to execute multiple query plans

in parallel, while exploiting query plan overlaps. Second,

owing to the potential for parallel processing within each

relational operator, most notably the expensive join operation,

we synthesize custom logic for the operator implementations.

II. BACKGROUND & RELATED WORK

An FPGA is a semiconductor device with programmable

lookup-tables that is used to implement truth tables for logic

circuits with a small number of inputs. FPGAs may also

contain memory in the form of flip-flops and block RAMs

(BRAMs), high-bandwidth on-chip memory.

Recent work has shown that FPGAs are a viable solution

for building custom accelerated components. For instance,

work in [6], [7] focused on atomic and stateless matching

(i.e., select queries). However, our work concentrates on sup-

porting a more general multi-query stream processing (stateful

matching) specifically designed to accelerate the execution of

SPJ queries. Alternatively, [4] presented an efficient FPGA

implementation of a single query (without join) while [8]

focused on the data flow for streaming join over a large

window size that spans many processing cores. Our approach

also differs from [4], [8] as we are primarily concerned

with multi-query optimization (with joins computed over a

moderate size window) using Rete-like processing networks,

supporting a rich relational algebra over event data streams,

and offering an unprecedented degree of inter- and intra-

operator parallelism that is only available through low-level

logic design.

III. FPGA STREAM PROCESSING MODEL

Our event stream data model is captured as attribute–value

pairs, which closely resembles a database tuple, but, unlike

traditional databases, we do not assume a fixed schemata for

the event data stream. Similarly, our event stream language

also follows traditional database SPJ queries including se-

lection (σc), projection (π), and join (×, ⊲⊳c). In fact, we

JC1

Port 1 In Mux

BRAM

Access

Scheduling

Block

…

…1

k

Remapping Block

Event
L1

Event
Lk Event

R1
Event

Rk
…

L. Check-if-Inputs-Present JCi

Left Event
Buffer

EL1 ……... ELk

3

t1

t2

tq…

R. Check-if-Inputs-Present JCi

Right Event
Buffer

ER1 ……... ERk

t1

t2

tq…

From

JC1 ….
JCi

….

Port 2 In Mux

From

JC1 ….
From JCn

….

Remapping Block

IN Port

1
IN Port

2

Port 1 OUT

JC1 Left Window

Partition

…

BRAM Block - X
Demux

(Dx)

JC1 Right Window

Partition

JCn Left Window

Partition

JCn Right Window

Partition

k events
k events

Port 1 OUT

k events k events

All left

partition
All right
partition

JCi JCn…...

JC1 right

window

JC1 left window...…...

Dx

JCi right

window

JCn right

window

JCi left window

JCn left window

L/R CIP
Flags

Dx

BRAM Block-X

Port 1 & 2
address vector

Mux / Demux
Control

2

3

2

3

3

34 4

4

11 1

From JCn

JCi

Fig. 1. Overview of parallel join processing

adapt PADRES SQL (PSQL) [3], an expressive SQL-based

declarative language for registering continuous queries against

event streams over an either time-based or count-based sliding

window model. Essentially the sliding window is a snapshot

of an observed finite portion of the event stream.

Formally, the stream processing model is defined as follows:

Given a stream of events and a collection of continuous SPJ

queries, the queries are continuously executed over the event

stream.

IV. OPERATOR-TO-CIRCUIT MAPPINGS

The first step to realize query processing on hardware

is an efficient mapping of relational operators to custom

circuits (custom processors). This mapping forms the basis

of our query processing model on the FPGA. The operator

mappings that we discuss are selection, projection, and join.

In addition, we explore two circuit designs: the sequential and

the parallelized. The sequential solution is tuned for scaling the

number of supported queries while the parallel solution (focus

of this work) is designed for achieving line-rate processing of

event streams over a set of queries.

Selection Selection refers to the conditional test over at-

tributes of an event. This test is a unary operation written as σc

where c is a propositional formula over the logical operators

∨, ∧ and ¬. A combinational circuit is used to implement

this propositional formula, referred to as the Selection Circuit

(SC). One of the key features of SC is that it evaluates the

entire propositional formula in one clock cycle. To further

accelerate the execution, in our parallelized scheme, we scale

out the computation by replicating the SC block k times in

order to evaluate up to k events in parallel and in one clock

cycle. However, in our resource-aware sequential design, we

create a single SC block and the necessary logic to serialize

events to sequentially process the selection condition.

Projection Projection refers to the removal of certain

attribute–value pairs from an event. Projecting out attributes

is implemented as a combinational circuit, Projection Circuit,

that uses a mask. A mask has as many bits as the number of

attributes in an event such that all of its bits are set to one

except those that correspond to the projected attributes. The

First Element

Pointer

Last Element
Pointer

Index of JC

scheduled 1st

Empty Empty

Index of JC

scheduled
2nd

......

Empty

Index of JC
scheduled

last

Circular

Array
Manager

Remove
entry

Add entry

1

2

BRAM Port 1
and 2 address

vector

BRAM
Input Mux / Output

Demux Control

Signals

Left & Right

CIP Flags

…..
JC1 JCn

1

Fig. 2. BRAM Access Scheduling Block

circuit consists of two-input AND gates that are required to

do a bitwise AND operation between an event and the mask.

Join At a high-level, the join operation (⊲⊳c) consists of two

count-based (or time-based) sliding windows (left and right

window) over two event streams and a join condition c (an

arbitrary Boolean expression). The join operation follows the

classical window-based-join semantics which is defined as a

sequential procedure in two phases: (1) Upon arrival of a new

event e at window w (either left or right), e is compared against

every other event residing in the opposite window. And for

every pair of events that satisfy the condition c, the two events

are joined and added to the join-result stream. (2) The new

event e overwrites the oldest event in w. In what follows, we

first provide a brief background, then we focus on a novel

transformation of this sequential software-oriented procedure

into a highly parallelized hardware-oriented implementation by

utilizing custom circuits coupled with local on-chip memory

banks.

The join computation consists of the join condition c and

the Phase 1 of the join semantics which together form the

Join Circuit (JC); JC is also associated to a left and a right

window. The JC block leverages on-chip BRAM memory

as the medium for implementing the sliding window. Each

block is independent of the others with its own address space

and read and write ports. Furthermore, the BRAM port-width

can be adjusted to sustain the necessary memory bandwidth,

namely, reading and writing of the entire content of either

a window (k events) or a BRAM block (2k × n events), in

one cycle when relevant data is stored contiguously. This is

referred to as k-way read and write, where k is the port-width.

To support concurrent read and write, the BRAM is made dual-

ported so that reading or writing is carried out on different

ports. Finally, to fully utilize the available on-chip BRAM,

we must coalesce sliding window buffers from up to n join

operations into one of the many available BRAM blocks; thus,

packing up to 2k × n events into a BRAM block.

We propose key opportunities for intra- and inter-

parallelized execution of window-based-join semantics. For

intra-parallelism, first, it is observed that Phase 1 and 2 (of the

join semantics) can be done in parallel because the read and

write memory accesses are performed on opposite windows;

consequently, no race condition occurs and no locking is

needed as long as both phases are completed before accepting

additional newly arriving events. Second, Phase 1 can be

executed in parallel by comparing the new event e against

every other event in the opposite window in one cycle. This

is achieved by replicating the join condition circuitry k times

and enabling k-way read memory access which in turn yields

Sort Circuit
(Descending order of Age)

…En Age n E1 Age 1

i1 in

…………

Ei1 Age i1 Ein Age in

Extract Sorted Indices

…

Crossbar (X-bar)

……………….

……………….

…

..…Check-if-Input-

Present

0/1 0/1

Compose X-bar Configuration Input

Check-if-Input-

Present

2

X-bar Driver

Look-up table

‘k’ New Events from JCi Event

Buffer

Existing ‘k’ Events from

JCi Event Window (BRAM)

k events

Existing events from JCi

Event Window (BRAM)
New events from JCi

Event Buffer

Remapped Events to be

written to JCi Event Window

(BRAM)

2

1 1

3
4

5

k eventsk events

Fig. 3. Remapping Block

up to k joined events. Also, Phase 1 and 2 can be extended

to support up to k simultaneous new events for each window,

yielding up to k2 joined events in k cycles.

For inter-parallelism, we can scale up to n different join

operations whose sliding windows are located in a shared

BRAM block. Executing n joins in parallel is possible by repli-

cating the entire join-semantics circuitry n times and enabling

(2kn)-way read memory access. Notably, the machinery for

implementing n joins is tightly coupled to a single BRAM

block (i.e., promoting local memory access); thus, no central

coordination is necessary among the various BRAM blocks

and all can be active simultaneously.

We briefly present data and execution flow of each circuit.

The high-level machinery for accepting up to k simultaneous

events for each of the n join operations (intended for a

single BRAM block) is captured in Fig. 1, which consists of

the following inner-blocks. BRAM Access Scheduling Block

(BASB) schedules access to sliding window buffer (cf. Fig. 2).

Remapping Block (RB) advances sliding window by evicting

the oldest event first (cf. Fig. 3). Join Circuit (JC) processes

parallelized join (cf. Fig. 4).

The circuit in Fig. 1 captures the overall data and execution

flow of n joins (in what follows we refer to the numbered

steps for describing the figure). This circuit accepts as inputs

k new events for either left or right window of every JCi.

The inputs are detected after passing through a combinational

circuit called Check-if-Inputs-Present (CIP) (1). If any event

detected for JCi, then JCi is marked as active and is sent

to BASB for execution scheduling (1). All active JCs that

simultaneously detect inputs are also scheduled to be executed

in parallel. If active, JCi cannot be executed immediately,

then it is temporarily queued (2); otherwise, active JCs start

receiving the contents of their windows and JC’s k new

incoming events (3). Finally, in two parallel pipelines both

active JCs are ran in parallel to carry out the join computation

(Phase 1 of the join semantics) and for each active JCi, RB is

invoked to overwrite the oldest events with their corresponding

k new incoming events (Phase 2 of join semantics) (4).

The BASB circuit (cf. Fig. 2) simply manages queuing

(through a circular array) and scheduling active JCi and

orchestrating control signals for muxes and demuxes in order

to access the BRAM’s content (Steps 1-2).

RB (cf. Fig. 3) is responsible for evicting the oldest events

……….

Events and

Right/Left

Window Select

Control

New events from

JCi Right Event

Buffer k events

event

Existing Events from JCi Event Window

(BRAM)

k events

event

event event

1

2

4

5

…

L.

Mux

[E1 E2…. Ek]

…

R.

Mux

[E1 E2…. Ek]

Mux

JCi Join

Condition

event

…

L.

Mux

[E1 E2…. Ek]

…

R.

Mux

[E1 E2…. Ek]

Mux

event

event

…

L.

Mux

[E1 E2…. Ek]

…

R.

Mux

[E1 E2…. Ek]

Mux

New events from

JCi Left Event

Buffer

k events

1 1

2 2

3 3 3

4
4

JCi Join

Condition

JCi Join

Condition

Ej Ej Ej

Fig. 4. Join Circuit (JCi’s)

when window w is full. After new events are detected by CIP,

(1), events’ ages are stored1 in on-board registers (2). Next, the

indices of the oldest events in w are extracted (3); these indices

become the bases for configuring the crossbar for overwriting

the oldest events with the newest ones (Steps 4-5).

The JCi block (cf. Fig. 4) receives the content of its

windows and the same k new events on every cycle (Steps

1-3). In each cycle, JCi takes one of the new events and

compares it against all the events in its corresponding window

in parallel through replication of JCi Join Condition k times

(4). In each cycle up to k joined events are produced (5).

Time Complexity The selection and projection operators

are implemented as combinational circuits and have complex-

ity O(1). The join operator complexity is rather involved. In

particular, RB determines eviction of the oldest event and

carries out the actual eviction in O(1), which has to be

repeated n times for each join, resulting in time complexity

O(n). Each JCi evaluates k input events in O(k) time (or O(1)
for a single event). The remaining components are executed in

constant time such as BASB for BRAM access coordination;

CIP for detecting input events; and muxes and demuxes for

selecting and routing events. Hence, n join operations (within

a BRAM block) can be done in parallel in O(max(k, n)).

Fig. 5. Mutli-query optimization flow for HDL mapping

V. MULTI-QUERY-TO-CIRCUIT MAPPINGS

In the previous section, we discussed how to map the

building blocks of each query (i.e., the relation algebra) into

circuits, thereby paving the way for efficiently processing a

single SPJ query on hardware (cf. standard flow in Fig. 5). We

now shift gears towards processing multiple queries efficiently

in hardware, in which the novelty of our proposed approach

is to go beyond executing a single optimized query plan on

1To sort efficiently in hardware, we use Bitonic sort, implemented as
combinational circuits that requires a constant number of cycles for small
input size, i.e., given d inputs, Bitonic sort has a comparator stage complexity
of O(log2 d) and requires O(d log2 d) comparators.

Fig. 6. Global query plan realization

hardware and to support parallel processing of multiple queries

on the FPGA (cf. custom flow in Fig. 5). An FPGA design is

especially powerful in exploiting parallelism because any form

of parallel execution can be directly mapped to logic circuits

in hardware. In our implementation, this is accomplished by

using a Rete-like event processing network to realize a single

global query plan (cf. Fig. 6) that exploits the overlapping

components among given SPJ query plans to further improve

the resource utilization and execution of the global query plan

on the FPGA.

A multi-query optimized event processing network is com-

prised of Rete-specific elements, e.g., pattern detect nodes

and join nodes, that share functional resemblance with the

key relational algebra operators, e.g., σ and ⊲⊳, respectively,

which in turn constitute the elements of a standard SPJ

query plan. Hence, a multi-query optimized event processing

network, represented as an inverted global SPJ query plan, can

ultimately be translated into a hardware design (as per custom

flow in Fig. 5). The resulting hardware design is modular

and in our implementation utilizes the three main rudimentary

hardware building blocks (described in the previous section)

that realize their relational algebra operator counterparts. The

process of mapping a Rete-like graph representing a global

SPJ query plan onto a Hardware Description Language (HDL)

design (circuit) is captured in our custom flow (cf. Fig. 5)

which includes a custom Rete-to-HDL compiler. The input to

this compiler is a set of SPJ query plan(s) that are firstly used

to build a multi-query optimized Rete network graph using the

standard Rete algorithm. Secondly, the resulting Rete graph

is decomposed to utilize appropriate HDL models from our

custom HDL library for SPJ operators (cf. Section IV). Finally,

predefined HDL design templates are referenced to build the

final circuit that is targeted to execute the given input SPJ

query(s) on the FPGA.

To further optimize the global query plan, we utilize a

pipelined design that increases chip resource utilization by

keeping all processing blocks active at all times. This design

delivers a greater throughput than a non-pipelined counterpart

at the cost of additional resources. To enable a pipelined

design, additional buffering is required in order to avoid

dropping events between pipeline stages; furthermore, addi-

tional logic circuits are required to orchestrate the flow of

events downstream from one operator to the next. A detailed

description of the inner workings of the pipelined design is

omitted in the interest of the space.

VI. DEMO SETUP & EVALUATION

We demonstrate our FPGA-based event processing platform

targeted at processing event streams over a set of continuous

Fig. 7. Demo & evaluation setup

queries at line-rate. Our platform provides an “active query

window” (cf. Fig. 7) to analyze event streams over multiple

queries in parallel while streams seamlessly pass through the

platform. The filtered output stream is delivered to higher-

level applications for further data analytics and monitoring

purposes.

The input to our platform is a stream of events, and for

our evaluations, we measure the system throughput, i.e., the

maximum sustainable input event rate. Events are encoded in

the packets of the transport protocol that transmits event data

to the FPGA board. In our implementation, we use UDP as

transport over a directly connected 1 Gb/s Ethernet link (cf.

Fig. 7). Due to the direct, unshared Ethernet link, there are

no severe transmission reliability issues to consider, except for

the filling up of input/output buffers on the board. If no further

events can be accepted by the board, packets are dropped and

the maximal sustainable processing rate is achieved.

Our setup includes a first laptop that transmits an event

data stream, over a 1 Gb/s Ethernet interface, to our platform

hosted on an Xilinx Virtex 5 LXT ML505 FPGA board

(cf. Fig. 7). In addition, a USB-JTAG link is employed to

program the FPGA board through a second laptop loaded with

the Xilinx ISE10.1 EDK development tool suite for design

synthesis and bit stream generation. Thus, we upload the

HDL design based on user input queries, generated through a

SQL-like interface, using our custom Rete-HDL compiler (cf.

Fig. 5). Finally, along with system level runtime statistics (e.g.,

query throughput and event buffer utilization), the query output

is retrieved from the board via a dedicated secondary link for

displaying the results in the “profiler utility” (cf. Fig. 7).

REFERENCES

[1] C. Cranor, T. Johnson, and O. Spataschek. Gigascope: a stream database
for network applications. In SIGMOD’03.

[2] A. Gupta, C. Forgy, and A. Newell. High-speed implementations of rule-
based systems. ACM Trans. Comput. Syst.’89.

[3] H.-A. Jacobsen, V. Muthusamy, and G. Li. The PADRES event processing
network: Uniform querying of past and future events. it - Information
Technology’09.

[4] R. Mueller, J. Teubner, and G. Alonso. Streams on wires: a query compiler
for FPGAs. VLDB’09.

[5] M. Sadoghi and H.-A. Jacobsen. BE-Tree: An index structure to
efficiently match Boolean expressions over high-dimensional discrete
space. In SIGMOD’11.

[6] M. Sadoghi, H.-A. Jacobsen, M. Labrecque, W. Shum, and H. Singh.
Demonstration track: Efficient event processing through reconfigurable
hardware for algorithmic trading. PVLDB’10.

[7] M. Sadoghi, H. Singh, and H.-A. Jacobsen. Towards highly parallel event
processing through reconfigurable hardware. In DaMoN’11.

[8] J. Teubner and R. Mueller. How soccer players would do stream joins.
SIGMOD ’11.

