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ABSTRACT

In this thesis we investigate the spectrum of the Laplacian matrix of a graph.
Although its use dates back to Kirchhoff, most of the major results are much
more recent. It is seen to reflect in a very natural way the structure of the
graph, particularly those aspects related to connectedness. This can be intu-
itively understood as a consequence of the relationship between the Laplacian
matrix and the boundary of a set of vertices in the graph. We investigate
the relationship between the spectrum and the isoperimetric constant, ex-
pansion properties, and diameter of the graph. We consider the problem of
integral spectra, and see how the structure of the eigenvectors can be used to
deduce more information on both the spectrum and the graph, particularly
for trees. In closing, we mention some alternatives to and generalisations of
the Laplacian.
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Chapter 1

Introduction

1.1 Definitions and examples

Let G(V, E) be a graph with vertex set V' of cardinality n and edge set E
of cardinality m. Unless otherwise noted, all graphs will be undirected and
finite. Let d; be the degree of vertex j. We will use 4 for the minimum degree
and A for the maximum degree. We will indicate adjacency of vertices by
i~ jforij € E(G).

Let A be the n x n {0,1} adjacency matrix such that 4;; = 1 if and only
if ¢j € E(G). Let D be the n x n diagonal matrix with D;; = d;. We define

Definition 1.1.1. L=D - A

to be the (combinatorial) Laplacian matrix associated with the graph, and
we will write A\; < Ay < --- < A, for its eigenvalues (see also Section 8.1).
Unless otherwise noted, all eigenvectors and eigenvalues will be with respect
to the Laplacian matrix (not the ordinary adjacency matrix). Furthermore,
we will abuse the language and write “eigenvalue of G* for “eigenvalue of
L(G)*.

Let K be the n x m incidence matrix, where the columns are indexed by
the edges and the rows are indexed by the vertices. Choose an (arbitrary)
orientation on each edge, and for each column, place +1 in the row corre-
sponding to the positive end and —1 in the row corresponding to the negative
end; all other entries are zero. It can be seen directly that L = KK*. If we
let )\ be any eigenvalue of L and z a corresponding eigenvector, we have:

Miz|? = (Az,z) = (KK'z,2) = (K'z, K't) = |[K*z||> > 0
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and thus L is positive semi-definite. Furthermore, as the row sums of L are
all zero, the all-ones vector is an eigenvector with eigenvalue A; = 0. Note
that by the definition of L, we have

(Lz); =djzj — th,

i~j

allowing us to express the eigenvalue condition at each vertex as

(dj ot /\).’L’j == Z.’L‘i

i~7

Using the well-known Courant-Fischer inequalities, we may characterise
the eigenvalues by

(z, Lz) and A, = (a: Lz)

Ay = mm ) ., :c)

where z ranges over all non-zero column vectors of size n that are orthogonal
to the all-ones vector. (One may also give similar descriptions of the other
eigenvalues, where z ranges over appropriate subspaces; we will not need
them here.) Thus we have that

)\, < Sz Lz) {z, Lz)

2="Tlr. 1) (z,z) S An

(@, Le) = > (zi—g;)°

ijEE(G)
and thus
2
c T;— X5
/\2 _ minZzJGE‘(G)( 2.?) (11)
z > jeviey (@)
and
)2
Ap = ma.xzijEE(G) (: — z5) (1.2)

z ZjeV(G) (z;)?
where again z is orthogonal to the all-ones vector.
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An alternative formulation is

. A2
Ao = min maxz:ij €EE) (z: = 75)

r teR ZjeV(G)(xJ"‘t)2 (1.3)

where x now ranges over all non-constant vectors. This can be seen by
observing that for a given vector z, the value of ¢ that maximises the ratio is
t =) zj/n, and that thus the vector y defined by y; = z;—t is orthogonal to
the all-ones vector and y; — y; = =; — z;; furthermore, all vectors orthogonal
to the all-ones vector may be obtained in this manner.

Fiedler [15] also gave the following characterisation.

2
Ae = minom2=eE@) % ~ %)
2 —

= D iev 2ajev(®i — 25)? (1.4)

We will also make frequent and tacit use of the Cauchy interlacing in-
equalities (see, e.g., [30]). Specifically, for any Hermitian matrix B, let By
be the matrix formed by deleting the rt* row and 7t* column from B. Let
a; < @y < v+ < a, be the eigenvalues of B and let 5; < 3, < --- < Br—1 be
the eigenvalues of Bj;;. Then

i <Bifoforl<i<n—-1

We note that for the case of regular graphs, L = dI — A where d is the
common vertex degree. So if we let uy > po > --- > u, be the eigenvalues
of A, we see that A\; =d — p;. So the Laplacian spectrum for regular graphs
tells us nothing we didn’t already know from the spectrum of A. This allows
us to restate any theorem (for regular graphs) on the eigenvalues of A as a
theorem on the eigenvalues of L.

For instance, we can prove using L that given a d-regular graph G, the
largest eigenvalue of the adjacency matrix is d, and it is simple (see Theo-
rem 1.3.4).

As another example, consider the matrix K, the unoriented incidence
matrix. Its entries are the absolute value of the corresponding entries in the
matrix K. Thus the eigenvalues of K, K, * are no smaller than the eigenvalues
of KK*. But the eigenvalues of K K,® are the same as the eigenvalues of
K.tK,. A direct computation shows that K ‘K, = 2I + B, where B is the
adjacency matrix of the line graph of G. Thus we have a relationship between
the Laplacian eigenvalues of a graph and the adjacency eigenvalues of its line

3



graph. Furthermore, since the eigenvalues of K ‘K, are nonnegative, and
the smallest eigenvalue of a line graph is at least —2. This gives a connection
with the theory of root systems [6].

In general, there is no simple relationship between the eigenvalues of
A and the eigenvalues of L. However, we do have the following. Given
a graph G, construct the graph G’ by adding an appropriately weighted
loop to each vertex such that G’ is d-regular. We then have that L(G) =
L(G') = dI — A(G"). So the Laplacian spectrum of a graph does reduce to
the adjacency spectrum of some (weighted) graph.

We also see here an interesting property of L, namely that although every
graph has a unique Laplacian matrix, this matrix does not in general uniquely
determine a graph: the Laplacian tells us nothing about how many loops were
to be found in the original graph. It is interesting to note that this missing
information may be characterised as exactly that aspect of a graph that is
completely irrelevant to issues of connectedness.

Furthermore, consider a set X C V, and define the column-vector r =
(z;)byzj=1forz € X andz; =0forz ¢ X. Let y = Lz. By the definition
of L, we see that y; > 0 means that vertex j is in X and is connected to y;
vertices not in X, y; < 0 means that vertex j is not in X and is connected
to |y;| vertices in X, and y; = 0 means that vertex j is in [or not in] X
and is only connected to vertices in [or not in] X. In other words, Lz tells
us exactly how the set X is connected to the rest of the graph. (If we let
X =V, we note that there are no vertices of the first two types, and thus
see again that O is an eigenvalue). This interpretation can be thought of as
analogous to the following property of A: given a set X of vertices with z
being the characteristic vector of X, then Az corresponds to the (multi-)set
of neighbours of X. More correctly (and generally), A*z corresponds to the
multiset of endpoints of paths of length k& originating in X. So we see that
A directly models paths, whereas L directly models boundaries. Of course,
since the graph is uniquely determined by either of them (modulo loops),
they both contain directly or indirectly the same information. We will not
dwell on these properties further for the moment!, except to note that they
provide some intuitive sense of why the matrix L should be associated with
connectedness properties of the graph.

It should be noted that most results carry over quite well to the case of

L Actually, this interpretation will come up in connection with the isoperimetric constant
of the graph; see Section 2.1.



weighted graphs (or graphs with multiple edges). Here we would use the
weighted adjacency matrix A, where 4;; is the weight of the edge between ¢
and j (zero weight being interpreted as no edge), and the degree of a vertex
is the sum of the weights of the edges adjacent to it. This gives, in a straight-
forward manner, that L* = D* — A*. Of course, the unweighted Laplacian is
really a special case of this, with all weights being either zero or one. This
thesis will concentrate principally on the eigenvalues of L (in particular As),
and their relation to other graph properties, stressing properties relating to
“connectedness™.

1.2 Historical background

One of the motivators of the study of graph eigenvalues was the study of
vibrations of membranes. This has its origins in Kac’s provocative paper
[22] and is closely tied in with the study of eigenvalues and eigenfunctions
on Riemannian manifolds.

Consider a membrane in the zy plane, with the vertical displacement
being z = z(z,y). Letting ¢ be the time-variable and ¢ the speed of the
wave?, the wave equation (see e.g. [16]) gives

Qf::: 9z 19%

527 oy T 2om (1.8)

If we assume that the membrane behaves like a spring in that there is a
restoring force proportional to the displacement, Hooke’s Law gives

i
ot?

By approximating the membrane using a discrete grid of particles of spac-
ing w, we may approximate the partial derivative by

= —kz (1.6)

62(2‘, y) ~ Z(.’B, y) — z(:z: — w, y) (1 7)
Oz w )

0z(z + w, y) ~ Z(I + w, y) — 2(z, y) (1.8)
o = w '

2The speed of a wave depends only on the medium (in this case the membrane). not
on the “shape” of the wave.



This gives that

Pz(z,y) _ (1.8) = (1.7)
0z w
— z(:z:+w, y)+Z(:E ;wa y) _22(55: y) (1.9)
w

Substituting (1.9) (and the analogous expression for §2z/8y?) into (1.5), and
using (1.6), we have that
kw?
42(1:7 y) - Z(.’E + w, y) - Z(‘T —w, y) - Z(.’L’, Y+ 'LU) - Z(l‘, Y- 'UJ) = o2 Z(J}, y)
(1.10)

This says that z is an eigenfunction of the Laplacian matrix of the grid graph
with eigenvalue kw?/c?. This explains the term “Laplacian” for the matrix L,
as it functions as the discrete analogue of the continuous Laplacian operator.
There is nothing special about the membrane; a similar example would hold
in one or three dimensions. In fact, an approach quite similar to this (in
one dimension) is commonly used in introductory physics texts to show that
the stable modes of vibration (i.e.: eigenfunction/eigenvalues) of a string are
precisely sinusoidal curves (see e.g. [16]). Nor is there anything special about
the grid graph; it is just a simple way to discretize the surface. We would
have gotten the Laplacian of whatever graph we had chosen.

1.3 Basic properties of the eigenvalues

One of the earliest uses of the matrix L proper was the Matrix-Tree Theorem,
due to Kirchhoff (in fact, L is sometimes called the Kirchhoff matrix). It
states that the cofactors of L give the number of spanning trees of the graph.
For notation, let L; ; be the submatrix L with the ith row and j** column
removed, and let Li4 p; be the submatrix of L with the set A of rows and
the set B of columns removed. Denote the number of spanning trees of G by
t(G). Then we may state that:

Theorem 1.3.1. (—1)™7det(Ly ;) = ¢(G)

Proof. This can be proved by considering the incidence matrix K, where
L = KK*. Note that if G is connected and not a tree, then G has at least n



edges, i.e., K is a either a square matrix or a “wide” matrix. First consider
det(Ljj;)- It can be seen that

det(Ly;,z7) = det((Kpa) (Kpja)®)

Now applying Cauchy’s determinant formula to this product, we obtain that

det(Lyy) = > det((Kyjan) (Kpjan)) = Y det(Kijan) det(Kpsag)t) (1-11)
M M

where M denotes a set of columns whose deletion from Kj; g leaves a square
matrix and the sum is over all such sets M. Note that M can be viewed
as a set of edges, with |M| = |E(G)| — (JV(G)| — 1). Denote by G’ the
subgraph of G obtained by removing the edges of M; G' has n — 1 edges.
Now for any given set M, we see that K ] represents the incidence matrix
of G'. Since G’ has n vertices and n — 1 edges, we see that G’ represents
a spanning tree if and only if it contains no cycles and if and only if it is
connected. Therefore, det(K[;n) = 0 exactly when G’ is not a spanning
tree. Furthermore, det(K[j)) = £l exactly when G’ is a spanning tree.
Since det(K[ja)") = det(K[ja)), the sum in (1.11) will exactly count the
number of connected acyclic subgraphs of G with n—1 edges: i.e., the number
of spanning trees. O

It can be shown that in fact all of the cofactors are equal; since we have
shown the validity of the theorem on the cofactors of the diagonal, it is true
for all of them.

By looking at the linear coefficient in the characteristic polynomial of L
(e.g. [9]), we see that in terms of eigenvalues we have:

Corollary 1.3.2. [[}_,A; = nt(G)

We can thus incidentally observe (once again) that A = 0 if and only if
G is disconnected.

This can be regarded as a consequence of a more general theorem. We
will first establish some notation. Let G be a graph on 7 vertices, and let
J € V(G). Define the graph Gy to be the graph obtained by replacing
all the vertices of J with a single vertex, which is adjacent to exactly those
vertices in G\ J that are adjacent (in G) with some vertex of J. Note that this
may produce multiple edges (if some vertices in J share a common neighbour



not in J) or loops (if some vertices in J are adjacent to each other). Write
t(G) for the number of spanning trees of G. This leads to the following
characterisation, due to Kel'mans ([25], [9], p38).

Theorem 1.3.3. Let 2" + ¢, 12" + - - - + ¢; T be the characteristic polyno-
miel of L(G). Then

a=(1" 3 4Gy
J CV(G)
=1

Some of the first modern results suggested that the value X is related to
the “connectedness™ of the graph (Fiedler called it the “algebraic connectiv-
ity”). Informally, large values of )\, are associated with graphs that are hard
to disconnect. In fact, by ordering the vertices such that L is in block form
with the blocks corresponding to the connected components of G, we see not
only that A\, = 0 if and only if G is disconnected, but furthermore that

Theorem 1.3.4. The number of connected components of G is equal to the
multiplicity of 0 as an etgenvalue

A matrix A is said to be reducible if there exists a permutation matrix P
such that

D C

where B and C are square matrices. Otherwise it is ¢rreducible. Furthermore,
if A is reducible, then there exists a permutation matrix P such that PtAP
has the form

PTAP = (B 0) (1.12)

(A 0 0 0 o 0
0  Ass --- O 0 .- 0
0 0 -+ Ass 0 -+ 0
As+l,1 As+1,2 ot As-{-l,s As+1,s+l ot 0
K Aey Arg - Ass At - At,t)
with the matrices {Ag1, Ak, -, Arg—1} not all zero for any fixed value of

k > s. This is a normal form of the matrix (see [44]). It is not necessarily
unique, as permutations among and within blocks are possible.
So as a corollary to Theorem 1.3.4, we have that

8



Corollary 1.3.5. A graph G is connected if and only if the matriz L(G) is
irreducible. Furthermore, if G is disconnected, then a normal form of the
(reducible) matriz L is obtained by any ordering of the vertices that lists the
vertices in order of components.

If L is decomposable, then partition the vertices according to the subma-
trices B and C in form (1.12). The zero block then indicates an absence of
edges between the two parts of this partition, i.e., the graph is disconnected.
It can easily be seen that by listing the vertices by connected component
that the block submatrix corresponding to each connected component is ir-
reducible and that all off-diagonal blocks are zero. In fact, this is not just a
normal form, it is a block diagonal form.

There is a nice relationship between the eigenvalues of a graph and of its
complement. If we let L(G) stand for the Laplacian of a graph G, and G°
stand for the complement of the graph G, then we see that L(G®) + L(G) =
nI — J, and hence that L(G¢) = nl — J — L(G), where J is the all-ones
matrix. If z is an eigenvector of L{G) orthogonal to the all-ones vector, with
eigenvalue ), then since Jz = 0, we see that z is also an eigenvector of L(G')
with eigenvalue n — A. This was first obtained by Kel’'mans [23],[24] in the
following result, where Pz(z) stands for the characteristic polynomial of the
Laplacian matrix of G:

Theorem 1.3.6. (n — z)Pge(z) = (—1)"zPe(n —x)
Corollary 1.3.7. );j(G%) =n— Appa—i(G) for2<j<n

We also get an upper bound on Laplacian eigenvalues [25].
Corollary 1.3.8. A\, < n with equality if and only if G is disconnected

Hence we have A\ (G) =0 <= A\ (G°) =n < G is disconnected. So
the spectrum is, in a sense, symmetric, and questions about Xz of a graph
are equivalent to questions about A, of its complement.

By looking at the trace of L, we have that 3 5—1di =227, A, and thus
A2 £ 2-d < \,. However, we can do better than this. Fiedler [13] shows
that

Theorem 1.3.9. Ay < ;%50 and A< A,



Thus the range of the non-zero eigenvalues of a connected graph is (ap-
proximately) at least as great as the range of the vertex degrees. Obviously,
by Theorem 1.3.4 and Corollary 1.3.8, we also have Ao < n with equality if
and only if the graph is complete. He further established the following result
[13], with v(G) representing the vertex connectivity of the graph.

Theorem 1.3.10. \; < v(G)

Proof. To show this, we first note that if G; and G5 are edge disjoint graphs
on the same set of vertices, then L(G;) + L(G2) = L(G1 U G,). Writing j for
the all-ones vector, this gives that

(IL', L(G1 @] G2)x)

A2(G1UG,) = 'i‘i? z.2)
_ ({2 L(Gu)z) | (x, L(G2)z)
] ( (=, :z:; (z, z) )
s B LG | @ L(G)
zlj  (z,z) zlj  (z,z)
= A2(G1) + A2(G1) (1.13)

where the minimum is as usual over all non-zero vectors orthogonal to the
all-ones vector. Thus removing edges does not increase A,. Now given a
graph G and a vertex j € V(G), define H = G\{j}, and define G’ to be the
graph with vertex set V(G) and edge set E(H)U {ij | i € V(G)}. (This may
be seen as G' = H V j; see Theorem 1.4.5.) If z is an eigenvector of L(H)
with eigenvalue ¢, then the vector z’ formed by the entries of z with one
additional zero entry is seen to be an eigenvector of L(G’) with eigenvalue
a + 1. This gives

A2(G) < X (G) < A(H)+1
By induction, we have that
/\Z(G) S }‘Q(G\{Ula Voy..., vk})

So if the removal of some k vertices disconnects G, then Ay(G) < k, which
is exactly the result. Since the edge connectivity b(G) > v(G), we also have
that A\, < b(G). O

In the same paper, he also established the following bounds relative to
the edge connectivity, e = ¢(G).

10



Theorem 1.3.11.

A2 > 2e(1 — cos(m/n))
A2 > 2[cos(m/n) — cos(2m /n)] — 2 cos(w/n)(1 — cos(w/n))A

The second bound is better if and only if 2e > A. It is relevant to note in
connection with this bound that 2(1 — cos(w/n)) = A2(P,), where P, is the
path on n vertices. A path being, in a sense, the “most nearly disconnected”
connected graph, we see that, for fixed n, A2 is minimal for “most nearly
disconnected” graphs, i.e., it is minimal on P,.

We give values of A, for certain graphs.

path P, = 2(1 — cos(w/n))
cycle CrAa = 2(1 — cos{27/n))
cube QmAa =2
complete KpAs =n
completebipartite Kmnhe = min{m, n}
star Sn = Kin-1X2 =1

We note that, informally, graphs which are more connected have a larger A,.

1.4 Operations on graphs

We have already seen that removal of edges from a graph does not increase
As. We will now consider more precisely what happens to As under various
graph operations.

Recall that the Cartesian product of two graphs G1 and G is defined as
the graph G x Ga, with vertex-set V(G1) x V(G2); (i1,71) and (ia, j2) are
connected by an edge if and only if ¢; = i3 and j; ~¢g, 72, Or 1 = j2 and
11 ~vG, L2-

Lemma 1.4.1. X(G) X G3) = min{A2(G1), A2(G2)}

We note that a similar statement can be made about the eigenvalues of
the adjacency matrix. In fact, the proof is quite general, depending only on
the fact that L(G; x Gs) = L(G,) ® I + I ® L(G,), where I represents an
appropriately-sized identity matrix and ® represents the Kronecker product.
It can be shown from this that the set of eigenvalues of G; X G; is exactly

11



{M(G1) + A(Ga) | 1 € i £ my,1 € j < np}. Furthermore, if z is an
eigenvector of L(G,) corresponding to A;(G:), and y is an eigenvector of
L(G3) corresponding to A;j(G2), then z ® y is an eigenvector of L(G1 x G3)
corresponding to A;(G1) + Aj(Ga).

In particular, if we take the product of G with itself, then A; remains
constant. Thus, given any graph, we can build arbitrarily large graphs with
the same A,.

The line graph of G, denoted I[(G)3, is the graph whose vertices correspond
to the edges of G, with two vertices of [(G) being adjacent if and only if the
corresponding edges of G share a common vertex. The subdivision graph of
G, denoted by s(G), is the graph obtained by replacing every edge in G with
a copy of P, (“subdividing” each edge). The total graph of G, denoted by
t(G), is the graph whose vertices correspond to the union of the set of vertices
and edges of G, with two vertices of £(G) being adjacent if and only if the
corresponding elements are adjacent or incident in G.

Let G be a d-regular graph, with n vertices and m edges. It is shown in
[25] that

Theorem 1.4.2.

P[(G) (z) = (z — 2d)™ " Pg(x)
Py (z) = (-1)™(2 — z)" " Pa(z(d + 2 — 7))

Pt(G) (:r) — (_1)m(d +1-— .’L‘)ﬂ'(?d +2— x)m—nPG (-’EEld:IQ-—xZ))

where Pg(z) represents the characteristic polynomial of the Laplacian matrix
of the graph G. Note that, if G is d-regular with d > 1 (i.e. not a disjoint
union of copies of K»), then the eigenvalues of {(G) are exactly the eigenvalues
of G with the addition of the (multiple) eigenvalue 2d, which was not an
eigenvalue of G (Theorem 2.2.4). If G is 1-regular (i.e., a disjoint union of
copies of K3), then 2d = 2 is an eigenvalue of G and the leading term in the
expression for the characteristic polynomial for [(G) “takes it away” instead
of adding it to the spectrum.

Of course, as this theorem applies only to regular graphs, equivalent state-
ments are possible in terms of the adjacency matrix (see [9}).

3We avoid the more customary L(G) as this is reserved for the Laplacian matrix of G.



A bipartite (r, s)-semiregular graph is a bipartite graph with bipartition
V(G) = UU W, such that all vertices in U have degree r and all vertices in
W have degree s. In [46], Mohar shows that

Theorem 1.4.3. Let G be a bipartite (r,s)-semiregular graph. Then
Pygy(z) = (-1)™(r+ s — )" "Pe(r + s — z).

We will define the (disjoint) union of two graphs G, G2 to be the graph
with vertex-set V(G1) U V(G») and edge-set E(G1) U E(G2) and will denote
it by G1 + G4. Note that this is a disconnected graph, and therefore A\o(G1 +
G2) = 0. In fact, one may easily prove

Theorem 1.4.4. Given graphs G, and G, with spectra 0 =y Lo < ... <
n, and 0 = 1 < Bs < ... < Bn,, then the spectrum of G + G is the

multiset {ah Q9, ... ,0n,, 1813 :32’ ... 75112}

Define the join of two graphs G, G, to be Gy V G = (G§ + G§)°. This
is the union of the two graphs, with every vertex in G; connected to every
vertex in Go. We note that G, V G» is always connected. It is obvious from
the definition that the diameter of G; V G, is at most 2, with diameter 1 if
and only if G; and G5 are both complete graphs. The join of two graphs
may be thought of as maximally attaching the two graphs together. In fact,
since the complement of G, V G is disconnected, we see that n; + n, must
be an eigenvalue.

The matrix L(G1 V G2) has a particularly nice block structure. The
upper-left block is the matrix L(G;) + no!I, the lower-left block is the matrix
L(Gs) + n1I, and the other two blocks are —J. From this we may readily
deduce the spectrum of G; V G», by exhibiting a complete set of eigenvectors.
If = is an eigenvector of L(G;) corresponding to A;, 1 < i < ny — 1, then
the vector 7/, defined by 2}, = z¢,1 < k < n; and z}, = 0 otherwise, can be
seen to be an eigenvector of L(G1 V Gq) with eigenvalue A; + no. Similarly,
we obtain the eigenvalues Aj +n; for 1 < j < np — 1. The all-ones vector
gives, as usual, the eigenvalue 0, and the eigenvector whose value is —n; on
the vertices of G; and 73 on the vertices of G2 gives the eigenvalue n; + na.

We have proved the following theorem, due to Merris [41]

Theorem 1.4.5. Given graphs G| and G5 with spectra0 =o; < @ < ... <
Ony, and 0= B; < By < ... < By, then the spectrum of G1V G4 is the multiset
{0, i +7n2, B +m,m1+m2 | 1<i<n — 1,1 < j < mo}.

In particular, Ao(G1 V Ga) = min{A(G1), A2(G2)}-
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We note that this theorem gives a simple way of determining the Lapla-
cian spectrum of a complete bipartite graph, since K, , = K,,°V K"
Merris [41] notes as a corollary of this that

Corollary 1.4.6. If z is an eigenvector corresponding to A with 0 < A < n,
then z; = 0 wheneverd; =n —1

Proof. To see this result, let G be a graph, and j a vertex of degree n — 1.
We see that G = (G\{j}) vV {j}- Thus, by Theorem 1.4.5, we have that the
vector y, which takes the value n—1 at vertex j and 1 otherwise, corresponds
to the eigenvalue n. The all-ones vector e corresponds to the eigenvalue 0.
If z is an eigenvector corresponding to the eigenvalue A, 0 < A < 7, then
z is orthogonal to both y and e, and hence is orthogonal toc z — e. Hence
;= 0. O

We therefore have that the number of eigenvalues less than n (including
multiplicities) is no more than the number of vertices of degree less than n—1,
and hence that the multiplicity of n is at least equal to the number of vertices
of degree n —1. We can do better than this. Recall that the multiplicity of 0
is equal to the number of connected components, and that the multiplicity of
n is equal to the number of connected components in the complement. Since
vertices of degree n — 1 in a graph correspond exactly to isolated points
in the complement, we have that the total number of eigenvalues (counting
multiplicities) strictly between 0 and n is exactly the number of vertices of
degree inclusively between 1 and n — 2.

We see that the union and join operations preserve “integrality”. That
is, if G; and G» have only integers in their spectra, then the same can be
said of G, V G2 and G; U Go. Maerris observes that any graph that can
be expressed as a series of unions and joins of isolated vertices will have
only integral eigenvalues; he refers to these as decomposable graphs. Note
that for decomposable graphs, the final sentence of the preceeding paragraph
says that the number of vertices of degree between 1 and n — 2 gives the
number of eigenvalues between 1 and n — 1. In particular, we have that all
connected decomposable graphs have A, > 1. The fact that A\, is bounded
away from zero for this class of graphs is intuitively consistent, as connected
decomposable graphs were necessarily constructed with a join as the final
operation, meaning that the resulting graph is highly connected.

14



1.5 Bounds on eigenvalues
Anderson and Morley [1] gave one of the first bounds on ), as
Theorem 1.5.1. A\, < max(d; + d;)

7

We omit the proof of this result.
Using the relationship between the Laplacian spectrum of a graph and
its complement, we can of course write

A2 > max(d; +d;) — (n — 2)
i~j

In a similar spirit, Li and Zhang [27] show that

Theorem 1.5.2. A, < 2+ /(di +d; — 2)(d} +dj ~ 2)

where d;, d; are the degrees of the endpoints of the edge with the largest
number of adjacent vertices, and dj, d; are the degrees of the endpoints of
the edge (not including the previous edge) with the (next) largest number of
adjacent vertices.

Merris noted the following bound [42] (which he says is usually better than
Theorem 1.5.2), where m; represents the average degree of all the neighbours

of the vertex i
Theorem 1.5.3. A\, < max(m; + d;)
i~]

Li and Zhang [28] were able to improve their bound to

Theorem 1.5.4. )\, < ma;cd‘(d“miii{(d“'mf)
i~j ]

Proof. To prove this result, we recall that L = K K*, where K is the criented
vertex-edge incidence matrix. It is well known that K K* and K*K share the
same nonzero eigenvalues. So A, is in fact the largest eigenvalue of K*K.
It is also well known that the largest eigenvalue of K*K is no greater than
the largest eigenvalue of K *K,, where K, is the unoriented vertex-edge
incidence matrix (it’s entries are just the absolute value of the corresponding
entries of K*K). A simple calculation shows that K ‘K, = 2I + B, where
B is the adjacency matrix of the line graph of the original graph. Let y be a
vector of m components, where m = |E(G)|. We then have that

oy L+ B)y),
Yu

An < m

15



Choose z,, = d; + d;, where the edge u joins vertices ¢ and j. We then have

(2 + B)y)u = 2(di +d;) + ) _(di +da) — (di +dj) + D _(dj +dp) — (dj + i)
a~i b~j
=d?+) d,+di+> d,
a~i b~j

= di(di + i) + d;(d; +m;)
The result follows. O

Given the “standard” nature of the proof, it is perhaps somewhat surpris-
ing that this result was not published until 1998, while the observations on
K*K and K 'K, were made specifically in the context of Laplacian eigen-
values as early as 1971 in [1].

We note the role of the average degree, and the average degree among
neighbours in these bounds. In fact, the quantity d;m; has been termed the
2-degree of the vertex, as it gives the number of paths of length 2 originating
from the vertex.
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Chapter 2

Isoperimetric Inequalities

2.1 Introduction

Let X C V(G). Define X to be the set of edges of G with exactly one
endpoint in X; this is sometimes referred to as the edge boundary of X, and
is useful in analysing cut-set problems. We define the isoperimetric constant
of a graph to be

Definition 2.1.1. A(G) = min ]IBTX[l
[X|<n/2

We can interpret the quantity |0.X|/|X| as the average boundary degree
of X. More precisely, given a graph G and a subset of vertices X, create a
new multigraph G’ by coalescing X onto a single new vertex z, preserving
multiple edges but deleting any loops that would be formed. The degree of
z is then precisely [6X|. Thus [8X|/|X] is the average contribution of the
vertices in X to the degree of x.

The isoperimetric constant can be understood as a measure of how easy
it is to disconnect a large part of the graph. To a terrorist with an eye
to knocking out the phone system, this is the reciprocal of the “bang for
the buck™. We note that like Ay, we have that A(G) = 0 if and only if G
is disconnected. We will see that \o(G) and h(G) are in fact quite closely
related. It should be noted, however, that h(G) is quite affected by local
properties, since it finds the weakest part of the graph. In other words,
“most” of the graph could be quite well-connected, with only one weak link,
and the isoperimetric constant would reflect only this weak link. As an
example of this, let G be the graph composed of two copies of K, joined by a
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single edge, and let H = P»,. We then have h(G) = 1/n = h(H). Intuitively,
one of these is more connected than the other, and in fact A\y(G) = n (This
is a consequence of Theorem 6.1.1) and Ap(Ps,) = 2(1 —cos{w/2n)). We give
values of h for certain graphs.

path P.h =1/|n/2]
cycle Cnh =2/|n/2]
cube Qnh =1
complete K.h = [n/2]
completebipartite Kmnnh = [mn/2]/|(m +n)/2]
star Sp = Kin1h =1

We have the following elementary bounds on h(G).

hG) <&
MG) < min it Y =2

i~j 2

MG) < [n/2]

h(G) > —[_n—;?‘l- if G is connected
The first two may be seen by considering X to be a (single) minimal
degree vertex and a pair of connected vertices, respectively. The third comes
from considering that |8X| < (|X|)(n — |X]). The fourth is a consequence
of the fact [0X]| > 1 and | X| < n/2.
Chung [7] gives an alternative characterisation of the isoperimetric con-
stant similar to (1.3), namely that

ifn>4

. Ti— T;
h = min maXZzJGE(G) | z Jl
z ER 3 ey Ti— |

(2.1)

where = ranges over all non-constant vectors. So h is just A, measured with
a different norm. Note that the value of ¢ that achieves the maximum may
be taken as the median of the values {z;}. If n is odd, this is unique; if n
is even, then ¢ may be taken to be any value in the closed interval between
the two median values of the set {z;}. Recall that in (1.3) the value t was
uniquely determined to be the mean of the values {z;}.
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Recall the interpretation of Lz given in Section 1.1, namely that given a
{0, 1}-vector z (i.e., the characteristic vector of a subset X of vertices) Lx
describes exactly the boundary of X. We see that

(r,Lz) |0X]|
(z,z) — |X]

In other words, we may give the equivalent definition of
(z, Lz)
(z,z)

where the minimum is over all {0,1}-vectors z with (z,z) < n/2 — or
equivalently over all subsets X of vertices with |X| < n/2. This has obvious
similarities with the definition of \,, however, it should be noted that the
sets of vectors over which z ranges in these definitions are disjoint. Also,
though the set of vectors orthogonal to the constant vector is certainly a
vector space, the set of {0, 1}-vectors z with (z,z) < n/2 is certainly not.
Computationally, determining A amounts to minimising a quadratic form
over a vector space, while determining A amounts to minimising a quadratic
form over a set. So it’s not surprising that determining A seems to be in
general exponential [45]. In fact, in that same paper, Mchar does show that
the determination of h for general graphs with multiple edges is NP-hard.

h(G) = min

2.2 Bounds on A(G)

A first approximation, due to Mohar [45] gives that the isoperimetric number
is bounded by approximately half the average degree:

2m[n/2]
R )

This is not entirely unexpected, as for sets X of a single vertex, we have
exactly that |6X| is the (average) degree of that vertex, and for sets X
where | X| > 1, unless the subgraph induced by X has no edges, then [0.X]|
will be at most the average degree of the vertices in X.

Proof. To show this result, we will, following Mohar, define the quantities

. lex]
he(G) = |x|r=nrl£n/2 | X|
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Consider the 7-subsets of V(G); there are (7) of them. Fix an edge ij € E(G);
there are 2(’;:3) r-subsets X with ¢5 € 0X. Therefore,

-9
3 x| = m2(” 1‘)
[X|=r T
This gives that

average {|0X|} m 20020/ _2m(n—r)
T o T B n(n — 1)

he <
and thus

MG) = min h(G) < 2?21

1<r<n/2 ~ (n(n-1)
a
Informally, we see that both A2 and A(G) tend to increase as the G be-
comes “more connected”, and decrease as it becomes “less connected”. For
a given n, they are both maximal (only) for K, and minimal for P, (though
h is also minimal on other graphs, such as two copies of K,/s joined by a

single edge). The link between them can be made explicit by the following
two theorems, due to Mohar [45]:

Theorem 2.2.1. A\;/2 < A(G)
Theorem 2.2.2. h(G) < vV /\Q(QA - /\2) fOT‘ G -‘,é Kl, KQ, Kg

Note that 2A > ), is a positive quantity for graphs on n > 3 vertices (in
fact, we will shortly establish a stronger result), so this bound is well-formed.
By simply observing 2A — A\, < 2A, we have a weaker form of Theorem 2.2.2
which is (sometimes) easier to use.

Corollary 2.2.3. £ < 3,

Proof. To show Theorem 2.2.1, let X be a set that achieves h(G), i.e. such
that h(G) = [0X[/|X|. Let a = |X| < n/2 and b = n — |X|. Define the

vector
a ifjéxX
1L'j = .
-b ifjeX
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We have that z is orthogonal to the all-ones vector, and hence that

(z, Lz)
A2 < {z, z)

_ > i (Zi — z;)?
> JEV(Q) (z;)?

_ Zijeax(mi —z;)?

ZjeV(G) (z;)?
_ |8X[(a +b)?
~ ab? + ba?
= ox|t + 3 < jax)2 = 21(6)

a b’ — a

To prove Theorem 2.2.2, we will need the following
Lemma 2.2.4. For a complete graph, Ao = n = A + 1. Otherwise, A2 < A.

Proof. We have already noted that A, = n for complete graphs; it is a sim-
ple consequence of (among other things) the fact that the complement of a
complete graph has n components.

If the graph is not regular, then by Theorem 1.3.9, we have

]

n—

A< ——§=6+ <é+1<A
n—1 1
If the graph is regular but not complete, then it contains P; as an induced
subgraph. Let u; be the second largest eigenvalue of the adjacency matrix
A of the graph. Applying the interlacing theorem, we see that u, must be
larger than the second largest eigenvalue of the adjacency matrix of P, i.e.,
uo > 0. however, since the graph is regular, L = D — A = Al — A, and thus
A — Xo = ug, giving that Ao < A. O

We note parenthetically that there is a gap in the permissible values of
Ao. If it is larger than the maximal degree, then it must be exactly one more
than the maximal degree.
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Proof. The following proof of Theorem 2.2.2 is due to Mohar [45]. We
first note some special cases. Obviously, if G is disconnected, then A(G) =
A2(G) = 0 and the theorem holds. If G = K,,n > 4, then we have that

VA2(2A — X3) = /n(2(n—1) —n) = y/n(n—2) > n—22> [n/2] = h(G)

Also, if Ao > ¢ and the graph is not complete, then by Lemma 2.2.4

VA22A = X,) > VA > 6 > W(G)

So we may assume that G is connected, not a complete graph, and that
do < §. Let f be an eigenvector of A\y. Define the set W = {j | f; > 0}.
We may assume that |[W| < n/2 (otherwise negate f). Define a vector g by
g; = f; if 7 € W and g; = 0 otherwise. Denote by E(W) the set of edges
of the induced subgraph of the vertex set W. Recalling that the eigenvalue
condition for A\; may be written at each vertex as

Nofy=difi= fi

i~F

we see that

Y g2=XD_ fF=) (Mf)fs

JEW JEW

= (dif5— D fi)fi

JEW i~3

=D (i—ffs
JEW i~j
ST Ui- R+ =B+ D (=)l
ijEE(W) jEW
ij € 8W
= Z(gi ~g)?— > fif; (2.2)
i~J jew
1] € W



Also, note that

CA-=2)Y 2=(A-2) ) 2= (2Afi —Nafi) 5

JEW JjEW
=>" (QAfj —difi+ ) fi) fi
jew inj
>3 (djfj + Zfz) fi
JEW ing
= (g:+g)+ Y fifi
i~ ijeaw

Combining these two, and writing A = 3.5 (fif;), we have

YEA=X) (3 6) 2
D (g — )% (g:+95) — A (A +4 > fif,») (2:3)

inj i~ ijEE(W)

Observe that 4 < 0. Also note that since \; < 4, we have

A+4 Y Rifi=2 3 Rh+ D3k

ijEE(W) ijEE(W) JEW i~j
=2 Y fifi+ ) _(di— ) f} (2.4)
ijJEE(W) JEW

Denote B =Y, .|g7 — g7|. We then have

B2< (g:—95)% ) (9 +95)

i~j i~j
< do(28 =) (3 g2) + 4 (A +4 ) ffff)
ijEE(W)
< A2 — Xa) (Z gf-)2 (2.5)

We now obtain a lower bound on B. Let the distinct values of the com-
ponents of g be 0 = tg < t; < --- < tp. Define the set Vi = {j | g; > tx}-
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We note that |Vg| = n and that (V| < |Vi| < |[W| < n/2fork > 1.

B = ZZ 9 =97

l~]

9: <gj=tr

= Z Z (tf - ti_l)

k=1 ij€8V;

m
=" |aVkl(tr — t2_y)
k=1

> h(G) D Vil —£2-0)
k=1
=hG)D g (2.6)

Putting these two bounds together we get

(M&) 3 62) < B < 228 —20) (T 6)

which completes the proof. a

As a general comment on the discipline, it is interesting to note that the
vectors f and g were also used in proving results on magnifier graphs [2]
(Theorem 3.2.3 of the present paper).

Note that 2A — Ao > A is never “small”: for a complete graph, 2A—A; =
n — 2 and otherwise 2A — A3 > A. So for \/A(2A — A;) to be small we need
to have A; small. Thus by combining Theorem 2.2.1 and Theorem 2.2.2, we

have
A2/2 < R(G) < V2024 — Ap)

In other words, small values of A5 force the graph to have a poorly-connected
subset, and a graph with no poorly-connected subset has a large A;. We can
formalise this for a given infinite family of graphs G, by

lim h(G,) =0 < ILm A2(Gr) =0
T—>00 T—0Q

It is relevant to note that, in general, there is no known efficient way to
calculate h(G) for a given graph. Although it seems to be a difficult quan-
tity to calculate, it is not been formally proved that there is no polynomial
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algorithm to determine A(G) in general. As noted above, it is NP-hard for
graphs with multiple edges. Computing Ao, however, is much easier. Thus we
may use A; to obtain an easily computable upper bound for A(G). This is a
recurring theme, in fact. Although As does not directly measure most graph
properties, we will see that it often provides useful (and easily computable)
bounds.

Theorem 2.2.1 can be seen to be tight for the cube graphs, where we have
A3 =2 and h = 1. Corollary 2.2.3 can be seen to be roughly tight to (within
a constant factor) for a path or a complete graph, for instance:

2
1
h2(PR,) _ (Ln/z]') o1
2A(P,) 2x2 T n?

Ao(Pp) =2(1 —cos(n/n)) =2 -2(1

(K _ [n/2)?
A(K,)  2(n—1)
/\2(Kn) =N

In general, however, this is not always the case. For example, if G is the
graph formed by joining two copies of K, with a single edge, then A\2(G) =n
while A(G) = 1/n.

It is useful to note (by observing the final inequality in the proof of
Theorem 2.2.1) that if the set X that achieves A is such that |X| is much less
than n/2, we may (almost) state Ao < h. Informally, for a graph to have a
large value of \s, not only should A be large, but also any set that achieves
h should be as close as possible to half the total number of vertices in size.

G0 G S

21 4!

~
~

2

3,3
o
-

_n
8

Note that in Theorem 2.2.1 we needn’t insist that X achieves h(G), so in
fact for arbitrary | X| we have (following the proof of Theorem 2.2.1) that

1
<A 2.8
For a given set X, we define the edge density of X to be
[0X]
X)=
) = Rln— XD
This represents the ratio of edges to vertex pairs (“potential edges™) between
X and its complement. It is a relative measure of the extent to which X is
connected to its complement.

1
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Given X, 0X is uniquely defined. If the graph is connected, then X
is the edge boundary only of X (or the complement of X). If the graph is
disconnected, it is possible for two distinct non-complementary sets X; and
X5 to have 8X; = 8X5. Thus if G is connected, and Y is a minimal set
of edges that disconnects the graph, then ¥ = 90X for a unique X (up to
complementation) and we see that p(X) depends only on Y.

We see then that the bounds (2.8) gives rise to bounds on the edge-density
in a graph:

&<p(ﬁf)$1\ﬁ
n n

Also, letting X be a set that achieves h(G), we have, in light of Theorem 2.2.1,
that

A(X) = MG _ PR =)

T n—|X|~ n/2

and we see that the minimal edge density in the graph is bounded above by
Ao. This is an extremely important observation, as the value of A, allows us
to conclude the existence of a “weak link” in the graph, where weakness is
measured in terms of edge density. For a graph to have no set X with low
edge density, it is necessary (though not sufficient) that A, be large relative
to n.



Chapter 3

Expanders

3.1 Introduction

The isoperimetric constant was motivated by a desire to find the “weakest”
point of a graph, the part that is (for its size) least connected to the rest
of the graph. We may ask essentially the same question in reverse: Can
we construct a graph such that any “small” set of vertices is well-connected
to the rest of the graph? Here we are looking for graphs with large growth
rate, i.e., the number of vertices at distance k from some (fixed but arbitrary)
point increases rapidly with k. This leads to several related notions, including
concentrators, superconcentrators, magnifiers... all based on essentially this
one idea.

Such graphs are useful in computer science. Expander graphs are used in
parallel sorting algorithms, as well as graph pebbling algorithms (see [3] and
the references therein). According to [2] they are quite common (e.g. almost
all regular bipartite graphs on 7 inputs and n outputs are expanders for some
value of ¢). They are also used to build superconcentrators, which are used
in computer science (again, see the references in [3]). Explicit constructions,
though possible ([17], [31]) are more difficult and may have expansion prop-
erties that actually compare quite poorly with the expectation for a random
graph [2]. Although this means that random guessing is the “best” way, the
explicit calculation of the expansion properties of any given graph can be
quite difficult. This dilemma can be resolved using the Laplacian eigenvalues
of the graph.



3.2 Relations with eigenvalues

An (n, A, ¢)-ezpander graph is a bipartite graph on two sets of vertices I and
O (“inputs” and “outputs”), with [I| = |O| = n, the maximal vertex degree
is A, and for every subset X of I with |X| < n/2 we have

IN(X)| = (1 +c(1 - |X[/n))|X]

where V(X)) is the neighbourhood of X: the set of vertices adjacent to a
vertex in X. It is a strong (n, A, ¢)-ezpander if the result holds for all subsets
X of I.

It turns out that the expansion properties of a graph are related to the
Laplacian eigenvalues of the graph. This has direct practical consequences.
By randomly generating graphs, we are almost sure that the graphs will be
expanders; by checking the value of Ap, we can establish a bound on the
amount of expansion. That is the essential result of [2]. To demonstrate
this, we will need to consider magnifiers. An (n, A, ¢)-magnifier graph is a
graph on n vertices, with maximal degree A, such that for every subset X of
vertices with | X| < n/2 we have

IN(X) — X| 2 | X]

This is essentially the non-bipartite version of an expander graph. Were it
not for the fact that the applications are more in terms of expanders, this
might well be regarded as the more “fundamental” definition. The relation
between the two can be made more explicit by observing that magnifiers give
rise to expanders. Specifically, [2] we see by direct calculation that

Lemma 3.2.1. Let G be an (n, A, ¢c)-magnifier on vertices {vy,v2,... ,Un}-
Form the graph H with inputs {z1,Zs,...,Z,} and outputs {y1,v2,..- ,Yn}
such that the edges of H are exactly the pairs {(z;y:;)} fori=1,2,...,n and
the pairs {(z;y;)} where (v;v;) is an edge of G. (This is the extended double
cover of G.) Then H is an (n, A + 1, c)-ezpander.

Alon establishes the relationship between magnifiers and eigenvalues by
the following two lemmas (the notation is slightly changed from the original
paper). [2]

Theorem 3.2.2. Given a graph G on n vertices with mazimal degree A,
then G is an (n, A, ¢)-magnifier with ¢ = 2Xo/(A + 2X3)
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Theorem 3.2.3. Given an (n, A, c)-magnifier, then Ay > c%/(4 + 2¢?)

Thus a graph with good magnification properties (which means a graph
such that any small subset is well connected to the rest of the graph) is more
or less the same as a graph with large A;. We have as a straightforward
consequence, that given an (n, A, c)-magnifier, we can prove (by computing
eigenvalues), that it is an (n, A, ¢)-magnifier with ¢ = ¢2/(c? + A(2 + ¢2)).
This is relevant in that if we are generating graphs randomly, we don’t know
what c is explicitly even though we may be fairly certain that it is large. This
makes the random generation and subsequent verification (by eigenvalues) of
magnifier graphs an efficient process.

The proof of Theorem 3.2.2 depends on the following lemma from [3].
Define the distance between two sets of vertices A and B as the length of the
shortest path that starts in A and ends in B.

Lemma 3.2.4. Given two disjoint sets of vertices A and B such that the
distance between them isd > 1. Let a = |A|/n and b= |B|/n. Then

<_ (—a)
— 14 A2ad? / A
Informally, this says that if A, is large, then “large” sets of vertices cannot
be “far” apart.

Proof. To show Theorem 3.2.2, let X be a subset of vertices such that [ X| <
n/2. Using Lemma 3.2.4 with A = X and B = V(G) — (X U N(X)), we
obtain

_XIHINGO = X| __ 1-|XYn

L n — 1+ A2(|X|/n)22/A

IN(X) = X| 2 n [1 - XU - :}x('mnm]
|[N(X) — X| > n(1 - |X]/n) [1 T1x4n, |%X|/(nA)]
IN(X) - X| > |X|(1 - IXl/n)A+4£f\/:2|X|/n
For | X| < n/2, this gives that
IN(X) - X| > IXIA—?;\;—/\Q
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which says that the graph is an (n, A, ¢)-magnifier with ¢ = 2, /(A + 2X,).
O

Proof. To proof of Theorem 3.2.3 is a little trickier. We define, as we did in
the proof of Theorem 2.2.2, the vector f to be an eigenvector of A, with at
most 7/2 positive entries, the set W = {j | f; > 0}, the set E(W) to be the
set of edges both of whose endpoints are in W, and the vector g by g; = f;
if 7 € W and g; = 0 otherwise.

Making use of prior work, we find that (2.2) gives the following bound
for Aq:

ZijeE(W) (9: — 9j)2 (3.1)

A2
ZjEV(G) 95°

vV

We now construct a network, with an eye towards applying the well-
known max-flow min-cut theorem. The network has vertex set {s,t}UXUY,
where s is the source, ¢ is the sink, X is a copy of W and Y is a copy of
V{(G). The arcs are defined as follows:

1. The arc (s,1) has capacity 1 + ¢ for every i € X
2. The arc (Z,7) has capacity 1 if ij € W or if ¢ = j, and 0 otherwise
3. The arc (j,t) has capacity 1 for every 7 €Y

The cut consisting of all arcs (s, %) has capacity |W|[(1+ c); the claim is that
this is minimal. Let C be some cut that does not include all arcs originating
from the source. Let U be the set of arcs of the form (s,?} that are not in
C. Consider the set {j € Y | (¢, 7) is an arc for some 7 € U}. But the graph
is a magnifier. Therefore, this set has cardinality at least (1 +¢)|U|. Since
C is a cut, it must contain at least one arc incident to each element of this
set. Thus the total capacity of C is at least

W —Ul-(1+c)+ 1 +)U|-12[W[(1+c)

The max-flow min-cut theorem gives that there exists an orientation £ of
the E(G) and a function ¢ defined on the directed edges such that

1. 0 < i, j) £ 1 for all (g, 7)
2. > ;a(i,5) =1+cifi € W, and 0 otherwise
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3. Zia(ia .7) < 1

One can check that the function « satisfies
3?3, 5) (g +95)2 <2 &6 5) (9 + 95
ijeE ijEE

<2 Y 6P (i) + 3 0(d)

i€V (G) J

<22+ Y g’ (3:2)

1eV(G)
and

3ol )@’ —a”) = 3 o*(deld) - D el9)

ijEE teV(G) J

>c > g’ (3.3)

Combining (3.1), (3.2), and (3.3), we obtain

ZijGE(W) (9i — gj)2
2jeve 9i°

. ZijeE(PV) (9 — gj)2 Zijeé a®(i,5)(g: + gj)2

 Yieviey 9i% 2ijer @2(6,5) (9 + 95)°

_ (Sues ot nls o)

2(2 + ¢2) (Zjev(g, gjz) i

Ag >

o 2
> 1 Zijeé;a(z7])(gi2 - gj2)
442 Y jevic) 9i°

2
>
— 44 2¢?

a

In the same paper, Alon also establishes the following two results, which
we reproduce here without proof:
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Theorem 3.2.5. IfG is an (n, A, c) strong ezpander, then G is a (2n, A, c/16)-
magnifier.
Theorem 3.2.6. If G is a A-regular bipartite graph on the verter sets 1
and O with |I| = |O| = n, and G is a (2n, A, c)-magnifier then G is a
(n, A, 2¢/ ((d + 1)(c+ 1))) strong ezpander.

It is remarked that the constant 16 is not optimal. Combining this with
previous results, this gives

Corollary 3.2.7. If G is an (n, A, c) strong ezpander, then Ay > ch:c'"
If G is a A-regular bipartite graph on the verter sets I and O with |I| =

— ; 4\
[O]| =n, then G is a (n, A, m)-expander.
Alternatively, he also derives the following result, which is in principle

the same thing, but with a better bound.

Theorem 3.2.8. If G is a A-regular bipartite graph on the vertez sets I and
O with |I| = |O| = n, then G is a (n, A, £2—'“\——A—>51)32—)-expander.

3.3 Vertex expansion

One can view the properties of expanders as being similar to the properties
of the isoperimetric constant h. One can define the vertez boundary of a set
X as being the set X ={yeV(G) |y ¢ X,y ~z € X}. We can then give
the alternative definition of the parameter A’ in an (n, A, h’')-magnifier as

Definition 3.3.1. ¥ = min X!
IX|<n/2 1X1

where this definition includes the rather uninteresting case where A’ = 0.
We can see trivially that [6X| < [8X]|, so that A’ < h. Thus by Theo-
rem 2.2.2 (or the weaker version, Corollary 2.2.3) that

h’(G) < vV A2(2A - /\2) for G # I(l, Kg, K3
h/Z(G)
<
A =N
These bounds can sometimes be tight to within a constant factor: for exam-
ple, for the path, we have h'(P,) = h(P,), and (2.7) applies to h'(FP,) as well
as to h(P,). However, for the complete graph, we obtain
(K(Ka))® _ [n/2]2/[n/2)? 1
== =~ /\ Kn =
9A(K,,) 2(n—1) G R 2(Kn) =n
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In fact, we see directly from the definition that for any graph, »' < 1.
Considering any graph, we see that the magnification constant b’ is

bounded below by

’ : ,1“(;() ‘(I . I‘le . |6Xl/A n
= _— —_— > — —
h min |X| min IX! min IXl

where the minimum is taken over all subset X of vertices with |X| < n/2.
So we also have the bound

Az

S 22

mz 2A
This bound can be tight to within a constant factor. For example, for the
graph H composed of two copies of K, joined by a single edge and for a path

we have

) Ao (H) 1
RH)=1 =2 gz(H) =3

, 1 AoP,)  2(1 — cos(w/n)) 2
h(Pn)=h(Pn)=m' 2 QX(PR) - 2x 2 z47;2

Note that as a corollary to Theorem 3.2.8 and Theorem 2.2.2, we obtain
a lower bound on A/, allowing us to give

M\ _
(5) swen
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Chapter 4

Other Graph Parameters

4.1 Diameter and mean distance

Due to the way in which the Laplacian matrix measures the boundary of a
subset of vertices, we should not be surprised to find that it is related to the

diameter.
As a first relationship, we have that (writing D for the diameter of the

graph)

Theorem 4.1.1.
1
Ao > —
2=nD
Proof. To prove this, we use the “standard” Rayleigh quotient formulation,
adapted from [7] (where it was proved in the context of the matrix L, see

Section 8.1). Let z be a vector achieving )y in (1.1), and let u be a vertex
such that |z,| = max|z;|. Since z is orthogonal to the all-ones vector, there
T

is another vertex v such that z,xz, < 0. Let P be a shortest path joining u
to v. Let ¢ be the length of P. We then have:
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Zi~j($z’ - -TJ')2
ZjEV(G) (z)?
ZijeP(xi - 933‘)2
n(Ty)?
(T — xv)z/t
n(zy)?

Ap =

A%

1
> —
—nt

1

nD

where we used the Cau<hy-Schwarz inequality in the third line. O
Another bound, due to Nilli [49] gives that

Theorem 4.1.2.

2

\/—_1 -1

2"WA
|1 D/2]

Proof. To prove this result, consider two edges at a distance of at least 2t + 2.
Define the set V; to be the the set containing the two vertices of one of these
edges, and Uy to be the set containing the two vertices of the other edge.
Let Vi, 1 < k < ¢t be the set of all vertices of distance k& from Vj, and let
Ur,1 < k < t be the set of all vertices of distance & from U;. We note
that these are all disjoint, and that furthermore there is no edge joining a
vertex of the set |J;_, Vi with a vertex of the set [Ji_,Uy. Also, we have
Vel < (A-1)|Vi_1| and [Vi]| < (A—=1)|Vi—1|forl < k < t. Forgivena,b € R,
define a n-vector z on the vertices by z; = a(A —1)f2 forj € V;,0< k < ¢,
z; = b(A —1)*/2 for j € Ui,0 < k <t, and z; = 0 otherwise. Note that we
may choose a,b so as to make ) j € V(G)z; = 0; in other words, we may
choose z to be orthogomal to the all-ones vector. Thus

Zz~_7 (xT- 1:.7)2
2 <
Z;ev(c) (z4)?
It is a simple calculation to determine that > cy (g (2;)® = 41 + By where

2 \Z 2 U
Al_az(Af %l B —b Z(Al—k!L

k=0

o <A —

A
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The number of edges connecting vertices in V; to vertices in Vi, is at most
A — 1, and there are no edges from V; to any Uy for 0 < £ < t. So we have
2 inj(Ti — 25)? = Aa + B, where

Ax <28 - 1) (x5 —0)2

— 1 1 2
ety kA (=7 @= 1)<'=+1>/2)

with a similar expression for Bs
We obtain an upper bound for the quantity As/A;, observing that the
same bound holds by symmetry for B,/B;, and therefore will be an upper
bound for (4; + Bs)/(A1 + B1), which is itself an upper bound for A..
Note that [Vi] < (& —1)[Vi_y implies [Vil/(A — 1) < [Vioi] /(A — 1)
and we have

As < Z(AMII);:(A”H“&Z; lV’“' k(A 2V/A—1)

2(A”f = (eVE=T-1)+(a- 7\/"—‘))

+a22 [VH — _(A-2V/A-1)

Ic

T1— 1)+ A(A — 2VA 1)

Thus we have

A
< _—(gf—— —1)+ (A —2V/A 1)
1]
which establishes the bound on As. O

Theorem 4.1.2 has, as a corollary, a result which was first obtained by
another method by Alon and Boppana [2], namely that given an infinite
family of A-regular graphs, that

limsupl <A —-2vVA -1
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This bound is important in that it is, asymptotically, best possible. Lubotzky,
Phillips, and Sarnak gave an explicit construction for the so-called Ramanu-
jan graphs, that have Ao > A — 2y/A — 1 [29]. These are graphs with large
girth, small diameter, and large A,. In fact, we see that the conditions “small
diameter” and “large A\,” are essentially the same thing.

Alon and Millman [3] show that

Theorem 4.1.3.

D < 2log,nv/2A /A

By combining Theorem 4.1.1 and Theorem 4.1.3, we see that for a given
number of vertices, the diameter is small for large values of A, and large for
small values of A,. Noting that A, = 0 means that D = oo (the graph is dis-
connected) and A\, = n means that the graph is a complete graph, we are not
surprised to discover that these results are approximated for nearly extremal
values of M. Theorem 4.1.1 gives A\; = 0 = D large and Theorem 4.1.3
gives Ap & n = D small .

In fact, we can do better than either Theorem 4.1.3 or Theorem 4.1.1.
Mohar establishes the following two upper bounds on the diameter [47]. They
are not, in general, comparable, although he says the second is “in most cases,
much stronger than” the first. The second also represents a better bound
than Theorem 4.1.3.

Theorem 4.1.4.

D<2 [A;- A2 log(n — 1)}

For the proof see [46]. The second bound is valid for any a > 1 (he
provides tables giving “good” choices for «).

Theorem 4.1.5.

ApnZ2 —1
/\2 4dov

D<2 [ + llogo(n/‘.))‘l

The proof of Theorem 4.1.5 will follow trivially from the following two
lemmas. We will use the notation established previously, that B(w) will be
the set of vertices at distance at most k£ from some (fixed) vertex w. Also,
we will write e; for the number of edges with exactly one endpoint in By.
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Lemma 4.1.6. Let 7 > 1 and k > 0 be integers and let w be some (fized)
vertez of G. Define b = |Bg| and ¢ = |V\Bjyr]| =n — |Bgyr|- Then

An (n—=b—2c)(b+c)

4/\2 be

Proof. Note that B, and V\By,, are two sets of vertices separated by a

distance 7.
We define a vector

(r—1)%<

t if j € Bg
zij=t+r—1 ifj & Brsr
t+:—-1 ifje Bk+i\Bk+i—1

We can choose the value of ¢t to make = orthogonal to the all-ones vector,
and can thus apply (1.1). Direct computation shows that

(z,z) = Z $i2

> b2 +c(t 41 —1)2
—c(r—1)\? [ —c(r —1) 2
>b( b+c ) ( b+c +tr—=1

be(r — 1)
= C_(T_—_)_<z’ Lx) = T;— T 2
b+c !
ijEE(G)
k+r—1
= E ei
t=k+1

We need an upper bound on the quantity Zf__'f',:;ll e;. Consider the subgraph

H induced by Bgir\Bi. The interlacing inequalities give that A,(H) <
Ax(G). Define the following vector on H

+1 if j € Bgi41\Bat for some ¢
Yi = .
~-1 otherwise

It may readily be seen that by (1.2), we now have

2 k+r—1
S E{jeE(G) Yi —Yj _ 4Zi=kr+1 €
- n—b—ec n—b—c

An(H)

which establishes the desired result. |
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Lemma 4.1.7. Let r > 1 and k > 0 be integers and let w be some (fized)
verter of G. Defineb = |Bi| and ¢ = |V\Biyr| = n — |Bryr|- If n—c <
ab < n/2 then

/\2 4o

+1

Proof. Note that sinceb+c>n—ab+band n —ab+b > n/2 we have
(n—(b+c))b+c)<(n—ab+b)(ab—0b)

Note that the left-hand side appears in Lemma 4.1.6. Using Lemma 4.1.6,
we obtain the result. |

Proof. The proof of Theorem 4.1.5 follows for basically the same reasons as
the other bounds on the diameter. We simply determine how far out from
(a fixed but arbitrary) w we have to go in order to include at least half the
vertices.

Ifr> ,/5}5“:;1 + 1, then by Lemma 4.1.7 either we have |Bg| > n/2 or

|Br4+r| > a|Bg|. Thus, for such an r, we are guaranteed to find at least half
the vertices within a distance of 7[log,(n/2)] from w. Note that w is a fixed
but arbitrary vertex; the result follows trivially. |

As a consequence of the work that gave the two bounds on the diameter,
we also have the following two bounds on the mean distance in the graph.

Theorem 4.1.8.

- n A+ Ao 1
< 1 — ik
d< —7 (l- W og(n 1)] + 2)

The second is again valid for any o > 1.

Theorem 4.1.9.

- n Apc?2—1 1 5
d< — [1+‘/A2 o ] (§+loga(n/-))

Also in [47], we have the following lower bound on the diameter, due to
McKay (compare with Theorem 4.1.1).
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Theorem 4.1.10.
4
Ao > ——
2= 0D
Mohar extends this to a lower bound on the mean distance.

Theorem 4.1.11.

- 2 n—2
(n—l)dZE'f- 5

4.2 Expansion

Given the tight connection between expansion and X, it is not surprising
that we can directly relate the expansion properties of the graph to A,. For
instance, the following is mentioned in [8] without proof:

Proposition 4.2.1. Given an (n, A, ¢)-magnifier, the diameter D is bounded
by

D-1 log(n/2)
t 2 J = Tog(1 + o)

FA

Proof. The proof is somewhat similar to the proof of Theorem 4.1.2 in style,
in that we consider nested balls of consecutive radius. Letting Bg(v) be the
set of vertices at distance less than or equal to k¥ from vertex v, we see that
as long as |Bi(v)| < n/2,

lBk(U)| c
Bea(w)] = T

Consider two vertices u and v at distance D. We must have |B|(p_1)/2) (u)| <
n/2 or |Byp-1)/2;(v)] £ n/2 (or both); without loss of generality, assume
|B|.(D-1)/2J (’U)| < 'n,/2. Thus

IB[(D-I.)/2] (U)I | L(o-1)/2]
IBL(D—I)/2_'( )I |BQ('U)‘ - ( C)

The result follows. a

A similar result, proved using a similar technique, gives a bound based
on the isoperimetric constant [45]

40



Theorem 4.2.2. Given a graph with mazimal degree A and isoperimetric
constant h, the diameter D is bounded by

log(n/2)
log £%%

Dgg(

Proof. This is proved by considering the growth of the graph, i.e., the ratio
of the number vertices at distance k& to the number vertices at distance k —1.
Letting Bi(v) be the set of vertices at distance less than or equal to & from
vertex v, we see that as long as [Bg(v)| < n/2,

A|Bi(v) — Bi-1(v)| 2 A (| B (v)| + [Be-1(v)])

and thus that

[Be—1(v)] — A—h

4.3 Trees

. For trees, we have the result that says that A is bounded by the largest path
in the tree. Doob shows that [9]

Theorem 4.3.1. Let G be a graph with diameter D, and let i1 be the smallest
eigenvalue of its adjacency matriz Then —2 < p < -2 cos(DL_H)

By virtue of the relation between the Laplacian spectrum of a graph and
the adjacency spectrum mentioned in the proof of Theorem 1.5.4, we can
translate this into Laplacian terms as

A2 < 2(1 — cos(w/(D + 1)) = Aa(Pp41)

Comparing this with Theorem 1.3.11, we can give the range of permissible
Ao for trees.

Corollary 4.3.2. Let T be a tree on n vertices with diameter D. Then
A2(Pr) < Xo(T) < A2(Pp+1)-
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We will close this section with a direct connection between the mean
distance and the Laplacian spectrum, which Mohar attributes to McKay [47]

Theorem 4.3.3. For any tree on n vertices we have

(n—l)(f:?i%

i=2 7t

Proof. Let the characteristic polynomial of L(T) be z%+¢p_1 2%+ - -+cox?+
c1z. By Corollary 1.3.2, ¢; = n, and by the more general Theorem 1.3.3, we
have that ¢, is the number of spanning trees of all graphs H;; obtained by
identifying any pair of vertices 7 and j. If we identify two vertices of a tree,
we create a graph with exactly one cycle, whose length is the distance (in T)
between the two vertices. Thus the number of spanning trees in Hj; is the
distance (in 7') between ¢ and j. So ¢, is exactly the sum of all the distances
between any pair of vertices.

Furthermore, by writing the coefficients in terms of the roots (eigenval-
ues), we see that ¢; = [[,5, A, and ¢z is the sum of all products of n — 2

eigenvalues taken from A, As, ..., An. Simplifying, we obtain,
Xn: 1 _e| _ Zijevieans _ n—1 J
Ai 51 n 2

=2



Chapter 5

Integral Spectra

5.1 Pendant vertices and multiplicities

We will use the term pendant vertex for a vertex of degree 1 and quaszpendant
vertez for a vertex adjacent to a pendant vertex.
We recall the eigenvalue condition at a vertex:

(dy = Nzs =D =

i~j
We have as an immediate consequence

Lemma 5.1.1. Let = be an eigenvector corresponding to Ay, and suppose
there is a pendant vertez v such that z, = 0. Let u be the vertezr adjacent to
v. Then z, = 0.

Thus pendant vertices are never isolated zeroes of eigenvectors.

In the same vein, we may observe that if z is an eigenvector corresponding
to A = 1, then z is always zero on quasi-pendant vertices. Inspired by this
observation, let us consider the following scenario. Start with a graph that
has (at least) two pendant vertices attached to a common (quasipendant)
vertex. For concreteness, take P;, the simplest such example. Define a vector
to be +1 and —1, respectively on the two pendant vertices and O on the
quasipendant vertex. This is an eigenvector corresponding to A = 1 for Ps.
We can see, either by Theorem 6.1.1 or by directly verifying the eigenvalue
condition at each vertex, that we may adjoin whatever other graph we wish
to the quasipendant vertex and extend the vector to be 0 on on the rest of
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the graph. The result is an eigenvector corresponding to A = 1 for the new
graph (note that although A(P3) = 1, A =1 is not necessarily A\y(G)). Such
a vector, with exactly one +1, one —1, and all other entries 0, corresponding
to the eigenvalue A = 1 is termed a Faria vector. Denote by mg(A) the
multiplicity of A as an eigenvalue of L(G). It is a matter of counting to see
that

Theorem 5.1.2. mg(1) > p(G)—q(G), where p(G) is the number of pendant
vertices of G and q(G) is the number of quasipendant vertices of G.

This was first observed (as a corollary to other results) by Faria in [12],
where she refers to p(G) — ¢(G) as the “star degree” of the graph. This result
“explains” why 1 is often an eigenvalue, and so often a multiple eigenvalue
of trees (see Appendix A). There is a similar result for the adjacency matrix
of trees. Specifically, using mg(u) for the multiplicity of i as an eigenvalue
of A(G), we have ([9], p-258).

Theorem 5.1.3. p(T) — ¢(T) < mr(0) < p(T) -1

For trees, we can add an upper bound to Faria’s inequality to obtain the
following theorem [21].

Theorem 5.1.4. p(T) —q(T) <mr(1) <p(T) -1

It is worth recalling that as trees are not regular we do not expect a direct
relationship between the two spectra. The similarity between Theorem 5.1.3
and Theorem 5.1.4 is thus a little unusual.

Proof. The lower bound is already established. Let v be a pendant vertex
and u be the quasipendant vertex adjacent to v, Let x be an eigenvector
corresponding to 1. If z, = 0, then the eigenvalue condition at vertex v gives
that z, =0 as well. Then we could define a new tree 7* by removing vertex
v (and edge uv) from T; the vector z’ obtained by restricting = to 7" would
be an eigenvector of 7" corresponding to 1. But this new vector would be 0
on u, a pendant vertex of 7" (though not of T'). As z cannot be identically
zero on T, we see that there must be at least two pendant vertices of T on
which it is non-zero. If mg(1) > p(T) — 1, then we would have at least p(T)
linearly independent eigenvectors corresponding to 1 from which we could
form a combination that would be zero on p(T") — 1 (pendant) vertices. [
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More strikingly, we have the following theorem for integral eigenvalues
for trees [21].

Theorem 5.1.5. Let A > 1 be an integer eigenvalue for some tree T on n
vertices, and x be a corresponding eigenvector. Then

1. A\ divides n
2. 2; #0 for 1 <i<n

Proof. The characteristic polynomial is always an integer polynomial, with
leading coefficient £1. Factoring the characteristic polynomial as z f(z), we
see that A must divide the constant term of f(z), which is the linear term of
the characteristic polynomial, which is, by Corollary 1.3.2, equal to n (a tree
has exactly one spanning tree). Thus X must divide n.

Assume some coordinate of z is zero. We may assume it is z, = 0. We
then obtain the following block structure for L(T),

A4 0 --- 0 C
0 4 --- 0 C

L= : ], (5.1)
o o0 --- A; C

R R R R d

where d = d,, is the degree of vertex n, and the R’s [C’s] represent appro-
priately sized row [column] matrices whose only nonzero entry is a —1 in
the column [row] corresponding to the vertex in that block that is adjacent
to vertex n. Since z, = 0 and z is not identically zero, we see that the
restriction of z to one of the blocks must give an eigenvector of some A; (the
only reason it might not be an eigenvector would be because it is identically
zero. Thus A > 1 is an integer eigenvalue of, say, B;. If we consider the set
of vertices corresponding to the block B, we see that B; is equal to L{T1),
the Laplacian matrix that these vertices induce on 7', plus a single 1 added
to one of the diagonal elements (the vertex adjacent on T to vertex n). So
det B; = det L(T}) + det L,, where L, is the matrix obtained by deleting
the row and column corresponding to the vertex adjacent (in 7") to vertex
n from L(T}). Since det L, = 1 (Matrix-Tree Theorem) and det L(T1) = 0,
we have that det B; = 1. But again, the characteristic polynomial of B; is
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an integer polynomial with leading coefficient 1 and constant coefficient 1.
So the only possible nonnegative rational eigenvalue is +1, which A is not.
Thus no coordinate of z can be zero.

If mp(1) > 1, then we could construct (by linear combination) an eigen-
vector corresponding to 1 that had any desired coordinate equal to zero. [

This can be extended somewhat [20].

Theorem 5.1.6. Let G be a graph with n vertices and t spanning trees. If A
is a positive integral eigenvalue, then A | nt. If, furthermore, G is Laplacian
integral, then \* | nt, where k = mg(A)

Proof. As in the proof of Theorem 5.1.5, write the characteristic polynomial
as zf(z), and observe that Theorem 1.3.1 and Corollary 1.3.2 give that the
constant term of f(z) is f(0) = nt =[], . Again, we see that A must
divide f(0), so A | nt. Also, if all eigenvalues are integers, then AF is contained
in the product [, A;, and hence X* | nt. O

Certain types of pruning give us information about multiplicities of eigen-
values in terms of multiplicities of eigenvalues in subgraphs. As one example
[21],

Theorem 5.1.7. Let G be a graph and let Sy, = K, -1 be the star graph on
k vertices. Let G' be a graph obtained by joining, in any manner, G and Sy

with a single edge. Then mg(k) = mg (k).

In practice, this allows one to “prune off” copies of Si from a graph.
For instance, we see that mp,(k) = mp,(k), since Ps can be obtained by
joining P, and P; with a single edge. Note that this process of joining with
a single edge is not uniquely well-defined, in that there is another graph not
isomorphic to P; that can be obtained by joining P; and P> by a single edge.
We can give the following

Corollary 5.1.8. mp,(2) =1 if 2|n and 0 otherwise. mp,(3) =1 if 3|n and
0 otherwise.

A companion to Theorem 5.1.7 is [21]

Theorem 5.1.9. Let G be any graph, and P; be the path on three vertices.
Let G, be a graph obtained by joining any vertez G to a pendant vertez of P;
with a single edge. Then mg(1l) = ma/(1).
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Theorem 5.1.10. Let G' be a graph obtained by joining any vertex G to
the gquasipendant vertex of P; with a single edge. Then mg(l) < me (1) <
mg(1l) + 2, where all three possibilities for mg: (1) can occur.

The proofs given in [21] examine directly the kernels of the eigenspaces
of the two graphs. We will not prove either of these results yet, as they will
follow from Theorem 6.1.1 by considering the structure of the eigenvectors.

As an example, we note that Theorem 5.1.7 allows us to prune off copies
of P, from the first graph of Figure 5.1 to obtain Cy. Indeed, since the eigen-
values of Cy are 0, 2, 2, 4, we have that mg(2) = 2. Using both Theorem 5.1.7
and Theorem 5.1.9, we may prune off copies of P; from the first graph in
Figure 5.2 to obtain Cs. The eigenvalues of C¢ are 0,1, 1, 3, 3, 4, giving that
me(3) = 2 and mg(1) = 2.

5 D DU D B

Figure 5.1: pruning off P,’s to see mg(2) = me¢,(2)

malggca BN

Figure 5.2: pruning off P3’s to see mg(3) = mee(3) and mg(1) = me,s(1)

In considering Theorem 5.1.10, we note that, with the exception of G =
K, G’ = K, 3, we have

p(G) — q(G) < p(G) — ¢(G") < p(G) —¢(G) +1

so that Faria vectors alone cannot account for all three cases. Examples for
the three possibilities for Theorem 5.1.10 are shown in Figures 5.3-5.5, where
the open circles correspond to the P; that is to be pruned. Note that all

47



+1 [ -1 1 1] 1

I??R _Iz_‘ztf

Figure 5.4: pruning P; from G’ to give G = P5: mg(1)—mg(1)=2—-1=1

but one of the vectors shown is a Faria vector, and that this one is linearly
independent from the Faria vector.

To close this section, we will mention two more results that, while not
dealing directly with integral eigenvalues, seem to be connected [21]. For an
interval I, we write mg(I) for the total number of eigenvalues of G, counting
multiplicities, in I.

Proposition 5.1.11. Let G be a graph, with p(G) pendant vertices and q(G)
quasipendant vertices. Then q(G) < mg[0,1) and ¢(G) < mg(1, 00).

Furthermore, by Theorem 5.1.2, we may write ¢(G) < m¢[0,1) < n—p(G)
and ¢(G) < mg(1l,00) < n — p(G). Note that this last observation explains
why 1 tends to be a “middle” eigenvalue of trees (see Appendix A).

Proposition 5.1.12. Let T be a tree with diameter D. Then [D/2] <
mr(0,2) and [D/2] < mr(2,00)

5.2 Degree sequences

The degree sequence of a graph may be thought of simply as a sequence of
nonnegative integers. Of course, not every sequence of positive integers is in
fact the degree sequence of some graph. For instance, [3,0,0,0] and [1,1,1,1]
are both obviously not degree sequences. It is perhaps less obvious (without
drawing pictures) that [5, 4, 3, 3,2, 1] is, or that [5, 4,4, 2, 2, 1] is not. We will
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Figure 5.5: pruning P; from G’ to give G = P3: mg(1) —mg(1)=1—-1=0

adopt the convention that the degree sequence is arranged in nonincreasing
order. Certainly, we have as necessary conditions that the first element must
be less than the number of elements in the sequence, and that the sum of all
the elements must be even.

More precisely, let p = [p1, po, - - . , ps] be a sequence of nonnegative inte-
gers arranged in nonincreasing order, which we will refer to as a partition.
Define the transpose of a partition as p*, where p*; = [{j | p; = i}|. The
Ferrers diagram of p consists of rows (left-justified) of boxes, with p; boxes
in the #** row. Thus the Ferrers diagram of the transpose of a partition is the
(visual) transpose of the Ferrers diagram of the original partition. If p repre-
sents the degree sequence of a graph, then the number of boxes in the 7** row
of the Ferrers diagram is the degree of vertex ¢, while the number of boxes in
the it* row of the Ferrers diagram of the transpose is the number of vertices
with degree at least 7. The trace of a partition p is tr(p) = |[{i | p: > ¢}|; this
is the length of the “diagonal” of the Ferrers diagram for p (or p*). Figure 5.6
illustrates this for the partition p = {5,4,3,3,2,1}.

Figure 5.6: a Ferrers diagram for [5, 4, 3, 3, 2, 1] and its transpose [6, 5, 4, 2, 1],
(both) having trace 3

The following theorem from [50] determines whether or not a given par-
tition corresponds to an actual degree sequence.
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Theorem 5.2.1. The partition p = (py, pa, - - - , ps) Tepresents a (simple loop-
less) graph if and only if 35 p*; > S°F [(pi + 1) for 1 <k < tr(p).

Thus we see that p = {5,4,3,3,2,1} does indeed correspond to a graph;
it is shown in Figure 5.7. In fact, we see that for p, the inequalities in
Theorem 5.2.1 are in fact equalities. Any partition for which p;+1 = p*;,1 <
k < tr(p) is said to be a mazimal partition. The graph corresponding to this
partition is said to be a threshold graph. Note that (if we ignore isolated
vertices) for a threshold graph we always have A = n — 1, so threshold
graphs are always connected.

In general, the degree sequence does not determine a graph; this is easy
to see, even in the case of regular graphs, or trees. However, if we ignore
isolated vertices, threshold graphs are uniquely determined by their degree
sequence [50]. This is important in light of the following theorem of [35]

Theorem 5.2.2. Let G be a threshold graph with no isolated vertices. Then
the transpose of its degree sequence is equal to its (nonzero) Laplacian spec-
trum.

Thus threshold graphs are characterised by their Laplacian eigenvalues,
which are furthermore integers. We may also conclude that all threshold
graphs have A2 > 1. As an example, the star graphs K;,_; are threshold
graphs, and hence are Laplacian integral graphs that are characterised by
their spectra and furthermore have Ay(Ky p—1) = 1.

<=

Figure 5.7: (the) threshold graph with degree sequence [5, 4, 3, 3, 2, 1]

The inequalities of Theorem 5.2.1 are reminiscent of the technique of
magjorisation. More precisely, given two sequences a = [a;, a2, --- ,@n] and
b= [b1,b9,...,b,] then a majorises b if

k k
Zaizzbiforlskgn.

i=1 =1
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Define d(G) = [A = d;,ds,...,d, = 4] to be the degree sequence of the
graph, with the vertices ordered so that d(G) is nonincreasing. Note that
elsewhere in the present paper we were not assuming any special ordering of
the vertices. It follows from a result of Schur [32] that the spectrum majorises
the degree sequence, that is that

Theorem 5.2.3. 3 A1 i > 3% difor1<k<n.

This gives, among other things, that A, > A. By Theorem 1.3.9 we
already had that A, > A+A/(n—1), and in [20] it was shown that A, > A+1.
This can in fact be strengthened [18] (as was conjectured in [20]) to

Theorem 5.2.4. Let G be a (simple, loopless) connected graph on vertices
{1,2,...,n}, ordered so that A = dy > dy > --- > dn = 4. Let t; be
the number of components of the graph induced on the vertices {1,2,... ,k}.
Then Z:-c:l Ang1—i =t + Zle d; for 1<k <n.

We omit the proof of this result.

Write d(G)” for the transpose of the degree sequence d(G). We have that
d(G)" majorises d(G), and that the spectrum majorises d(G). Theorem 5.2.1
and Theorem 5.2.4 suggest that the second majorisation is at least as strong
as the first. It has been conjectured [20] that

Conjecture 5.2.5. d(G)" majorises the Laplacian spectrum for connected
graphs.

The first inequality (n = d*; > A,) is certainly true, but the others are
not established. This conjecture would give as a straightforward consequence
we would have the following, which we can in fact show that [20]

Proposition 5.2.6. d*;, the number of vertices of degree n — 1, is at most
A

Proof. Let k = d*,, the number of vertices of degree n — 1. If kK = n, then
G = K, and A\, = n. Otherwise, we see immediately that G° has at least
k + 1 components, the largest having no more than n — k vertices. Thus
An(G°) < n — k and Corallary 1.3.7 gives that M(G) > k. |

Recall that the > k + 1 components of G¢ give that the multiplicity of 0 as
an eigenvalue of G¢ is at least & + 1, and hence the multiplicity of n as an
eigenvalue of G is at least k.

In investigating this conjecture, Merris derives the following
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Theorem 5.2.7. Let G be a connected graph, and let u be a cut-verter of
G. If the largest component of G\{u} has r vertices, then Ap_; <7+ 1.

Corollary 5.2.8. Let G be a connected graph on n > 2 vertices. Suppose
that u is a quasipendant verter with k pendant neighbours. Then A,_; < n—k.

Corollary 5.2.9. Let G be a connected graph with integral Laplacian spec-
trum on n > 2 vertices, with p pendant vertices. Then in fact all p pendant
vertices are adjacent to the same quasipendant vertez and hence A,—., < n—p.

It is interesting to compare this result with Theorem 5.1.4, where p func-
tions as a bound on the multiplicity if an eigenvalue. Also, looking at the com-
plements of the graphs and making use of Corollary 1.3.7, we may rephrase
these as

Corollary 5.2.10. Let G be a connected graph on n > 2 vertices. Suppose
that there are k vertices of degree n — 2 that are adjacent to the same set of
neighbours (i.e. they are all not adjacent to the same vertez) Then A3 > k

Let G be a connected graph with integral Laplacian spectrum on n > 2
vertices, with p vertices of degree n—2. Then in fact they all are adjacent to
the same neighbours (i.e. they are all not adjacent to the same vertez) and
A3 =2 p

5.3 Cospectral graphs

It had once been conjectured that two graphs are isomorphic if and only if
they are adjacency-cospectral. This was strongly answered answered in the
negative by [51].

Theorem 5.3.1. Let t, be the number of nonisomorphic trees on n vertices.
Let T, be the number of trees T on n vertices for which there exists a tree T'
that is cospectral to T. Then limp—oo Tn/tn = 1.

In fact, even more can be said. Recall that the distance matriz of a
graph is the n x n matrix whose ijt* entry gives the length of a shortest path
between vertices i and j. We have the following result of [33],

Theorem 5.3.2. Let t, be the number of nonisomorphic trees on n vertices.
Let T, be the number of trees T' on n vertices for which there ezists a tree T'
such that simultaneously:
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1. T and T' are adjacency-cospectral
2. T and T’ are distance-cospectral

8. T and T’ are Laplacian-cospectral.
Then limy,_,00 Tr /tn = 1.

It is perhaps relevant to note that in the same paper, it is shown that
given any two trees 71 and T5, there is some matrix B that can be expressed
as some polynomial function of the matrices D and A, such that 77 and 75
are not B-cospectral.

Generalising the concept of the characteristic polynomial to the immanan-
tal polynomials, we can extend Theorem 5.3.2 to [4]

Theorem 5.3.3. Let t, be the number of nonisomorphic trees on n vertices.
Let T, be the number of trees T on n vertices for which there ezists a tree T’
such that simultaneously for every character x of Sp

1. dy(zI — A(T)) = dy(zI — A(T"))
2. dy(z — L(T)) = dy (eI — L(T"))
Then limg, o0 Tn /tn = 1.

We may conclude that trees that are uniquely determined by their Lapla-
cian spectrum (such as the star graph) are, in some sense, exceptional objects.

Thus it is not surprising to find large collections of cospectral graphs.
Merris [39] gives an explicit construction of such, which we reproduce here.

Theorem 5.3.4. Forinfinitely manyn, there exist a family of 2F g-connected,
nonisomorphic, Laplacian integral, Laplacian cospectral graphs on n vertices,
where k > n/(2log, n) and ¢ > n — logy n.

Merris [38] proves that there are exactly 2*~2 (nonisomorphic connected)
threshold graphs on n vertices. Thus we have an easy example of an infinite
family of graphs that are chacterised by their Laplacian spectra. This is also
useful in the following proof of cospectral graphs.

Proof. The proof is by construction. Let G be a threshold graph on n vertices
with degree sequence [A = n — 1 =d,ds,...,dy]. Thus the eigenvalues of
G are

[/\n = d]f =TL,/\n_1 =d2*,... ,/\2 =d. _1*,)\1 =O]
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Define the graph G to be the graph formed by adding a single pendant vertex
to a vertex of degree n — 1 of G (there may be more than one such vertex
in G). The new graph G may be seen to also be a threshold graph on n — 1
vertices. In particular, the eigenvalues of G are

[n+1, A1, An—2y - -+ , A2, 1,0].
Now if H is another (distinct) threshold graph on n vertices with eigenvalues
(tn =di" =n,pup1 =do", ..., 1o, 0],
then we see that the graphs G+H and G+ H have as their (common) spectra
M+ 1,1 A1, Ap—2, -+« y Aoy lin—1, Bn—2, - - - 5 2, 1,0,0].

Thus we have constructed a pair of Laplacian integral cospectral graphs.
Now consider the set of all nonisomorphic threshold graphs on & vertices,
{G.}. There are, as remarked above, 2°=2 such graphs. Let I be any set of

2k=3 distinct values chosen from {1,2,3,...,2%2}. Define the graph
K=o+ Yen
rel ré&l

The number of vertices of Kyis n = 283k + 2573(k +1) = 25732k + 1). We
see by induction that the eigenvalues of K; are independent of the particular
choice of I. Assuming k& > 3, the number of such choices is

ok—2 (2k-—3 + 1) . (2/:—3 + 2) . ,21:—2
(2k—3) - 1-2... 263

> 2(2*-3)

Furthermore, if n > 8, then

2logyn = 2(k — 3) + 2logy(2k + 1)
>2k+1
(52)

giving 2873 = n/(2k + 1) > n/(2log, n), and thus there are at least
2

2(2"—3) > 2n/(210g2 n)
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choices for I, each leading to a distinct graph Kj.

We note that these graphs are very disconnected. However, due to Corol-
lary 1.3.7, the set of graphs K;° are a set of connected Laplacian integral
nonisomorphic cospectral graphs. Furthermore, as the maximum eigenvalue
of Ky is k+1, we have that A\(K;®) =n—(k+1) > n—logyn, fork > 8. As
K° is not complete, Theorem 1.3.10 allows us to conclude that the vertex

connectivity is at least n — log, n.
O
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Chapter 6

Eigenvectors

6.1 Edge principle

Certain operations are more properly looked at in the context of the eigenvec-
tors associated with the eigenvalues. An important result (which can be used
to obtain Theorem 5.1.7 and Theorem 5.1.9)is the Edge Principle obtained
by Merris [41].

Theorem 6.1.1. Let G be a graph, and x an eigenvector with corresponding
eigenvalue \ such that z, = z, for some u # v. Let G’ be the graph obtained
by either removing or adding or the edge uv (depending on whether it is or
is not an edge of G). Then x is an eigenvector of G' with corresponding
eigenvalue A.

It should be emphasized that this theorem does not state that A (G) =
A2(G"). This is not the case, as can be seen by the following simple example
(Figure 6.1. Take two (disjoint) copies of any graph (say P3); call this graph
G. Add an edge between any two corresponding vertices; call this graph G'.
Clearly AQ(G) =0< )\Q(G’)

1 0 -1 1 Y -1
E::

¢ —o—@
1 0 -1 1 (] -1

Figure 6.1: \(G) =0 < X (G")
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The eigenvector illustrated in Figure 6.1 is an eigenvector of the graph P;
corresponding to A\p(P3) = 1. This is obviously an eigenvalue of G = P3+ Pj.
The result of the Edge Principle is that Ao(FP3) =1 is an eigenvalue of G’ as
well. In fact, we see as an easy consequence that the set of eigenvalues of Py,
contains the set of eigenvalues of P,. Note that Theorem 5.1.7 gives that 3
is an eigenvalue of G', and Theorem 5.1.9 also gives that 2 is an eigenvalue
of G'.

Proof. Proving the Edge Principle is a simple matter of checking the eigen-
value conditions at each vertex. For any vertex j # u, v, and noting that d;
is both the degree in G and in G’ of vertex j, we see that the condition

(d; — Nz Zx,
i~j

is identical for the two graphs. Consider the case where uv is not an edge of
G. Noting here d; for the degree in G of vertex j, the eigenvalue condition

for G is
(du — Az Z::I:t

i~rGUu

and that for G’ is

((dy +1) = Nz, = Z ;= Z T; + Ty

i~oru i~cu

which are easily seen to be equivalent as z, = z,. The conditions for v are
the same (by symmetry). O

We have the following obvious corollaries:

Corollary 6.1.2. Let G be a given graph. Let H be the graph formed by
joining two copies of G with a single edge between corresponding vertices.

If X\ is an eigenvalue of G with multiplicity k, then A is an eigenvalue of
H with multiplicity at least k. Furthermore, any eigenvector z of G may be
extended to an eigenvector of H by taking two copies of x.

Corollary 6.1.3. Let G be a given graph. Let H be the Cartesian product
of two copies of G.

If X is an eigenvalue of G with multiplicity k, then X is an eigenvalue of
H with multiplicity ot least k. Furthermore,any eigenvector z of G may be
ertended to an eigenvector of H by taking two copies of x.
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We also have

Corollary 6.1.4. Let A be an eigenvalue of G with eigenvector x such z; =
0. Let G’ be the graph formed by joining some arbitrary graph H to vertez j
of G with a single edge.

Then A is an eigenvalue of G' with eigenvector =’ such that x| = x; for
1 € V(G) and z; = 0 otherwise.

To see this result, we need merely observe that, for the purposes of The-
orem 6.1.1 the all-zero vector behaves like an eigenvector of H for any eigen-
value. Furthermore, if there are k& linearly independent eigenvectors for an
eigenvalue A, then there are at least £ — 1 linearly independent eigenvectors
for this same eigenvalue such that they are all zero for any arbitrarily chosen
(but fixed) vertex of the graph. So we have

Corollary 6.1.5. Let A be an eigenvalue of G of multiplicity k. Let G’ be
the graph formed by joining some arbitrary graph H to some vertez of G.

Then X\ is an eigenuvalue of G’ of multiplicity at least k — 1; the corre-
sponding eigenvectors can be chosen so as to be eigenvectors of A on G, and
zero on H.

In fact, we may even prove Theorem 5.1.7 and Theorem 5.1.9 using the
Edge Principle. This is essentially the same as the argument given originally
in [21].

Proof. Note first that k is a simple eigenvalue (actually, the largest eigen-
value) of Si. If we list the pendant vertices first and the central vertex last,
then a corresponding eigenvector is (1,1,...,1,—k + 1). Thus given any
nonzero constant ¢ and any fixed vertex j of Sk, there is a unique eigenvector
of Sy corresponding to k that takes on the value c at j.

Let G be any graph on n vertices, and let G’ be a graph on n + & vertices
formed by joining a vertex of G with a vertex of Si, the star graph on &
vertices. Order the vertices such that G is listed first, then Sk, and such that
the added edge connects the n* and (n + 1)* vertices. Consider a basis of
eigenvectors {z(W),z®, ... 2@} for G corresponding to k. We may define

extensions of these to G', {yV,3?,... 3y} by the following. If P = o,
then ¥® = 0 on S. If 220 = ¢ # 0, then define y@ on S; by ¥, = ¢ and
such that the extension is the unique eigenvector (of Si) with y,(g_l =c. By
the edge principle, this is an eigenvector of G'. It may easily be seen that

the y(’s are linearly independent.
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Conversely, let {y®,y®,... y®} be a basis of eigenvectors for G’ cor-
responding to k. List the vertices of G’ as before. Then it may be seen by
multiplying ) with the rows {n + 1,7+ 2,... ,n + k} of L(G') that the
last k coordinates of ¥ either form an eigenvector of Sy, or else are all zero.
In either case, by considering the n** row of L(G'), we see that y,(fll = 3.
Note that if ¥ is identically zero on Si, then it cannot be identically zero on
G. Thus by the edge principle, removing the edge between Si and G results
in a graph for which ¢ is still an eigenvalue corresponding to &, and thus
its restriction to G is also an eigenvalue corresponding to k. The restrictions

of the y{’s will all be linearly independent. a

Theorem 5.1.9 may be proved using similar techniques. In fact, we may
generalise this in the following

Corollary 6.1.6. Let H be any graph with a simple eigenvalue A. Let u be
a verter of H such that an eigenvector x corresponding to A is nonzero on u.
Let G be any graph, and let G' be the graph formed by joining an arbitrary
vertex of G to u. Then the multiplicity of A as an eigenvalue of G is equal
to the multiplicity of A as an eigenvalue of G'.

The proof follows the same lines as the argument just given.
Theorem 5.1.9 may be proved in a similar way

Proof. Let v be the quasipendant vertex of P», and let u be the vertex of G’
that is adjacent (in G') to u. If there are k linearly independent eigenvectors
of G corresponding to 1, then we may assume that £ — 1 of them are 0 on u.
The vector z that takes on the values 1 on the two pendant vertices and 0
at v is an eigenvector of P; corresponding to 1. Thus, by the edge principle,
we obtain k — 1 linearly independent eigenvectors of G’ corresponding to 1.
Extending z to be 0 on G gives one more.

For the other inequality, assume we have k+2 linearly independent eigen-
vectors of G’ corresponding to 1. They must all be 0 at vertex v, as v is a
quasipendant vertex of G'. We may assume that one of these, is the extension
of z that is 0 on G. Using this vector, we may assumer that the remaining
k + 1 vectors are 0 on P;. Furthermore, of the remaining k + 1 vectors, we
may assume that k& of these are 0 on vertex u. Thus we have k eigenvectors
of G’ corresponding to 1 that are all 0 on vertices v and P;. Thus the re-
strictions of these vectors to G give k linearly independent eigenvectors of G
corresponding to 1. O
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6.2 Further principles

In a similar vein, Merris gives the following result, which he refers to as the
Principle of Reduction and Extension [41].

Theorem 6.2.1. Let G be a graph and X be a non-empty subset of vertices
of G. Define the graph G{X} to have vertex set X U {i € V(G) | i ~ X},
and edge set {ij € E(G)|i € X orj € X}. Suppose z is an eigenvector of
G{X} corresponding to A such that x is nonzero only on X. Then T eztends
to an eigenvector of G (the ertension being zero) corresponding to A.

Proof. G{X} can be thought of as the graph induced on X with the addition
of its boundary: V(G{X}) = X UéX and E(G{X}) = E(X)UOX. The
proof is a simple consequence of the Edge Principle. We may further remark
that the multiplicity of A\ as an eigenvalue of G is at least as great as the
multiplicity of A as an eigenvalue of G{X}. a

A further technique is the Alternating Principle

Theorem 6.2.2. Let G be a graph, and let x be an eigenvector corresponding
to A. Let X be the set of vertices on which T is nonzero. Suppose the vertices
of X can be paired up in such a way that if i,j are two paired vertices then
z; = —z;. Suppose further that all paired vertices are adjacent [not adjacent].
Let G' be the graph obtained by deleting [adding] the edges between paired
vertices. Then x is an eigenvector of G' corresponding to A — 2 [A+ 2].

Proof. The eigenvalue condition is the same in G and G’ for vertices not in
X. If u € X, then it is paired with a vertex v € X. Writing d; for the degree
in G of vertex 7, the eigenvalue condition in G is

(du—Nzu= >z

i~Gu

and the eigenvalue condition in G' is

(£ - A £2))zu= Y zi= > zi £,y

i~gr i~Gu

which are easily seen to be equivalent. O
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Given a graph G and some subset X of its vertices, we may define a
contraction to be a graph G’ with vertex-set (V(G)\X) U {u¢} and edge-set
E(G\X)U {iu | i ~ v forsomev € X}. We identify the set X with a
new vertex u, which is joined to exactly those vertices in V(G)\X that the
vertices of the set X were.

Theorem 6.2.3. Let x be an eigenvector of G corresponding to A, with two
vertices a and b such that they have no common neighbours and ; = x; = 0.
Define the graph G' to have verter set (V(G)\{a,b}) U {u}, and edge set
E(G\{a,b})U{iu | i ~ a ori ~ b}. Define the vector =’ to be the vector
obtained by deleting the i** (or j**) coordinate of z. Then z' is an eigenvector
of G' corresponding to A.

Proof. Proving this is a simple matter of checking the eigenvalue comdition at
each vertex. It should be noted that if we consider the weighted L.aplacian,
then we may remove the condition that contracted vertices have no common
neighbours by defining the weight of edges iu (where u is the new v-ertex) to
be the sum of the weights over all edges iz, with z € X. a

6.3 Constructions

These principles may be used to generate eigenvectors (and hence eigenval-
ues) for certain graph constructions. Using these principles, as well as Theo-
rem 1.4.5, Merris determines a pair of non-isomorphic cospectral graphs G;
and Ga. We give his construction here (slightly modified) as an example of

the application of these principles.
Let Hy = Ho = K, 3 = K»°V K3° Then by Theorem 1.4.5, we have that

the spectrum of H; is {0, 2,2, 3, 5}. Eigenvectors illustrating these eigenval-
ues are shown in Figure 6.2.

0 2 -1 -1
-1 -3 (¢] 0

0 2 +1 a
+1 -3 (V] 0

0 2 0 +1

Figure 6.2: A0 =3,5,2,2
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Consider the graph H shown in Figure 6.3, obtained by adding three
edges to H, + H,. Using the Principle of Reduction and Extension, the first
eigenvector of Figure 6.2 gives two linearly independent eigenvectors of H
corresponding to 3. Using the edge principle, the remaining eigenvectors of
Figure 6.2 give eigenvectors corresponding to 5, 2, and 2. Using the Alter-
nating Principle, the last two also give two linearly independent eigenvectors
corresponding to 4. By observing that H may be written as Cyg with the addi-
tion of five edges, as shown in Figure 6.4 (the eigenvector shown corresponds
to the eigenvalue 4 of Cjg), the Alternating Principle gives the eigenvalue 6
for H as well. As usual, \;{H) = 0, and the remaining eigenvalue may be
determined (by counting spanning trees or otherwise) to be 1.

Thus

spectrum(H) = {6,5,4,4,3,3,2,2,1,0}

We note that H is one of exactly 13 cubic, connected, graphs with integral
(Laplacian) spectra [5].

Figure 6.3: The graph H

Figure 6.4: Adding five edges to Cyg would give H

We already have that the spectrum of Ky 3 is {5,3,2,2,0}. Using The-
orem 1.4.4 and Corollary 1.3.7, one can easily determine the spectrum of
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G1 = Ky 3+ (Ks3+ K1 )¢ to be the same as that of Go = H 4+ K. Comparing
the degree sequences, we have
degree(G,) = 5, 3°,2°
degree(G,) = 39, 0.
Furthermore, G, is decomposable but not bipartite, while G, is bipartite

but not decomposable. As A, < n, the complements of these graphs are
connected and cospectral.
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Chapter 7
Trees

7.1 Characteristic vertices

We note firstly a straightforward though useful:

Theorem 7.1.1. Ao(T") < 1 for any tree T with equality if and only if T =
K pn-1, the star on n vertices.

The inequality is a simple consequence of Theorem 1.3.10. The equality
is obtained in [34]. It is not surprising that A,(T') should be maximal (over
trees) when T = S,,, as the star is the best-connected tree. It is also easy
to see that the same inequality applies to the isoperimetric constant, i.e.
h(T) < 1 for any tree T with equality only when T = Kj;,;. It is a
recurrent theme: the second-smallest eigenvalue of L mimics the behaviour
of the isoperimetric constant. Consider the set of eigenvectors corresponding
to A2. It may happen that for some eigenvector z and some vertex j that
z; = 0. If the multiplicity of Ao is greater than one, this is guaranteed to
happen. Depending on which eigenvector z we pick, this may (or may not)
be true for any given vertex. The following result of Fiedler strengthens this
somewhat [14].

Theorem 7.1.2. Let T be a tree such that X\(T) is a multiple eigenvalue.
then for any eigenvector x of T' corresponding to Ao, there is a vertex j such
that z; = 0.

We will denote by £(G) be the set of eigenvectors of L(G) corresponding
to A2(G). These are commonly referred to as “Fiedler vectors™ (or “char-
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acteristic valuations” in some papers). The following theorem describes the
structural possibilities of the elements of £(G) [15].

Theorem 7.1.3. Let T be a tree, and z an eigenvector corresponding to A,.
There are two possibilities for x.

Case 1: If z; # 0 for all vertices j, then there ezists a unique edge {u,v}
such that z, > 0 and z, < 0. The values of x along any path originating at
u and not including v are increasing, while the values of = along any path
originating at v and not including v are decreasing.

Case 2: If Z={j € V(T) | z; = 0} # 0, then the graph induced on T
by Z is connected, and there erists a unique vertex w € Z such that w is
adjacent to a verter not in Z. The values of z along any path starting at w
are either strictly increasing, strictly decreasing, or identically zero.

We will refer to the vertices u,v (or w) in Theorem 7.1.3 as the charac-
teristic vertices of the tree. The [characteristic vertices] is justified by the
following theorem of Merris, which establishes that they are in fact inde-
pendent of the choice of eigenvector z and hence an invariant of the tree
[34].

Theorem 7.1.4. Let T be a tree, and x,y be eigenvectors corresponding to
Ao. Then j is a characteristic verter of T with respect to = if and only if j
is a characteristic vertez of T with respect to y.

Proof. To prove this, we first note that if Ay is a simple eigenvalue, then z
and y are multiples of each other and the result is obvious.

Define the sets Xy = {j € V(T) | f; = 0} and X = (\seery Xr- If
X were empty, then there would be a vector f € &£(T') that is never zero,
contradicting Theorem 7.1.2. So X is non-empty. As T is connected, there
is (at least) one vertex in X that is connected to a vertex not in X. If there
were two distinct vertices {w;,ws} in X and two (not necessarily distinct)
vertices {vy, v2} not in X such that w; ~ v; and wy ~ vy, then there would
be a vector f € £(T) such that f,, f,, # 0, contradicting Theorem 7.1.3. It
remains to show that w is a characteristic vertex for any g € &(7T); clearly
there can be no other characteristic vertex.

Let g € £(T) have a characteristic vertex j, with j # w. By Theorem 7.1.3
there exists a vertex 7 such that ¢ ~ j and g; # 0. Since w is the unique
vertex of X connected to a vertex not in X, it follows that j ¢ X. Thus
there exists h € £(T') such that h; # 0. Since 0 = g, = g; # i, the (unique)
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path from w to Z passes through j; it follows (by Theorem 7.1.3) that h; is
nonzero as well. Comparing g and h, we can take a linear combination of
them (and hence an element of £&(7")) which will be zero on ¢ but nonzero on
j, again contradicting Theorem 7.1.3. Thus j = w, the unique characteristic
vertex of T'. ]

Define F(G) to be the set of characteristic vertices of G. If there is one
characteristic vertex, then we will say T is a type I tree, and if there are
two characteristic vertices, then we will say that T is a type 2 tree. These
definitions correspond of course to the two cases in Theorem 7.1.3 (though
not in that order). Note as a corollary of this that if T is of type 2, then
s is a simple eigenvalue; the converse does not hold. Thus the eigenspace
corresponding to A, is less interesting for type 2 trees, and we will concentrate
principally on type 1 trees.

It should be noted that F(G) need not coincide with either the centre or
the centroid of a graph, despite the apparent similarities.

Given a vertex j, define R(j) to be the length of the longest path starting
at j. Then j is a centre point if

E(j) = min R(i)

A branch rooted at j is a maximal connected subtree containing exactly
one edge incident with j. Define W(j) to be the maximum number of edges
in any branch rooted at j. A vertex j is a centroid point if

W (i) = min W(i)

The set F' shares some characteristics with both the centre and the cen-
troid. All of these are either a single vertex or a pair of adjacent vertices.
However, F need not coincide with the centre or the centroid of a graph.
In Figure 7.1 the centre is at u, the centroid is at v, and the characteristic
vertices are marked F'.

7.2 Trees with a single characteristic vertex

Let us consider type 1 trees. These include (but are not limited to) all trees
where ), is a multiple eigenvalue. Motivated by the fact that the (unique)
characteristic vertex is a graph invariant, we may speak of the branches of
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Figure 7.1: characteristic vertices

the tree (at the characteristic vertex). As a consequence of Theorem 7.14,
we may describe the branches as passive if every = € £(T) is identically zero
on that branch, or active if some z € &(T) is not identically zero on that
branch. Note that a given eigenvector z may be partly or completely zero
on an active branch. Since z € &(T) is of constant sign on each branch,
and is orthogonal to the all-ones vector, there must be (at least) two active
branches: one positive and one negative.

For the adjacency matrix, there is a simple and obvious relationship be-
tween subgraphs and submatrices: by deleting some set of rows and the same
set of columns, we obtain the adjacency matrix of the subgraph obtained by
deleting that same set of vertices. This is not true for Laplacian matrices,
unless the deleted vertices all have degree zero. However, if we consider the
rooted branches of a tree, we almost have the same relationship. More pre-
cisely, let T be a tree, and consider a branch B at v (we do not for the
moment assume anything special about v). There is exactly one vertex in B
that is adjacent (in T') to v; call this vertex the root of B and denote it 7(B).
The vertex r(B) is uniquely determined by v. Note that we do not include
the vertex v in B. Define the matrix

- _ (L(B)),J-i-l leZjZT(B)
(L(B))is = {(L(B)),—j otherwise

This is almost the same as L(B). In fact, the determinant of L(B) is ex-
actly the sum of the determinant of L(B) and the determinant of the matrix
obtained by deleting the row and column corresponding to r(B) from L(B).
The determinant of L(B) is zero, as it is a Laplacian matrix, and the deter-
minant of the deleted matrix is exactly the number of spanning trees of B.
We have proved [19]

Lemma 7.2.1. det(L(B)) =1
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Consider a type 1 tree. Label its characteristic vertex w, and let d = d,,
be the degree of w. If we now consider the set of all branches of T at w,
{Bi, By, ... ,Bg}, then we see that w is adjacent to (exactly) the vertices
{r(B1),7(B3),...,r(Bs)}. We may order the vertices of T' such that the
vertices of B; are listed first (with r(B;) last among these), followed by the
vertices of B, (with r(B;) last among these), and so on, with w listed last of
all. This gives the following block structure

L(B;) 0 0 C
0 LB --- 0 C
LTy =1 : : (7.1)
0 0 --- LBy C
R R R R d

where the R’s [C’s] represent appropriately sized row [column] matrices whose
only nonzero entry is a —1 in their last column [row].

This form allows us to deduce results on the multiplicity of As, as well
as possibilities for the sets of active and passive branches, and hence the
automorphism group of the tree.

7.3 Multiplicity

In this section we will deal with type 1 trees. We will always consider branches
to be rooted at r(B), the vertex of the branch adjacent to the characteristic
vertex. We will label the characteristic vertex w and denote its multiplic-
ity (and hence the number of branches at w) by d, and order the vertices
according to form (7.1).

The following theorem [19] describes the relationship between A, and
active branches.

Theorem 7.3.1. A branch B is active if and only if A2(T) is an eigenvalue
of L(B). Furthermore, if Ao(T) is an eigenvalue of L(B) then it is the small-
est eigenvalue of L(B) and it is simple.

Proof. Let the active branches (at w) be {B, B,, ..., Br} and the passive
branches be {By.1, Brys, - - - , Ba}, so that the active branches are listed first
in form 7.1. By Theorem 7.1.3, there exist eigenvectors f1, f .. f&)
corresponding to A such that f® takes on the value 1 at r(B;) and all other
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coordinates of f(*) are greater than 1. Thus there is an eigenvector f that
is non-zero on every active branch. Following the ordering of the vertices
induced by 7.1, we may write f as

f= (I(l)’ 2:(2), o x(k), 0(k+1)’ O(k-*-‘l), e, g(d)’ 0)

where each z(#} corresponds to an active branch, each 0% corresponds to a
passive branch, and the final 0 corresponds to w. Block multiplication gives
that each z( is an eigenvector of L(B;) corresponding to Ao(T). By dividing
each (¥ by their last coordinate (i.e., the coordinate corresponding to 7(B;)),
we obtain rescaled eigenvectors y(*) that take on the value 1 at 7(B;) and are
strictly greater than 1 on the rest of 7(B;). More importantly, the vectors y®
are entrywise positive eigenvectors of the matrices L(B;). These matrices are
irreducible (Theorem 1.3.5) positive definite M-matrices (see, e.g., [44]), and
so letting A; be the inverse of L(B;), we see that A; is entrywise nonnegative.
Thus we have A;y® = A;'y® and A7' is the (simple) maximal eigenvalue of
A;. Therefore )\, is the (simple) minimal eigenvalue of L(B;).

Suppose now that ), is an eigenvalue of f)(B,—) for some 7 > k, i.e., for a
passive branch. Let z(¥) be a corresponding eigenvector. If the last coordinate
of z(9 is zero, then the vector

(0, 0@ . gG-D 6 g+ oW o

is an eigenvector of L corresponding to Ay which is nonzero on a passive
branch, and thus a contradiction. If the last coordinate of z® is nonzero,
then we may (by rescaling) assume that it is —1. Define z(1) to be the vector
whose only nonzero coordinate is a —1 in the last position. Then the vector

(0(1), 0(2)’ e 0G-b, z(i), U+l ., 0@, 0)

is an eigenvector of L corresponding to As which is nonzero on a passive
branch, and thus also a contradiction. |

As a corollary we have [19]

Corollary 7.3.2. Let L., be the matriz obtained by deleting the last row and
column of L (i.e., the row and column corresponding to w). Then the number
of active branches of T is equal to the multiplicity of Ao as an eigenvalue of
L.

69



Proof. This is a simple consequence of the structure of L,,: it is the direct
sum of the matrices f)(B,-), 1 < i < d. Since X, is a simple eigenvalue of L(B)
if B is active, and not an eigenvalue of L(B) if B is passive, the result is
immediate. O

We also have a direct relationship between the number of active branches
and the multiplicity of X, as an eigenvalue of L(T) [19].

Theorem 7.3.3. Letm be the multiplicity of A» as an eigenvalue of L. Then
there are exactly m + 1 active branches.

Proof. Let the vectors f,z(#, 4@ be as in the proof of Theorem 7.3.1. It can
then be seen that the set of vectors {f;},2 < ¢ < k, where

fi= (—y®,00, .. 061 40 o@D @ )

forms a set of linearly independent eigenvectors of L corresponding to As.
Now suppose that we have g € £(T"). By Theorem 7.1.3, we may write g
as

(g(l)’ g(2)'l R | g(k)7 O(k+l)7 O(k+2)7 AR O(d)7 0)'

Block multiplication with (7.1) gives that each (nonzero) g is an eigenvector
of L(B;) corresponding to the (simple) eigenvalue As. Thus g = ¢;@ for
some constants ¢;. In fact, the c; are exactly the last coordinate of the g@.
Multiplying g by the last row in (7.1), we see that the sum of the ¢; is zero,
and hence that

k
g= Z cifi-
=2
Thus {fi, fo,--- , fx} forms a basis for £(T"), which gives the result. O

Note that we have as an obvious corollary that there are always at least
two active branches, which was already deduced by more direct observations.
More importantly, Theorem 7.3.1 and Corollary 7.3.2 allow us to deduce

Corollary 7.3.4. The multiplicity of A2 as an eigenvalue of L., is one more
than the multiplicity of Ay as an eigenvalue of L.

As a corollary, we have [19]
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Corollary 7.3.5. A, is the smallest eigenvalue of L,,. Equivalently, if B is
a passive branch, then the smallest eigenvalue of L(B) is greater than A,.

Proof. Writing m for the multiplicity of A2 as an eigenvalue of L(T"), we have
the following eigenvalues for L(T'):

M<A=A3=--=Apt1 < Apt2 < --- < A
If we let the eigenvalues of L, be
o S a - L op
then the Cauchy interlacing inequalities give that
o LA Lo < Lo < Ant1mir-

Since Apy1 = Ao, this gives as = a3 = -+ - = @n. Corollary 7.3.4 then gives
that @y = @my; = Mg, and thus the smallest eigenvalue of L,, is Ap. The
word “Equivalently” is justified by Theorem 7.3.1. This gives the result. [J

7.4 Structural operations on trees

We may use the characteristic vertex to determine the effects of certain prun-
ing and grafting of vertices. The following theorem of Merris [34] allows us
to remove vertices without changing properties related to As.

Theorem 7.4.1. Let z € £(T) be an eigenvector corresponding to As. Sup-
pose there is a pendant vertex v such that z, = 0. Let u be the vertexr
adjacent to v. Define T, to be the tree obtained by deleting vertex v and the
edge uv from T. Define y to be the restriction of x to T,,. Then z, = (,
Xa(Ty) = Xo(T), y € E(T), and F(T) = F(T,)

Note that in order to have an eigenvector z € £(T) and a pendant vertex
7 such that z; = 0, the tree must be of type 1. Theorem 7.1.3 guarantees
one positive and one negative branch. The vertex j then makes a minimum

of four vertices.

Proof. The first result is true by Lemma 5.1.1.
Order the vertices of T so that v is last and u is second last. Define L,
to be the matrix obtained by removing the last row and column from L, and
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L, to be the matrix obtained by removing the last row and column from L,,
giving the forms:

Qin—1
L= - 0 and L, = Lu 32,1
-1
0 0 _1 1 aﬂ-—l,l an_112 ot an—]."n"‘l

Since z, = 0 we see that y is an eigenvector of L, corresponding to Ax(7T),
and furthermore since z, = =, = 0, that L,y = L(T,)y and hence Ay(T) is
an eigenvalue both of L, and L(T,). Denote the eigenvalues by

eigenvalues of L(T) D= <A< ---< A\,
eigenvalues of L(Ty) 0=t <po S pg<-v- < iy
eigenvalues of L, O<op<a<la3<---<o,
eigenvalues of L, 0<Bi <Ba<pB3<---<Pn

Since L, is a principal submatrix of L(T), and L, is a principal submatrix
of both L, and L(T,), the interlacing inequalities give

O=X < <fi<u and AL ar<fBe<pg (7.2)
Now A, is a (nonzero) eigenvalue of L(T}), so if Ay 7# u» then (7.2) gives that
O=M<a<fism<l=a=0Fph=p <1,

with the final inequality a consequence of Theorem 7.1.1.
Denote the characteristic polynomials by
q(z) = det(zI — L(T))
r(z) = det(zI — L(T,))
a(z) = det(zI — L,)
b(z) = det(zI — L,,).
These polynomials are not independent. We have from the structure of the
matrices that

g(z) = (z — 1)a(z) — b(z) and a(z)=r(z)—b(z), (7.3)
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giving that
¢(z) = (z — 1)r(z) — zb(z) (7-4)

By examining signs, we will show that it is impossible to have u; < A;. We
may first note that (7.3) gives that any common root of a(z) and b(z) is also
a root of ¢(z), and (7.4) gives that any common root of r(z) and b(z) is also
a root of g(x). Thus we may sharpen (7.4) to

O=M<uu<Bi<p<lo=a=F=p=<1

The polynomial ¢(z) is of degree n, the polynomial r(z) is of degree n — 1,

and the polynomial b(z) is of degree n — 2. The leading coefficients are all

+1. So we may use (7.4) to construct sign diagrams for these polynomials.
If n is even we have:

(01 ;31) (1811 ,Ug) (/‘L21 AQ)
g(z) | - - =
r(z)| + + -
b(zx) + — -

If n is odd all signs are reversed.

Observing that z — 1 is negative on (0,);), we see that (7.4) gives a
contradiction on the interval (us, A2). Thus we may confidently assert that
this interval does not exist, and us = Aa.

We may determine the characteristic vertex of T using z and Theo-
rem 7.1.3; we may determine the characteristic vertex of 7T, using y and The-
orem 7.1.3. As vertex v cannot be the characteristic vertex (Lemma 5.1.1),
the two characteristic vertices are necessarily the same. |

We have as a corollary that passive branches may be removed without
changing A;. Indeed, by removing passive branches, we conserve £(T'), except
of course that the excess coordinates (which are all zero) are removed. Note
however that this theorem does not only apply to passive branches.

As an example, the three graphs in Figure 7.2 show the result of suc-
cessively removing two pendant vertices, together with an eigenvector corre-
sponding to As = (3 —/5)/2 in each case.

Though we can arbitrarily remove passive branches, we cannot always
add to them. Merris presents a partial converse to Theorem 7.4.1 [34].
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Figure 7.2: pruning vertices

Theorem 7.4.2. Let T be a type 1 tree. Let z € £(T) and u € V(T) such
that z,, = 0. Let T' be the tree obtained by adding a new pendant vertex v
adjacent to u, and let ' be the extension of x to T’ by defining z;, = 0. Then
z' is an eigenvector of T' with eigenvalue \o(T'). Furthermore, if \o(T) =
Ao(T"), then =’ € E(T") and F(T) = F(T").

Proof. Since z,, = 0, we see directly that L(T")x' = X(T)z'. If M(T) =
A2(T"), then by definition we have z’ € £(T"). In this case, the characteristic
vertices must coincide for the same reasons given at the end of the proof of
Theorem 7.4.1. We note parenthetically that since A\o(7") > 0 and Xo(7") > 0,
we must always have A (T) > Ao(T"). O

This is illustrated in Figure 7.3, where we show the result of grafting a
pendant vertex onto the first tree of Figure 7.2. Two eigenvectors are shown:
the eigenvector of Theorem 7.4.2, and the eigenvector corresponding to A, of
the new tree.

a Q Q —-0.61 -—-14 -—1.84

. 4 I @ *—— —8- -@
1

o*— -@
1+vV5 2 (] 2 14V5 1 0.76 0.33 0.76

Figure 7.3: adding a new passive vertex; A\; = (3 — v/5)/2 and X, & 0.2434

However, we can always add pendant vertices to the characteristic vertex,
as demonstrated by the following result from [19]:
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Theorem 7.4.3. Let T be a type 1 tree with characteristic vertez w. Let z €
E(T). Let T' be the tree obtained by adding a new pendant verter v adjacent
to w, and let =’ be the extension of z to T’ by defining z, = 0. Then 7’ is
an eigenvector of T' with eigenvalue Ao(T). Furthermore, Ao(T) = Aao(T"),
' € E(T), and F(T) = F(T").

Proof. By Theorem 7.4.2, we need merely show that Aa(T") > Ao(T).

Let L,, be the matrix obtained from L(T') by deleting the row and column
corresponding to w; Let L/, be the matrix obtained from L(7”) by deleting
the row and column corresponding to w. Thus we have the forms

_ (L, C n_ Ly C + _(Lw O
where the R’s [C’s] represent appropriately sized row [column| matrices whose
only nonzero entries indicate the vertices of 7" adjacent to w. Obviously the
eigenvalues of L, are precisely the eigenvalues of L,, with the extra eigenvalue
1. Corollary 7.3.5 gives that the smallest eigenvalue of L., is A»(T"), which is
thus also the smallest eigenvalue of L,. As L] is a principal submatrix of
L(T"), the interlacing inequalities give that this can be no larger than Ao (77),
i.e., that A(T) < Ao (TV). O

Hence without further ado, the graph shown in Figure 7.4 has Ay =

(3 —Vv5)/2.

0« 0 0 a 0
® @ i — L
1+v5 2 0 2 1+V35

Figure 7.4: adding pendant vertices to the char. vertex; As = (3 — /5)/2

Furthermore, we have

Corollary 7.4.4. Let T # S, be a type 1 tree with characteristic vertez w,
with a pendant verter p adjacent to w. Then z, =0 for all ' € E(T).

Proof. Let B be the branch of T' containing only p. Then L(B) is the 1 x 1
matrix (1), with the single eigenvalue 1. Since T # S,, A2(T") < 1 and thus
A2(T) is not an eigenvalue of L(B). By Theorem 7.3.1, B is a passive branch,
and hence z, = 0 for all z’ € £(T"). O
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Thus we may add pendant vertices to the characteristic vertex without
changing Ag; the eigenvectors corresponding to A, will extend to zero on the
newly added pendant vertices. Furthermore, (with the exception of T = Sy,)
any pendant vertices adjacent to the characteristic vertex got there by virtue
of Theorem 7.4.3. This gives a complete “explanation” of pendant vertices
adjacent to the characteristic vertex.

In fact, given any two type 1 trees 77 and 75, we can form a new type
1 tree T by identifying the two characteristic vertices of 7} and T5. It can
readily be seen that the result will be a type 1 tree with the characteristic
vertex being the amalgamated characteristic vertices of the two original trees.
Furthermore, if we take an eigenvector of 77, and extend it to an eigenvector
of T by defining it to be 0 on 75, we obtain an eigenvector of . We can do
the same for eigenvectors of T5. Thus Ao(T) < min{A2(71), A2(T2)}. We can
do better. If we take a set of (non-zero) linearly independant eigenvectors
for 77 and 75, and extend them in the above manner to eigenvectors of
T, then the extensions are all linearly independant as well. So not only
is Ao(T) = min{Aa(T1), A2(T2)}, but in fact the non-zero spectrum of T is
simply the collection of all non-zero eigenvalues of 77 and T5.

7.5 Structure of the automorphism group

Recall that an automorphism is a bijective mapping ¢ : V(G) — V(G)
such that 7 is an edge if and only if ¢(i)@(j) is an edge. Of course, the
automorphisms form a (permutation) group under composition. We will
refer to this group as I'(G).

We had previously mentioned the Faria vectors of a graph. These are
eigenvectors (corresponding to 1) all of whose only non-zero entries are a
+1 and a —1 respectively, on two pendant vertices which are adjacent to a
common vertex. There are (Theorem 5.1.2) p(G) — ¢(G) of these vectors,
and they are linearly independent. We will refer to the space that they span
as the Faria space. It may be that there are eigenvectors corresponding to 1
that are not in the Faria space, as Theorem 5.1.2 is not necessarily sharp.

It will be useful to consider the orbits of the automorphism group. These
are a partition of the vertex set of the graph into maximal sets such that
given any two vertices 7 and j in the same part of the partition, there exists
an automorphism mapping i to j. We will abuse the language by speaking of
“applying an automorphism to an eigenvector”, and write ¢(z); by this we
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mean permuting the values of the coordinates of the eigenvector according
to the permutation corresponding to the automorphism.

It may happen that an eigenvector is constant on all the orbits. Thus,
by applying automorphisms to this eigenvector, we do not obtain any new
eigenvectors. Note that even if an eigenvector is not constant, applying
a permutation does yield a “new” eigenvector, but it may not necessarily
produce a linearly independent one. As a trivial example, consider the graph
P; shown in Figure 7.5. There is only one non-trivial automorphism. Two
of the eigenvectors are constant on the orbits, one is not, though they are all
simple.

Figure 7.5: eigenvectors for P; corresponding to A\; =0,A2 =1, A3 =3

We will define the symmetric spectrum of a graph as that part of the
spectrum with corresponding eigenvectors that are constant on the orbits,
and the alternating part of the spectrum as that part of the spectrum with
corresponding eigenvectors that are not constant on the orbits, both counted
according to the number of linearly independent eigenvectors. Note that a
(multiple) eigenvalue may belong to both parts; the (total) multiplicity of an
eigenvalue is the sum of its multiplicity in the alternating spectrum and its
multiplicity in the symmetric spectrum. We observe that if I'(G) is trivial,
then the orbits consist of one vertex each, in which case the alternating part
of the spectrum is empty; if the graph is vertex-transitive, then there is
exactly one orbit, consisting of all the vertices, and the symmetric part of
the spectrum consists of the eigenvalue 0 of multiplicity one. So as the graph
becomes more “symmetric”, the spectrum becomes “less so”.

The Faria vectors are never constant on all the orbits, so the dimension of
the alternating spectrum is at least p(G) —¢q(G). It is possible that 1 belongs
to the alternating spectrum without originating from a Faria vector, or that
1 belongs to the symmetric spectrum. The examples of Cg or P shown in
Figure 7.6 (the idea extends easily to Cg or Peg, as well as other graphs using
Merris’s Edge Principle or other techniques). As an example (Figure 7.7),
the star graph S, has as its alternating spectrum 1 of multiplicity n — 2, all
of which originates in the Faria space, and 0, n as its symmetric spectrum.
Figure 7.6 and Figure 7.7 also illustrate the following characterisation of
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the alternating spectrum for trees, given in [19]. The alternating spectrum
consists exactly of those eigenvalues for which there exists a nonzero vector
z such that for some automorphism ¢, ¢(z) = —z (see also Theorem 7.6.2).

+1 0 -1 0 -1 +1
m s, M
Figure 7.6: eigenvectors for Cs and Py corresponding to 1

1 1 1 1 1 1
-n

Figure 7.7: a typical eigenvector for the alternating spectrum, and two eigen-
vectors giving the symmetric spectrum

+1 ~1 0

The number of symmetric eigenvalues (counting multiplicities) is simply
the number of orbits of the graph. In fact, we may easily determine the
symmetric spectrum as the spectrum of another matrix, in the following way
[19]. Partition the matrix L according to the orbits. Let k& be the number of
orbits, and define n;,1 < 7 < k to be the number of vertices in the % orbit.
Form the k x k matrix L by defining (L);; to be the sum of the elements
in the 75t block of L divided by Tim;. The spectrum of L is exactly the
symmetric spectrum of L. Furthermore, there is a one-to-one correspondence
between the eigenvectors as follows: Z is an eigenvector of L if and only if =
is an eigenvector of L, where z;,/m; = I; where vertex 7 is in orbit j. So for
the graph in Figure 7.8, we have

1 o|-1l0]0o o o0 a

( 0 1|-1{o0]lo0o o o ) (a\

T Z1[3|=1]0 0 0 b

Lz = 0 O |-114|-1 -1 -1 c
0 o0]o0|=1]1 0 0 d

o olo|-1{0 1 o d

\o ofo|-1l0o o 1) \d




1 —=v2 0 0\ [aV?2
-2 3 -1 0 bv1
0
0

(wal}
3]
I

-1 4 /3| |le/1
0 —/3 1 dv3

Figure 7.8: a graph with four orbits

In fact, let ©9,1 < j < k be the vector that takes on the value 1/1/7
on those vertices in the j** orbit and zero otherwise. Form any orthonormal
matrix U that has as its first & columns the vectors u¥). Then the matrix
UtLU is block diagonal with the upper block being exactly L (giving the
symmetric spectrum) and the lower block giving the alternating spectrum.

7.6 Automorphisms on trees

Consider the automorphism group I of a tree 7. Of course, F is fixed by T,
and thus if T' is of type 1, then the characteristic vertex is a fixed point.

We can characterise whether or not As is in the alternating spectrum based
on the isomorphic branches at the characteristic vertex. It turns out that
Ay is in the alternating spectrum exactly when there are two nonisomorphic
branches at the characteristic vertex. To show this, we will need two lemmas,
from [19].

Lemma 7.6.1. Let T be a tree and v some vertex of T. If there are k
isomorphic branches By, B, . .. , By at v, with A an eigenvalue of fJ(Bl) with
multiplicity m, then A is an alternating eigenvalue of T with multiplicity at
least m(k — 1).

Proof. For each linearly independent eigenvalue z of L(B;), define a vector
y® that is equal to £ on Bj, equal to —z on B;, and zero elsewhere. This
gives a set of m(k — 1) linearly independent eigenvectors corresponding to A,
none of which are constant on the orbits. O
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Lemma 7.6.2. Let T be a type 1 tree with cenire w, and B one of its
branches at w. Define U; = BNV;, where V; are the orbits of G. Ifz € &(T),
then x is constant on each U;.

Proof. The result is obvious for passive branches, so assume B is active. Let
v be a vertex in B, and ¢ € I'(G) such that ¢(v) € B. By Theorem 7.1.3, we
may assume that both z, and z4¢) are positive. Furthermore, letting 7(B)
be the vertex of B that is adjacent (in T') to w, we see that ¢(w) = w. If
Ty # Tg(v), then we can construct (as a linear combination of z and ¢(z)) a
vector that is zero on w, nonzero on v, yet in £(7T"). By Theorem 7.1.3, this
is impossible. Thus z, = z4¢,) and the result follows. O

Hence we can now prove [19]

Theorem 7.6.3. Let T be a type 1 tree with characteristic vertez w. Then
As is in the alternating spectrum if and only if T has two tsomorphic active
branches at w.

Proof. If there are two nonisomorphic branches, then Theorem 7.3.1 and
Lemma. 7.6.1 give that A, is in the alternating spectrum.

If A, is alternating, then there is a z € £(T") and a vertex v such , # T4
(obviously v must be in an active branch). So Lemma 7.6.2 gives that v and
#(v) are in different branches. Since w is a fixed point, we conclude that ¢
permutes the branches, and hence that ¢ is an automorphism that maps the
branch containing v to the branch containing ¢(v). O

In [19], the following construction to obtain type 1 trees is given, based
on Theorem 7.3.1. Take any two rooted trees, 77 and 75 such f;(Tl) and
L(T3) have the same smallest eigenvalue, . Form the tree T by taking the
disjoint union of 7} and 75, and adding a single vertex, w, that is adjacent to
both roots. Define a vector z which is zero on the new vertex, the restriction
of z to 77 or T, gives an eigenvector corresponding, respectively, to ﬂ(Tl)
or f/(T2), and z takes on the values +1 and —1, respectively, at the two
roots. Following the ideas of Theorem 7.3.1, it may be seen that A(7T") = A,
with the new vertex being the characteristic vertex of 7. Note that in this
construction, that y € &(T) forces y,, = 0. Now if y is not zero at one of
the vertices adjacent to w, then the eigenvalue condition at w forces y = cz,
where c is some constant. On the other had, Theorem 7.1.3 guarantees that,
since y # 0, it cannot be zero at both vertices adjacent to w.
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If T; and T, are isomorphic branches, then in fact the restrictions of z
to 77 and T, respectively will be equal in value but opposite in sign. Thus
X2(T) will be in the alternating spectrum. If 77 and T, are nonisomorphic
branches, then by Theorem 7.6.3, As will not be in the alternating spectrum.
Furthermore, by adjoining in the same manner a second copy of 77 (or T5),
we see that \; can be in both the alternating and symmetric spectra. In fact,
we can construct a tree with any prescribed values for the multiplicity of A
as both an alternating and a symmetric eigenvalue.
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Chapter 8
Other Matrices

8.1 Other Laplacians

We will specifically mention two other Laplacians; both can be viewed as
ways of normalising with respect to the number of vertices.
Chung [7] considers eigenvalues of the matrix £ defined by

1, ifi=j5and d; #0
0, otherwise

Note that if we define D! to be the inverse of D, the (diagonal) matrix of
vertex degrees (with the convention that (D~!); = 0 if D; = 0, then we have

L=D?LD"'? (8.1)

Thus the two matrices are related. In fact, given an eigenvector x of L, the
vector D'/2z is an eigenvector of £. In terms of operators, we see that

(Ly);=wy; — Z\/ﬁ

~]

Note that in the case of regular graphs, the spectrum is again equivalent
to the spectrum of the ordinary adjacency matrix.
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In general, one can say that the bounds obtained for £ are “normalised”
with respect to n, in some sense. This does not mean that they are obtained
by dividing the eigenvalues of L by n. In general, the properties of the
two spectra are different, though they share some global similarities. For
instance, we still have that the multiplicity of 0 is equal to the number of
connected components of the graph. We give here without proof some basic
results from [7], using 0 = Ay < Ay < --- < A, for the eigenvalues of L.

A2 <

n—1
n

)\ if G has no isolated vertices

>
n _
A2 <1 unless G is complete
A < 2
X» =2 < G has a nontrivial connected bipartite component
(8-2)

Recall that for bipartite graphs the spectrum of the adjacency matrix
is symmetric about zero, and that for trees the spectrum of L is “roughly
symmetric about one” (see Proposition 5.1.11 and the remarks following).
For £ we have the following result [7].

Theorem 8.1.1. A graph G is bipartite if and only if the spectrum of L(G)
is symmetric about 1.

Most of the major results in this paper have analogies for £. Using the
alternative definitions of the isoperimetric constants

min |[6X|
[X|<n/2V01(X )
min vol(6 X)
1xI<n/2 vol(X)
where vol(4) = > d; for A C V(G). (8.3)

1€EA

h(G) =

H(G) =

Chung obtains analogies for Theorem 2.2.1, Theorem 2.2.2, Theorem 3.2.2,
Theorem 3.2.3, and Theorem 4.1.2, among others. It is perhaps worth noting
that the relationship between vertex expansion and edge expansion is differ-
ent. Although we trivially have #/(G) < h(G), here we have A(G) > h(G).
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Some authors also consider the Laplacian defined by

1
(L'y)i=vi—— dow
'J

inj
This matrix is again related to the combinatorial Laplacian, through
L'=D7'L

Again, for the case of regular graphs, we have nothing that we didn’t al-
ready know from the spectrum of the ordinary adjacency matrix. In general,
however, the spectra of these different Laplacians do not coincide, although
analogous results do often hold.

One can, as does Colin de Verdiére [8], consider a more general family of
operators, such that the corresponding matrix A has

<0 i~y
YT =0, ifiwjandi#j

A Laplacian is such an A with the condition that the row-sums are zero (i.e.:
the constant vector is an eigenvectar).

82 Q=D+A

The results of Chapter 2 can be summed up by saying that the connectedness
properties can be approximated by the spectrum of a matrix (L) of the graph.

It is interesting in this regard to mention a paper of Desai and Rao [11].
They consider the matrix Q = D+ A, and specifically, it’s smallest eigenvalue.
For a set § C V(G), define ¢(S) to be the minimum number of edges that
need to be removed from the induced subgraph on S so as to make it bipartite.
Then define

. . e(S)+|9X]|
v = S |S]

This may be thought of as an analogue to the isoperimetric constant of the
graph, except that ¢ measures how close G is to being bipartite. Clearly
1 = 0 if and only if G is bipartite.
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Note that the matrix @ is positive semidefinite. This follows for basically
the same reasons as for L, except that here @ = K, K., where K is the
unsigned version of the incidence matrix. Write the eigenvalues of Q as
71 £ 72 £ -+ £ ¥ If G is d-regular, then we trivially have that v =
2d — A; = d + u;, where u; are the eigenvalues of A. Thus we may state for
regular graphs, using a well known property of the A-spectrum that

Proposition 8.2.1. A regular graph G is bipartite if and only if vy = 0.
In fact, we can say more [11].

Proposition 8.2.2. The matriz Q) is singular (i.e. vy = 0) if and only if
¥ = 0.

Their main results can be thought of as analogous to Theorem 2.2.1 and
Theorem 2.2.2. In fact even the proofs share some of the spirit of the proofs
of Theorem 2.2.1 and Theorem 2.2.2.

Theorem 8.2.3. v, < 4y
Theorem 8.2.4. 7, > %

Furthermore, define the parameter

/ _ . 4e(S)+|0X]
VG = 80 |51

(which also gives a slight variation on Theorem 8.2.3). For any eigenvector
z of Q corresponding to 71, define Val(z) = {|z;| | z: # 0,1 < i < n}. They
give an alternate lower bound for <y;,which may sometimes be better than
Theorem 8.2.4 as

wl
Theorem 8.2.5. 71 > mami

Echoing remarks made elsewhere on Ay and h, they remark at the end of
the paper that computation of v is typically difficult and thus that v, pro-
vides easily computable bounds on an otherwise hard to compute structural
parameter of the graph.
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8.3 An “inverse” of L

Obviously, L is singular and has no inverse. However, it turns out that the
matrix

Q=T +L)H
encapsulates some interesting properties of the graph. We note that I + L is
positive definite. Indeed, the eigenvalues of €2 are

1 1 1 1

1= , )
14+ XA 14+ X" 14+ A3 1+ A

In fact the eigenvectors of 2 are the same as the eigenvectors of L. Observing
that the all-ones vector is an eigenvector of 2 corresponding to 1, we see that
Q has constant row-sum equal to 1. Since it is symmetric, the same can be
said for the column-sum, hence Merris refers to {2 as the doubly stochastic
mairiz of the graph.

We have some relations between 2 and the structure of the graph, which
we reproduce here without proof.

Proposition 8.3.1. Let G be a graph, and Q its doubly stochastic graph
matriz. If d, = n — 1 for some vertex u then wy, = 2(n + 1) and w,; =
1(n+1),7 #u. Ifdy, =0 for some vertez v then wy, =1 and wy; =0, 5 # u.
wj; = 2(n + 1) with equality if and only if dj = n — 1. If wy; = wy; for all
1 # u #£ j then eitherd, =0 ord, =n —1.

Proposition 8.3.2. Let u,v be nonadjacent vertices of a graph G. Let the
graph G' be obtained by adding the edge uv to G. Let Q2 and SV be the doubly
stochastic graph matrices of G and G', respectively. Then wy, > w'y, and
Wyy > Wyy. Furthermore, wi > W'y with equality if and only if wiy, = wiy of
and only if wi; = Ww'y; for all § #1

Define p(i, j) = wii +w;; — 2w;;. This behaves like a distance, motivating
the definition of the p-diameter D, to be the maximum of p(4, j) over all
pairs of vertices ¢, j.

For each vertex j, define

r(j) = p(i,4)-

i#j
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Based on this definition, a vertex j that maximises [minimises] 7(j) is said
to be a most remote [least remote] vertex. The following result charact erises
the most and least remote vertices of the graph.

Theorem 8.3.3. Let G be a graph and 2 = (w);j = (L+I)"!. Then vewtez k
s a most remote vertez if and only if wgr s @ mazimal main diagonal entry,
and a least remote vertez if and only if wik is a minimal main diegonal entry.

Proof. The proof is straightforward. By the definition of p(7, j) we have
r(j) = p(i, 5)
i3
= Z wi + Wjj — 2wi;
i#]
=(n— 1)(.(.1_:,'_7' + trace(f2) — Wij — 2(1 — ’LUjj)
= nwj; + trace(f2) — 2

(|
Not surprisingly, we can also relate r back to A.
Corollary 8.3.4.
WG) = 33 rlh) =n S
AT Z S LTI =R 2Ty
j=1 j=1
Proof. Following the proof above, we have
n
2W, = Z nwj; + trace(2) — 2
Jj=1
= ntrace({2) + ntrace(2) — 2n
j=1
O

Merris remarks that the quantity W, is analogous to the chemical W-einer
Index, thus giving a link between the definition of “remoteness” given above,
the Laplacian eigenvalues of the graph, and the chemistry of a molecule based

on that graph.
This section is based principally on [43], [40], to which the read er is

referred for more details.
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8.4 Further directions

We mention here some further reading for more results relating to Laplacian
matrices.

The survey papers [46, 48, 36, 37] deal with the Laplacian as we have
defined it. The two books [7, 8] deal extensively with different forms of the
Laplacian then we consider here.

Graphs with boundary and the Dirichlet problem are considered exten-
sively in [56, 57]. The theory of the Laplacian matrix for graphs is seen in the
context of the theory of the Laplacian operator on Riemannian manifolds.
Infinite graphs are considered in, for instance, [8].

The Laplacian can be used to partition graphs into sets with minimal
overlap. This can be seen partly as a specific consequence of the bounds
relating to the isoperimetric constant, among others, but more can be said.
The eigenvectors of As can be used to heuristically divide the graph into two
sets with minimal crossover; this is a consequence of the fact that ordering
the vertices based on an eigenvector of Ao comes close to minimising the
bandwidth of L [46, 53].

Further results on the diameter can be found in [58], and in [52, 54], a
more general method is advanced than that seen here.

Graph theory has many applications in chemistry, and in fact the Lapla-
cian spectrum of the underlying graph of certain molecules can be used to
predict some of their chemical properties; see [46, 36] and the references
therein.

There is much more that could be said about Laplacian spectra. Indeed,
a “complete” survey of all the material relating to the Laplacian spectrum
is beyond the scope of this paper. Hopefully, this paper has demonstrated
some of the important connections that exist between the structure of graphs
and their Laplacian spectrum.
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Appendix A
Graph Tables

We give tables of the Laplacian spectrum and characteristic polynomial for
trees up to n = 10 vertices and connected graphs up to n = 6 vertices.
They are sorted with Ao in nonincreasing order. The eigenvalue A\; = 0 is
omitted for brevity, as is the (zero) constant coefficient of the characteristic
polynomial. So, for instance, the first tree on four vertices, K 3, has spectrum
{0,1,1, 4} and characteristic polynomial det(D — zI) = 4z — 922 + 62> — z*.
Of course, 4 is exactly the number of vertices multiplied by the number of
spanning trees, and 6 is the sum of the degrees, or twice the number of edges,
which (for trees) is 2(n — 1).

There are two pairs of isospectral graphs within these tables: 79,80 and
82,83, both from the table of connected graphs on six vertices. Within each
pair, exactly one edge has been moved; between the two pairs, one edge (the
“same” one) has been removed /added. Within each pair, the number of edges
and diameter are equal. Graphs 79,80 have the same girth and chromatic
number. However, graph 82 has girth 3 and chromatic number 3, while graph
83 is bipartite. The isospectral constants are %, 1, %, 1, respectively.

The graphs were generated using geng, a subset of Brendan McKay’s
nauty software package, available from http://cs.anu.edu.au/people/bdm/.
The spectra were calculated using Maple® and were then sorted by A;. The
pictures were generated automatically from the graph files by the author.
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€6

n tree eigenvalues characteristic polynomial
g8 1 |1 1 1 1 1 1 8 8, -49, 126, -175, 140, -63, 14, -1
2 0452 1 1 1 1 2,613 7.034 | 8, -54, 146, -205, 160, -68, 14, -1
3 (0382 0561 1 1 2339 2618 6.100 | 8,-59, 168, -238, 180, -72, 14, -1
4 10382 0382 0.764 2 2.618 2.618 5.236 | 8, -64, 192, -273, 198, -75, 14, -1
5 10374 1 1 1 1 3.485 6.141 | 8,-57, 158, -223, 172, -71, 14, -1
6 (0364 1 1 1 1 4 5.646 | 8, -58, 162, -229, 176, -72, 14, -1
7 10319 0586 1 1 2358 3.414 5.323 | 8,-62, 180, -255, 190, -74, 14, -1
8 0306 0382 1 1.670 2618 3.330 4.694 | 8,-67, 204, -286, 204, -76, 14, -1
9 0289 0674 1 1 2,169 3.586 5.282 | 8,-63, 182, -256, 190, -74, 14, -1
10 [ 0277 1 1 1 1.507 3.161 6.055 | 8, -62, 174, -241, 180, -72, 14, -1
11 10268 0667 1 1 2529 3.732 4.814 ) 8,-65, 190, -267, 196, -75, 14, -1
12 | 0.254 0547 1 1.469 2407 3.150 5.173 | 8,-67, 198, -275, 198, -75, 14, -1
13 | 0.251 0586 0.729 2 2335 3414 4.686 | 8, -68, 204, -286, 204, -76, 14, -1
14 10243 0382 1.180 2 2618 3.139 44381 8,-72, 224, -307, 212, -77, 14, -1
15 0238 1 1 1 1.637 4 5.125 | 8, -66, 188, -259, 190, -74, 14, -1
16 {0224 058 1 1411 2724 3.414 4641 | 8,-70, 208, -287, 204, -76, 14, -1
17 [ 0.214 0618 1 1.498 2354 3.841 4476 | 8,-71, 210, -288, 204, -76, 14, -1
18 0202 1 1 1 2,247 3.453 5.098 | 8, -71, 204, -277, 198, -75, 14, -1
19 | 0.198 0492 1320 1.556 2826 3.247 4.362 | 8, -75, 228, -308, 212, -77, 14, -1
20 | 0.186 1 1 1 2471 4 4,343 | 8, -74, 214, -289, 204, -76, 14, -1
21 | 0.186 0586 1 2 2471 3414 4.343 | 8,-76, 228, -308, 212, -77, 14, -1
22 | 0.167 0.728 1 1.636 2.673 3.564 4.233 | §,-79, 232, -309, 212, -77, 14, -1
23 [0.152 0.586 1235 2 2,765 3.414 3.848 | 8, -84, 252, -330, 220, -78, 14, -1
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g6

tree eigenvalues characteristic polynomial |
111 1 1 1 1 1 1 9 9, -64, 196, -336, 350, -224, 84, -16, 1
2 10443 1 1 1 1 1 2,633 8.024 | 9, -70, 226, -396, 410, -254, 90, -16, 1
3 10382 0530 1 1 1 2403 2.618 7.067 | 9,-76, 259, -464, 476, -284, 95, -16, 1
4 10382 0382 0671 1 2,181 2618 2.618 6,147 | 9, -82, 295, -540, 546, -312, 99, -16, 1
5 | 0382 0382 0382 1697 2618 2.618 2618 5303 |9,-88, 334,-624, 615, -336, 102, -16, 1
6 0357 1 1 1 1 1 3.566 7.087 | 9, -74, 246, -436, 450, -274, 94, -16, 1
7 (0327 1 1 1 1 1 4.352 6.321] 9, -76, 256, -456, 470, -284, 96, -16, 1
8 | 0316 0536 1 1 1 2447 35156 6.186 | 9, -80, 280, -506, 516, -302, 98, -16, 1
9 103056 0382 0757 1 2096 2.618 3461 5.382|9,-86,317,-582, 582, -326, 101, -16, 1
10 | 0282 0578 1 1 1 2,373 4.086 5.679 | 9,-82, 289, -522, 530, -308, 99, -16, 1
11 | 0268 0671 1 1 1 2.181 3.732 6.147 | 9,-82, 286, -512, 518, -302, 98, -16, 1
12 | 0268 056561 1 1 1 3 3.732 5449 | 9, -84, 300, -544, 550, -316, 100, -16, 1
13 | 0268 0382 1 1 1.697 2618 3.732 5.303 | 9, -88, 325, -590, 584, -326, 101, -16, 1
14 | 0268 0345 1 1 1.789 3 3.732  4.866 | 9, -90, 338, -616, 606, -334, 102, -16, 1
15 | 0265 1 1 1 1 1516 3.183 7.035 | 9, -80, 271, -476, 480, -284, 95, -16, 1
16 | 0.248 0506 1 1 1495 2470 3.177 6.104 | 9, -86, 308, -552, 549, -312, 99, -16, 1
17 10.243 0537 0689 1 2,130 2417 3.643 5.341 | 9, -88, 322, -586, 583, -326, 101, -16, 1
18 | 0240 0.382 0.720 1424 2203 2618 3.169 5244 | 9,-92, 348, -634, 617, -336, 102, -16, 1
19 10238 0.648 1 1 1 2.660 4.132 5.331 | 9, -86, 306, -650, 5652, -316, 100, -16, 1
20 | 0231 0382 0642 1.613 2.259 2618 3.513 4.742 | 9, -94, 361, -662, 640, -344, 103, -16, 1
21 (0223 0492 1 1 1471 3 3.484 5.330 | 9, -90, 329, -592, 584, -326, 101, -16, 1
22 10222 06333 1 1,192 2,107 3 3.441 4.705 | 9, -96, 370, -668, 641, -344, 103, -16, 1
23 10220 1 1 1 1 1.663 4.055 6.062 | 9, -86, 298, -524, 522, -302, 98, -16, 1
24 10212 0555 0722 1 2078 2734 3.853 4.847 | 9,-92, 340, -616, 606, -334, 102, -16, 1
26 {0209 1 1 1 1 1.697 4.791 5.303 | 9, -88, 307, -640, 536, -308, 99, -16, 1
26 | 0.204 0540 1 1 1.599 2443 4.017 5.197

9, -92, 335, -598, 586, -326, 101, -16, 1
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n tree eigenvalues characteristic polynomial

9 27 | 0202 0569 1 1 1.412 2827 3.7056 5.284 | 9, -92, 334, -596, 585, -326, 101, -16, 1
28 | 0.198 0412 1 1406 1.5556 3 3.247 5.182 | 9, -96, 361, -644, 619, -336, 102, -16, 1
29 10198 0300 1 15556 2.239 3 3.247 4461 | 9, -102, 405, -724, 677, -354, 104, -16, 1
30 {0,195 0382 1 1211 2145 2,618 3.906 4.543 | 9,-98, 375, -672, 642, -344, 103, -16, 1
31 {0188 1 1 1 1 2.275 3482 6.055 | 9, -92, 323, -564, 552, -312, 99, -16, 1
32 | 0188 0.614 1 1 1.533 2.380 4.154 5.130 | 9, -94, 340, -602, 587, -326, 101, -16, 1
33 0186 0482 0.704 1407 2.134 2.853 3.537 4.696 | 9,-98, 371, -668, 641, -344, 103, -16, 1
34 10183 0572 1 1 1,509 3 4,044 4.691 1| 9, -96, 352, -626, 608, -334, 102, -16, 1
35 10177 0524 1 1 2,161 2496 3467 5.174 ] 9,-98, 363, -644, 619, -336, 102, -16, 1
36 | 0.173 0559 0.662 1433 2209 2485 3.956 4.523 | 9,-100, 376, -672, 642, -344, 103, -16, 1
37 {0171 0382 0.850 1676 2416 2.618 3442 4.444|9,-104, 406, -724, 677, -354, 104, -16, 1
38 | 0.166 0468 1 1.343 1.653 3 3.879 4.491 | 9,-102, 384, -678, (43, -344, 103, -16, 1
39 101656 1 1 1 1 2,668 4.166 5.102 | 9, -98, 349, -608, 588, -326, 101, -16, 1
40 | 0.163 0.532 1 1 2.089 3 3.572 4.644 | 9, -102, 381, -G74, 642, -344, 103, -16, 1
41 | 0154 0576 1 1 2.113 2.676 4.075 4.406 | 9,-104, 386, -678, 643, -344, 103, -16, 1
42 | 0.161 0427 1 1423 2,172 3 3.458 4.370 ] 9, -108, 416, -730, 678, -354, 104, -16, 1
43 | 0149 0717 1 1 1.663 2.740 3.633 5.008 | 9, -104, 377, -654, 621, -336, 102, -16, 1
44 10140 0536 0.775 1580 2245 2.778 3.599 4.346 | 9, -110, 417, -730, 678, -354, 104, -16, 1
45 | 0,139 0.697 1 1 1.746 3 4115 4.303 | 9, -108, 395, -684, 644, -344, 103, -16, 1
46 |1 0,129 0554 1 1.261 2,133 3 3.688 4.235 | 9, -114, 427, -736, 679, -354, 104, -16, 1
47 | 0121 0468 1 1663 2347 3 3.532 3.879 | 9,-120, 462, -792, 715, -364, 105, -16, 1
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n tree eigenvalues characteristic polynomial
10 82 |0.147 0458 1 1 1.349 1.695 3.025 4.196 5.130 | 10, -131, 586, -1285, 1586, -1165, 514, -132, 18, -1
83 [0.144 1 1 1 1 1 2.678 5 5.177 | 10, -127, 540, -1158, 1436, -1080, 492, -130, 18, -1
84 | 0.144 0519 1 1 1 2.311 2678 4.170 5.177 | 10, -131, 582, -1276, 1580, -1164, 514, -132, 18, -1
85 | 0.140 0425 0.693 1 2 2267 3.146 3.641 4.698 | 10, -137, 636, -1421, 1746, -1253, 536, -134, 18, -1
86 | 0139 0438 1 1 1382 1.746 3.618 4.115 4.562 | 10, -135, 612, -1345, 1652, -1202, 524, -133, 18, -1
87 {0139 0382 0.830 1 1.746 2.618 2.689 4.115 4.481 | 10, -138, 644, -1433, 1752, -1254, 536, -134, 18, -1
88 |0.138 0426 0.632 1.328 1582 2.344 3024 3992 4.534 | 10,-138, 642, -1432, 1752, -1254, 536, -134, 18, -1
89 | 0,137 0711 1 1 1 1.676 2.768 3.652 6.055 | 10, -131, 564, -1210, 1488, -1104, 496, -130, 18, -1
90 | 0136 0.572 1 1 1 2.140 2,755 4.296 5.103 | 10, -134, 592, -1288, 1586, -1165, 514, -132, 18, -1
91 10134 0519 1 1 1 2311 3211 4170 4.655 | 10, -136, 610, -1337, 1646, -1201, 524, -133, 18, -1
92 10.132 0501 0737 1 1.642 2385 2788 3.641 5.174 | 10, -138, 626, -1376, 1684, -1216, 526, -133, 18, -1
93 {0129 0392 1 1 1622 2218 3344 3.900 4.494 | 10, -142, 660, -1452, 1760, -1255, 536, -134, 18, -1
94 | 0128 0.519 0630 1 2 2311 2,797 4170 4.446 | 10,-141, 648, -1434, 1752, -1254, 536, -134, 18, -1
95 | 0.128 0.382 0.630 1382 2 2,618 2,797 3.618 4.446 | 10,-145, 692, -1547, 1866, -1308, 548, -135, 18, -1
9 | 0.126 0410 1 1 1429 2423 3.095 4.093 4.424 | 10, -143, 662, -1453, 1760, -1255, 536, -134, 18, -1
97 10.124 0479 0.772 1 1.590 2.535 3.167 3.688 4.644 | 10, -143, 656, -1442, 1754, -1254, 536, -134, 18, -1
98 | 0.123 0.684 1 1 1 1.785 3.097 4.212 5.099 | 10, -139, 608, -1306, 1594, -1166, 514, -132, 18, -1
99 ]10.121 0349 1 1 2 2,347 3274 3.532 4.377 | 10, -149, 712, -1568, 1874, -1309, 548, -135, 18, -1
100 | 0.117 0519 0.759 1 1.667 2311 3.085 4.170 4.372 | 10, -146, 666, -1454, 1760, -1255, 536, -134, 18, -1
101 | 0.117 0.382 0.769 1.382 1.667 2.618 3.085 3.618 4.372| 10,-150, 712, -1568, 1874, -1309, 548, -135, 18, -1
102 | 0.115 0540 1 1 1271 2174 3.064 3.739 5.008 | 10, -146, 654, -1408, 1698, -1218, 526, -133, 18, -1
103 | 0.110 0462 0670 1241 2 2401 3.058 3.712 4.346 | 10, -153, 716, -1569, 1874, -1309, 548, -135, 18, -1
104 | 0.109 0519 1 1 1205 2311 3317 4170 4.278 | 10, -151, 684, -1474, 1768, -1256, 536, -134, 18, -1
105 | 0.103 0437 1 1 1.725 2506 3226 3.768 4.236 | 10, -158, 736, -1590, 1882, -1310, 548, -135, 18, -1
106 | 0.098 0382 0.824 1382 2 2.618 3176 3.618 3.902 | 10, -165, 792, -1716, 2002, -1365, 560, -136, 18, -1
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Laplacian spectra of connected graphs, 2 <n <6

n graph eigenvalues characteristic polynomial

2 1 2 2.-1

3 1 3 3 9.-6.1
2 1 3 3.4.1

4 1 4 4 4 64, -48. 12. -1
2 2 4 4 32.-32,10. -1
3 2 2 4 16. -20, 8, -1
4 1 3 4 12, -19. 8, -1
5 1 1 4 4.9, 6, -1
6 0.586 2 3.414 4.-10, 6, -1

5 1 5 5 5 5 625, -500. 150, -20. 1
2 3 5 5 5 375, -350, 120, -18. 1
3 3 3 5 5 225, -240. 94. -16. 1
4 2 4 5 5 200, -230, 93, -16. 1
5 2 3 4 5 120, -154, 71, -14, 1
6 2 2 ] 5 100, -140. 69, -14, 1
7 2 2 3 5 60, -92.51,-12, 1
8 1.586 3 4414 5 105, -146, 70, -14, 1
9 1.382 2.382 3.618 4.618 | 55,-90,51,-12. 1
10 1.382 1.382 3.618 3.618 | 25, -50, 35,-10;1
11 1 4 4 5 80. -136. 69, -14. 1
12 1 3 3 3 45. -84, 50, -12, 1
13 1 2 4 3 40, -78.49. -12. 1
14 1 1 3 5 15, -38, 32, -10, 1
15 1 1 1 ] 5.-16. 18,-8. 1
16 0.830 2.689 4 4.481 | 40, -82,50,-12, 1
17 0.830 2 2.689 4.481 | 20, -46, 34, -10. 1
18 0.697 1.382 3.618 4.303 | 15, -40,.33.-10,1
19 0.519 2311 3 4.170 | 15, -44.34.-10, 1
20 0.519 1 2.311 4.170 | 5.-18,20,-8.1
21 0.382 1.382 2618 3618 5,-20,21,-8,1
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n graph eigenvalues characteristic polynomial

6 1 6 6 6 6 6 7776, -6480. 2160, -360. 30, -1
2 4 6 6 6 6 5184, -4752, 1728, -312, 28, -1
3 4 4 6 6 6 3456, -3456. 1368, -268. 26, -1
4 4 4 4 6 6 2304, -2496, 1072, -228. 24, -1
3 3 5 6 6 6 3240, -3348, 1350, -267. 26, -1
6 3 4 5 6 6 2160, -2412, 1056. -227, 24, -1
7 3 3 6 6 6 1944, -2268. 1026, -225, 24. -1
8 3 3 5 5 6 1350, -1665. 804. -190. 22. -1
9 3 3 4 6 6 1296, -1620. 792, -189. 22_-1
10 3 3 3 5 6 810. -1107, 594. -156, 20, -1
11 3 3 3 3 6 486, -729, 432, -126, 18, -1
12 2.586 4 5414 6 6 2016, -2328. 1040. -226. 24. -1
13 2.586 4 4 5414 6 1344, -1664. 804, -190. 22. -1
14 2.382 3.382 4618 5618 6 1254. -1601, 790, -189, 22, -1
15 2.382 2.382 4.618 4.618 6 726, -1045, 580. -155, 20. -1
16 2.268 3 4 5 5.732 | 780, -1091, 592, -156, 20, -1
17 2 5 5 6 6 1800, -2220. 1022, -225. 24. -1
18 2 4 5 5 6 1200, -1580, 788, -189, 22, -1
19 2 4 4 6 6 1152. -1536, 776, -188, 22, -1
20 2 4 4 4 6 768, -1088. 5392, -156, 20, -1
21 2 3 5 6 6 1080, -1476, 762, -187, 22, -1
22 2 3 4 5 6 720, -1044. 580, -155. 20, -1
23 2 3 3 5 5 450, -705, 428, -126. 18, -1
24 2 2 4 6 6 576, -912, 544, -152, 20, -1
25 2 2 4 4 6 384, -640. 408, -124, 18, -1
26 2 2 2 6 6 288. -528, 368, -120, 18, -1
27 2 2 2 4 6 192, -368, 272, -96. 16. -1
28 1.830 3.689 5 5481 6 1110, -1517. 774, -188, 22, -1
29 1.830 3 3689 5481 6 666, -999. 568, -154. 20, -1
30 1.786 3 4539 S5 5.675 | 690, -1028, 578, -155. 20, -1
31 1.786 3 3 4.539 5.675 | 414, -672, 418, -125. 18, -1
32 1.697 3.382 4 5.303 5.618 | 684, -1027, 578, -1553, 20, -1
33 1.697 2.382 4.618 5.303 6 594, -939. 554, -153. 20, -1
34 1.697 2.382 4 4.618 5.303 | 396, -659. 416, -125, 18, -1
35 1.697 1.697 4 5.303 5.303 | 324, -585, 394, -123. 18, -1
36 1.607 2.302 3.641 4.863 5.387 | 366, -628, 406, -124, 18, -1
37 1.586 2 3 4414 5 210, -397, 286, -98. 16, -1
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n graph eigenvalues characteristic polynomial

6 38 1.519 3.311 4 5170 6 624, -980, 566, -154. 20, -1
39 1519 2 3311 5170 6 312, -568, 386, -122. 18, -1
40 1438 3 5 ] 5.562 | 600, -965, 564, -154, 20, -1
41 1438 3 4 4 5.562 | 384, -656, 416, -125. 18, -1
42 1438 3 3 5 5.562 | 360, -627, 406, -124, 18, -1
43 1438 3 3 3 5.562 | 216, -405, 288, -98. 16, -1
44 1438 2 3 4 5.562 | 192, -376, 278, -97. 16, -1
45 1.382 2.382 3.618 4.618 6 330, -595. 396, -123. 18, -1
46 1.382 1.697 3.618 4 5.303 | 180, -365. 276, -97. 16. -1
47 1.268 2.586 4 4.732 5.414 | 336, -612. 404, -124, 18. -1
48 1.268 2 4 4 4.732 | 192, -384, 284, -98. 16, -1
49 1.268 2 2.586 4.732 5.414 | 168. -348, 268, -96. 16, -1
50 1.268 2 2 4 4.732 | 96, -216, 184, -74. 14, -1
51 1.186 3 3471 5 5.343 | 330, -611, 404, -124, 18, -1
52 1.109 2295 3 4317 5.278 | 174, -364. 276, -97. 16, -1
53 1 5 5 5 6 750. -1325, 740, -186, 22. -1
54 1 3 5 5 6 450. -855. 538, -152, 20, -1
55 1 3 4 4 6 288. -576. 394, -123. 18, -1
56 1 3 3 5 6 270, -349. 384, -122. 18, -1
57 1 3 3 4 5 180, -381, 284, -98, 16, -1
58 1 2 4 5 6 240, -508, 372, -121. 18, -1
59 1 2 3 4 6 144, -324, 260, -95, 16, -1
60 1 2 3 3 5 90, -213, 184, -74, 14, -1
61 1 2 2 5 6 120, -284. 242, -93. 16, -1
62 1 1.586 3 4414 6 126, -297. 250, -94, 16. -1
63 1 1.586 3 4 4.414 | 84.-205. 182, -74, 14, -1
64 1 1 4 4 6 96. -256, 238. -93. 16. -1
65 1 1 3 3 6 54, -153. 156, -70, 14, -1
66 1 1 3 3 4 36. -105. 112, -54. 12, -1
67 1 1 2 4 6 48, -140, 148, -69. 14. -1
68 1 1 1 3 6 18, -63, 82, 48, 12, -1
69 1 1 1 1 6 6. -25, 40, -30, 10, -1
70 0914 3.572 5 3 5.514 | 450, -880, 548, -153, 20, -1
71 0914 3 3.572 5 5.514 | 270, -564, 392, -123, 18, -1
72 0.914 2 3.572 4 5.514 | 144, -332, 266, -96, 16, -1
73 0.914 2 2 3.572 5.514 | 72,-184, 170, -72, 14. -1
74 0.893 2212 4526 5 5.369 | 240.-523, 380, -122, 18, -1
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I n graph eigenvalues characteristic polynomial
6 75 0.893 2212 3 4.526 5.3690 | 144. -333. 266. -96. 16, -1

76 0.885 1.697 3.254 4.861 5.303 | 126, -305. 256, -95, 16, -1
77 0.882 1451 2.534 3.865 5.269 | 66, -176. 168, -72. 14, -1
78 0.764 3 4 5 5.236 | 240, -548. 390. -123, 18, -1
79 0.764 3 3 4 5.236 | 144. -348, 274. -97. 16, -1
80 0.764 3 3 4 5.236 | 144, -348, 274. -97, 16, -1
81 0.764 2 3 5 5.236 | 120, -304. 256. -95, 16, -1
82 |0.764 2 3 3 5.236 | 72, -192, 176, -73, 14, -1
83 0.764 2 3 3 5.236 | 72.-192. 176, -73. 14, -1
84 0.764 1.268 4 4.732 5.236 | 96, -264, 244. -94. 16, -1
85 |0.764 1268 2 4.732 5.236 | 48, -144, 152, -70, 14, -1
86 0.764 1 3 4 5.236 | 48, -148, 158, -71, 14, -1
87 |o0.764 1 2 3 5.236 | 24, -80, 96, -51, 12, -1
88 0.731 2.135 3466 4.549 5.118 | 126.-320, 264, -96. 16. -1
89 0.722 1683 3 3.705 4.891 | 66, -184, 174, -73. 14. -1
90 0.687 2 2382 4.303 4.618 | 66, -185, 174, -73. 14. -1
91 0.697 1.382 2 3.618 4.303 | 30, -95, 106. -53. 12, -1
92 0.697 1.139 2.746 4.303 5.115 | 48, -149. 158, -71, 14. -1
93 0.697 0.697 2 4.303 4.303 | 18, -69, 92, -51, 12, -1
94 |o0657 1 2529 3 4814 | 24, -83, 100, -52, 12, -1
95 0.631 1474 3 3.788 5.107 | 54, -165, 166, -72. 14, -1
96 0631 1 1.474 3.788 5.107 | 18. -67. 88.-50, 12, -1
97 |0.58 1.268 3.414 4 4.732 | 48, -156, 164, -72, 14, -1
98 0.586 1.268 2 3.414 4.732 | 24. -84, 100, -52, 12, -1
99 0.486 2.428 4 4 5.086 | 96, -304. 262. -86. 16, -1
100 0.486 2 2428 4 5.086 | 48, -164. 166, -72, 14, -1
101 0486 1 2428 3 5.086 | 18, -72,94,-51.12,-1
102 | 0.486 1 1 2.428 5.086 | 6. -28, 46, -33, 10, -1
103 0438 3 3 3 4.562 | 54, -189. 180. -74. 14, -1
104 | 0.438 2 3 4 4.562 | 48, -172, 172, -73, 14, -1
105 0.438 2 2 3 4.562 | 24, -92, 106, -53, 12, -1
106 0438 1 3 3 4.562 | 18.-75, 98,-52, 12, -1
107 0438 1 1 3 4.562 | 6. -29, 48, -34, 10, -1
108 | 0.413 1.137 2359 3.698 4.393 | 18, -76. 98.-52. 12, -1
109 | 0.382 0.697 2 2.618 4.303 | 6, -31, 52, -35, 10, -1
110 0.325 1.461 3 3 4.214 | 18, -84, 104, -53. 12, -1
111 0.325 1 1461 3 4214 | 6, -32, 52, -35. 10. -1
112 0.268 1 2 3 3.732 | 6, -35, 56, -36. 10, -1
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