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ABSTRACT 

In this thesis we investigate the spectrum of the Laplacian matrix of a graph. 
Although its use dates back to Kirchhoff, most of the major results are much 
more recent. It is seen to reflect in a very natural way the structure of the 
graph, particularly those aspects related t o  connectedness. This can be intu- 
itively understood as a consequence of the relationship between the Laplacian 
rnatrix and the boundary of a set of vertices in the graph. \Ve investigate 
the relationship between the spectrum and the isoperimetric constant: ex- 
pansion properties, and diameter of the  graph. We consider t.he problem of 
integral spectra, and see how the structure of the eigenvectors can be used to 
deduce more information on both the  spectrum and the graph, particularly 
for trees. In closing, we mention some alternatives to and generalisations of 
the Laplacian. 
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Chapter 1 

Introduction 

1.1 Definitions and examples 

Let G(lr, E) be a graph with vertex set V of cardinality n and edge set E 
of cardinality m. Unless otherwise noted, al1 graphs mil1 be undirected and 
finite. Let d j  be the degree of vertex j. We will use b for the minimum degree 
and A for the maximum degree. We will indicate adjacency of vertices by 
i - j f o r i j  E E(G). 

Let A be the n x n {O, 1) adjacency m a t e  such that A, = 1 if and only 
if ij E E(G). Let D be the n x n diagonal matrix Mth Djj  = dj .  We define 

Definition 1.1.1. L = D - A 

to be the (combinatorial) Laplacian matrix associated with the graph, and 
we wilt write XI 5 X2 5 - $ An for its eigenvalues (see also Section 8.1). 
Unless otherwise noted, al1 eigenvectors and eigenvalues will be with respect 
to the Laplacian matrïx (not the ordinary adjacency matrix). Furthermore, 
we will abuse the language and write "eigenvalue of G" for "eigenvalue of 
L(G)" . 

Let K be the n x m incidence matrix, where the coiumns are indexed by 
the edges and the rows are indexed by the vertices. Choose an (arbitrary) 
orientation on each edge, and for each column, place +l in the row corre- 
sponding to the positive end and -1 in the row corresponding t o  the negative 
end; al1 other entries are zero. It can be seen directly that L = KKt. If we 
let X be any eigenvalue of L and x a corresponding eigenvector, we have: 

~llx11* = (Xx, x) = ( K K ' z , ~ )  = ( P x ,  K'x) = l l ~ ~ ~ 1 1 ~  2 O 



and thus L is positive semi-definite. Furthemore, as the row sums of L are 
al1 zero, the dl-ones vector is an eigenvector with eigenvdue XI = O. Note 
that  by the definition of L, we have 

alloming us to express the eigenvalue condition at each vertex as 

i - j  

Using the well-known Courant-Fischer inequalities, we may characterise 
the  eigenvalues by 

where x ranges over al1 non-zero column vectors of size n that are orthogonal 

eigenvalues, 
them here.) 

to the all-ones vector. (One rnay 
where x ranges over 
Thus we have that 

also give similar descriptions of the other 
appropriate subspaces; we will not need 

and thus 

and 

where again x is orthogonal to the alLones vector. 



An alternative formulation is 

X2 = min max 
C i j E E ( C )  (xi - xjI2 

tER CjEV(G)(xj-t)2 

where x now ranges over al1 non-constant vectors. This can be seen by 
observing that for a gïven vector x, the value of t that maximises the ratio is 
t = C x j / n ,  and that thus the vector y defined by yj = xj-t  is orthogonal to 
the all-ones vector and yi - yj  = xi - xji furthemore, al1 vectors orthogonal 
to  the all-ones vector may be obtained in this manner. 

Fiedler [15] also gave the following characterisat ion. 

2n C , E E ( G l  (xi - ~ 2 . i ) ~  
X2 = min 

C i , v C j e v ( ~ i  -xj12 

We wiI1 also rnake frequent and tacit use of the Cauchy interlacing in- 
equalities (see, e-g., [3O]). Specifically, for any Hermitian rnatrix B, let BLT1 
be the rnatrix formed by deleting the rth row and rth column from B. Let 
al 5 a2 5 - 5 be the eigenvalues of B and let ,OL 5 ,û2 < - - 5 pn-2 be 
the eigenvalues of B[+ Then 

We note that for the case of regular graphs, L = d I  - A where d is the 
common vertex degree. So if me let pl 2 p? 2 - - > p, be the eigenvalues 
of A, we see that A j  = d - pj- So the Laplacian spectrum for regular graphs 
tells us nothing we didn7t already know from the spectrum of A. This allows 
us to restate any theorem (for regular graphs) on the eigenvalues of A as a 
theosem on the eigenvalues of L. 

For instance, we can prove using L that given a d-regular graph G, the 
largest eigenvalue of the adjacency matrix is d, and it is simple (see Theo- 
rem 1.3.4). 

As another example, consider the matrix Kt, the unoriented incidence 
matrix. Its entries are the absolute value of the corresponding entries in the 
matrix K. Thus the eigenvalues of K+K+t are no srnaller than the eigenvalues 
of KKt .  But the eigenvalues of K+K+~ are the same as the eigenvalues of 
KctK+. A direct computation shows that K+tK+ = 21  + 23, where B is the 
adjacency matrix of the line graph of G. Thus we have a relationship between 
the Laplacian eigenvalues of a graph and the adjacency eigenvalues of its line 



gaph.  Furthermore, since the eigenvalues of K+~K+ are nonnegative, and 
the smallest eigenvalue of a line graph is at Ieast -2. This gives a connection 
with the theory of m o t  systems [6]. 

In general, there is no simple relationship between the eigenvalues of 
A and the eigenvalues of L. However, we do have the folloming. Given 
a graph G, construct the graph G' by adding an appropriately weighted 
loop to each vertex such that Gr is d-regular. SVe then have that L(G) = 
L(G') = d l  - A(Gf).  So the Laplacian spectrum of a graph does reduce to 
the adjacency spectrum of some (weighted) graph. 

We also see here an interesting property of L, namely that although every 
graph has a unique Laplacian matrix, this matrix does not in general uniqueIy 
determine a graph: the Laplacian tells us nothing about how many Ioops were 
to be found in the original graph. It is interesting to note that this rnissing 
information may be characterised as exactly that aspect of a graph that is 
completely irrelevant to issues of connectedness. 

Furthermore, consider a set X C V, and define the column-vector x = 
(xj) by Xj = 1 for x E X and Xj = O for x $! X. Let y = Lx. By the definition 
of L, we see that gj > O means that vertex j is in X and is connected to  yj 
vertices not in X, yj  < O means that vertex j is not in X and is connected 
to lgjl vertices in X, and yj = O means that vertex j is in [or not in] X 
and is only connected to vertices in [or not in] X. In other words, L x  tells 
us exactly how the set X is connected t o  the r a t  of the graph. (If we let 
X = V, we note that there are no vertices of the first two types, and thus 
see again that O is an eigenvalue). This interpretation can be thought of as 
analogous to the following property of A: given a set X of vertices with x 
being the characteristic vector of X, then Ax corresponds to the (multi-)set 
of neighbours of X. More correctly (and generally), Akx corresponds to  the 
multiset of endpoints of paths of length k originating in X. So we see that 
A directly models paths, whereas L directly models boundaries. Of course, 
since the graph is uniquely determined by either of them (modulo loops), 
they both contain directly or indirectly the same information. We will not 
dwell on these properties further for the moment1, except to note that they 
provide some intuitive sense of mhy the matrix L should be associated with 
connectedness properties of the graph. 

It should be  noted that most results carry over quite me11 to  the case of 

L..4ctually, this interpretation will corne up in conneclion with the isoperimetric constant 
of the graph; see Section 2.1. 



weighted graphs (or graphs with multiple edges). Here we would use the 
weighted adjacency matrix A*, where A t  is the weight of the edge betmeen i 
and j (zero weight being interpreted as no edge), and the degree of a vertex 
is the sum of the weights of the edges adjacent to it. This gives, in a straight- 
forward manner, that L* = D* - A*. Of course, the unweighted Laplacian is 
really a special case of this, with al1 weights being either zero or one. This 
thesis will concentrate principally on the eigenvalues of L (in particulax Xz), 
and their relation ta  other graph properties, stressing properties relating to 
''connect edness" . 

1.2 Historical background 

One of the motivators of the study of graph eigenvalues was the study of 
vibrations of membranes. This has its origins in Kac's provocative paper 
[22] and is closely tied in with the study of eigenvalues and eigenfunctions 
on Riemannian manifolds. 

Consider a membrane in the xy plane, with the verticd displacement 
being z = z(x, y). Letting t be the time-variable and c the speed of the 
wave2, the mave equation (see e.g. [16]) gives 

If we assume that the membrane behaves like a spring in that there is a 
restoring force proportional to the displacement, Hooke's Law gives 

By approximating the membrane using a discrete grid of particles of spac- 
ing w, we may approximate the partial derivative by 

'The speed of a wave depends oniy on the medium (in this case the membrane), not 
on the "shape" of the wave. 



This gives that 

Substituting (1.9) (and the analogous expression for a2z/ay2) into (l.5), and 
using (1.6), we have that 

This says that z is an eigenfunction of the Laplacian matrix of the g i d  graph 
with eigenvalue kw2/c2. This explains the term "Laplacian" for the matrix L, 
as it functions as the discrete analogue of the continuous Laplacian operator. 
There is nothing special about the membrane; a similar example would hold 
in one or three dimensions. In fact, an approach quite similar to  this (in 
one dimension) is commonly used in introdudory physics texts t o  show that 
the stable modes of vibration (Le.: eigenfunction/eigenvalues) of a string are 
precisely sinusoidal curves (see e.g. [l6]). Nor is there anything special about 
the grid graph; it is just a simple way to discretize the surface. We would 
have gotten the Laplacian of whateuer graph we had chosen. 

1.3 Basic properties of the eigenvalues 

One of the earliest uses of the ma t rk  L proper mas the Matrix-Tree Theorem, 
due to Kirchhoff (in fact, L is sometimes called the Kirchhoff matrix). It 
states that the cofactors of L give the number of spanning trees of the graph. 
For notation, let Lp,jl be the subrnatrix L with the ith row and jth column 
removed, and let LIA,Bl be the submatrix of L with the set A of r o m  and 
the set B of coiumns removed, Denote the number of spanning trees of G by 
t(G). Then we may state that: 

Theorem 1.3.1. (-l)"j det (LEijl) = t(G) 

Proof. This can be proved by considering the incidence matrix K, where 
L = KKt. Note that if G is connected and not a tree, then G has a t  least n 



edges, Le., K is a either a square matrix or a "wide" m a t r k  First consider 
det (lliyjI). It can be  seen that 

Now applying Cauchy's determinant formula to this product, we obtain that 

where M denotes a set of columns whose deletion from Kbyal leaves a square 
matrix and the surn is over al1 such sets M. Note that  M can be viewed 
as a set of edges, with IMI = IE(G)I - (IV(G)I - 1). Denote by Gr the 
subgraph of G obtained by removing the edges of M ;  Gr has n - 1 edges. 
Now for any given set M ,  we see that KiayM] represents the incidence matrix 
of C. Since Gr has n vertices and n - 1 edges, we see that G' represents 
a spanning tree if and only if it contains no cycles and if and only if ib is 
connected. Therefore, det(KblMl) = O exactly when Gr is not a spanning 
tree. Furthermore, det(KlilMl) = -tl exactly when G' is a spanning tree. 
Since det (Kb,Ml)t) = det(Kb,,wl)), the sum in (1.11) will exactly count the 
number of connected acyclic subgraphs of G with n-1 edges: Le., the number 
of spanning trees. Cl 

It can be shown that in fact al1 of the cofactors are equal; since we have 
shown the validity of the theorem on the cofactors of the diagonal, it is true 
for al1 of them. 

By looking a t  the linear coefficient in the characteristic polynomial of L 
(e.g. [9]), we see that in terms of eigenvalues me have: 

Corollary 1.3.2. n7=, Xi = n t(G) 

We can thus incidentally observe (once again) that X2 = O if and only if 
G is disconnected. 

This can be regaxded as a consequence of a more general theorem. We 
will first establish some notation. Let G be a graph on n vertices, and let 
J C V(G). Define the graph Gi4 to be the graph obtained by replacing 
al1 the vertices of J with a single vertex, which is adjacent to  exactly those 
vertices in G \ J  that are adjacent (in G) with some vertex of J. Note that this 
may produce multiple edges (if some vertices in J share a common neighbour 



not in J) or loops (if some vertices in J are adjacent to each other). Write 
t(G) for the number of spanning trees of G. This leads to the following 
characterïsation, due to  Kel'mans ([25], [9], p38). 

Theorem 1.3.3. Let xn + h-,xn-' + - - - + clx be the characteristzc polyno- 
rnial of L(G) . T h e n  

Some of the first modern results suggested that the value X is related to 
the "connectedness" of the graph (Fiedler called it the "algebraic connectiv- 
ity"). Informally, lasge values of A2 are associated with graphs that are hard 
to disconnect. In fact, by ordering the vertices such that L is in block form 
with the blocks corresponding to the connected components of G, we see not 
only that Xp = O if and only if G is disconnected, but furthemore that 

Theorem 1.3.4. T h e  number of connected components of G is  qua1 t o  the  
multiplicitg of O as a n  eigenvalue 

A matrix A is said to be reducible if there exists a permutation matrix P 
such that 

where B and C are square matrices. Othemise i t  is irreducible. Furthemore, 
if A is reducible, then there exists a permutation matrix P such that PtAP 
has the form 

with the matrices {Ak,l ,  . , Ak,k-l) not al1 zero for any fixed value of 
k > S.  This is a n o m a l  f o n n  of the matrix (see [44]). It is not necessarily 
unique, as permutations among and within blocks are possible. 

So as a corollary to  Theorem 1.3.4, we have that 



Corollary 1.3.5. A graph G is eonnected if and only i f  the mat* L(G) is 
irreducible. Furthemore, if G 2s disconnected, then a normal form of the 
(reducible) matriz L is obtained by  any ordering of the vertices that lists the 
vertices in arder of components. 

If L is decomposable, then partition the vertices according to  the subma- 
trices B and C in form (1.12). The zero block then indicates an absence of 
edges between the two parts of this partition, Le., the graph is disconnected. 
It can easily be  seen that by listing t h e  vertices by connected component 
that the block submatrk corresponding to each connected component is ir- 
reducible and that al1 off-diagonal blocks are zero. In fact, this is not just a 
normal forrn, it is a block diagonal forrn. 

There is a nice relationship between the eigenvalues of a graph and of its 
complement. If we let L(G) stand for the Laplacian of a graph G, and GC 
stand for the complement of the graph G, then nTe see that L(GC) + L(G) = 
n1 - J ,  and hence that L(Gc) = n1- J - L(G), where J is the dl-ones 
matrix. If x is an eigenvector of L(G) orthogonal to the all-ones vector, with 
eigenvalue A, then since J x  = O, we see t ha t  x is also an eigenvector of L(Gf)  
with eigenvalue n - A. This mas first obtained by Kel'rnans [23] ,[24] in the 
following result, where Pc(x) stands for the characteristic polynomial of the 
Laplacian matrix of G: 

Theorem 1.3.6. ( n  - x)PG=(x) = (-l)"xPc(n - x) 

?-j(G) for 2 5 j 5 n Corollary 1.3.7. Aj(Gc) = n - A,+- 

We also get an upper bound on LapPacian eigenvalues [25]. 

Corollary 1.3.8. A, 5 n with equality if and only if GC is disconnected 

Hence we have X2(G) = O An(Gc)  = n a G is disconnected. So 
the spectrum is, in a sense, symmetric, and questions about XÎ of a graph 
are equivalent to questions about An of its complement. 

By looking at the trace of L, we have that x:=, d j  = Cj",, Aj7 and thus 
A* 5 &d 5 A,. However, we tan do better than this. Fiedler [13] shows 
that 

Theorem 1.3.9. Al 5 5 6  and *A 5 Al 



Thus the range of the non-zero eigenvalues of a connected graph is (ap- 
proximately) a t  least as great as the range of the vertex degrees. Obviously, 
by Theorern 1.3.4 and Corollary 1.3.8, we also have X2 5 n with equality if 
and only if the graph is complete. He further established the following result 
[13], with u(G) representing the vertex connectivity of the graph. 

Theorem 1.3.10. X2 5 v(G) 

Proof. To show this, we first note that if GL and Ga are edge disjoint graphs 
on the same set of vertices, then L(G1) + L(G2) = L(Gi U G 2 )  Writing j for 
the all-ones vector, this gives that 

= min 
xLj 

where the minimum is as usual over al1 non-zero vectors orthogonal to the 
all-ones vector. Thus removing edges does not increase X2. NOW given a 
graph G and a vertex j E V(G) ,  define H = G\{j), and define Gr to  be the 
graph with vertex set V(G) and edge set E ( H )  U {ij 1 i E V(G)) .  (This may 
be seen as Gr = H v j; see Theorem 1.4.5.) If x is an eigenvector of L ( H )  
with eigenvalue a, then the vector x' Çormed by the entries of x with one 
additional zero entry is seen to be an eigenvector of L(Gr) with eigenvalue 
a + 1. This gives 

By induction, we have that 

So if the removal of some k vertices disconnects G, then X2(G) 5 k, which 
is exactly the result. Since the edge connectivity b(G) 2 v(G), me also have 
that  X2 5 b(G). O 

In the same paper, he also established the following bounds relative to  
the edge connedivity, e = e(G). 



Theorern 1.3.11. 

The  second bound is better if and onIy if 2e > 4. It is relevant to note in 
connection with this bound that 2(1 - cos(m/n)) = X2(Pn), where Pn is the 
path on n vertices. A path being, in a sense, the "most nearly disconnected" 
connected graph, we see that, for fixed n, X2 is minimal for "most nearly 
disconnected" graphs, Le-, it is minimal on P,. 

We give values of X2 for certain graphs. 

path PnX2 = 2(1- cos(r/n)) 
cycle c n h  = 2(1- cos(2?r/n)) 
cube QmA2 = 2 

complete KnA2 = n  

completebipartite K m , n h  = min(m, n) 
star S n  = Ki,n-iX1 = 1 

We note that, informally, graphs which are more connected have a larger X2. 

1.4 Operations on graphs 

We have already seen that removal of edges from a graph does not increase 
XZ. We will now consider more precisely what happens to X2 under various 
graph operations. 

Recall that the Cartesian product of two graphs Gl and Gp is defined as 
the graph G1 x G2, with vertex-set V(Gi) x V(G2); (il, jl) and (i2: j2) are 
connected by an edge if and only if il = i2 and jl -.c, j2, or jl = j2 and 
il - G ~  i2- 

We note that a similar staternent can be made about the eigenvalues of 
the adjacency matrix. In fact, the proof is quite general, depending only on 
the fact that L(G1 x Ga) = L(Gl) @ I + I @  L(G2), where I represents an 
appropriately-sized identity rnatrix and @ represents the Kronecker product. 
It can be shown from this that the set of eigenvalues of Gz x G2 is exactly 



{Xi(G1) + Xj(G2) 1 1 5 i 5 nl, 1 5 j 5 n2)- Furtherrnore, if x is an 
eigenvector of L(G1) corresponding to Xi(G1), and y is an  eigenvector of 
L(G2) corresponding to Xj(G2), then x 8 y is an eigenvector of L(Gi x Gî) 
corresponding t o  Ai(Gl) + Xj(G2). 

In particular, if we take the product of G with itself, then X2 remitins 
constant. Thus, given any graph, we can build arbitrarily large graphs with 
the same X2. 

The line graph of G, denoted l(G)3, is the graph whose vertices correspond 
to the edges of G, with two vertices of l(G) being adjacent if and only if the 
corresponding edges of G share a common vertex. The subdivision graph of 
G, denoted by s(G), is the graph obtained by replacing every edge in G with 
a copy of P2 ( u ~ ~ b d i ~ i d i n g ' '  each edge). The total graph of G, denoted by 
t(G), is the graph whose vertices correspond to the union of the set of vertices 
and edges of G, with two vertices of t(G) being adjacent if and only if the 
corresponding elements are adjacent or incident in G. 

Let G be a d-regular graph, with n vertices and m edges. It is shown in 
[25] t hat 

Theorern 1.4.2. 

where Pc (x) represents the characterist ic polynomial of the Laplacian mat rix 
of the graph G. Note that, if G is d-regular with d > 1 (Le. not a disjoint 
union of copies of K2), then the eigenvalues of l(G) are exactly the eigenvalues 
of G with the addition of the (multiple) eigenvalue 2d, which was not an 
eigenvalue of G (Theorem 2.2.4). If G is 1-regular (i.e., a disjoint union of 
copies of K2), then 2d = 2 is an eigenvalue of G and the leading terrn in the 
expression for the characteristic polynornial for l(G) "takes it away" instead 
of adding it to  the spectmm. 

Of course, as this theorem applies only to regular graphs, equivalent state- 
ments are possible in terms of the adjacency m a t e  (see (91). 

We avoid the more customary L(G) as this is reserved for the Laplacian matriu of G. 



A bipartite (T, s)-semiregular graph is a bipartite graph with bipartition 
V(G)  = U U W ,  such that al1 vertices in U have degree T and al1 vertices in 
W have degree S. In [46], Mohar shows that 

Theorem 1.4.3. Let G be a bipartite (T, s)-semiregular graph. Then 
fi(G) (x) = ( - l ) m ( ~  + s - x)m-n PG(r +- s - x). 

We will define the (disjoint) union of two graphs G1, G2 to  be the graph 
with vertex-set V(Gl) U V(G2) and edge-set E(G1) U E(G4 and will denote 
it  by G1 +GZ. Note tha t  this is a disconnected graph, and therefore A2(G1 + 
G2) = O. In fad, one may easily prove 

Theorem 1.4.4. Given graphs GL and Gp with spectra O = al _< a 2  5 . . . 5 
ch21 and O = a 5 p2 5 . . . 5 Bn,, then the spectrum of Gl + G2 is the 
multbet {&17~2 ,  . - - 7 -11 Pl7 82, * - - 7 Bn2)- 

Define the join of two graphs G1, G2 to be Gl v G2 = (G; + G$)=. This 
is the  union of the two graphs, with every vertex in Gl connected to every 
vertex in G2. We note that G1 v G2 is always connected. It is obvious from 
the definition that the diameter of Gr V G2 is at most 2, with diameter 1 if 
and only if Gl and G2 are both complete graphs. The join of two graphs 
may be thought of as  maxirnally attaching the two graphs together. In fact, 
since the complement of Gi v G2 is disconnected, we see that  nl + 7-22 must 
be an eigenvalue. 

The matrix L(Gl v G2) has a particularly nice block structure. The 
upper-Ieft block is the  matrix L(Gl) + n21, the lower-left block is the matrix 
L(G2) + nlI,  and the  other two blocks are -J. From this we may readily 
deduce the spectrum of G1 vG2, by exhibiting a complete set of eigenvectors. 
If x is an eigenvector of L(G1) corresponding t o  Ai, 1 5 i 5 ni - 1, then 
the  vector x', defined by x i  = xk, 1 5 k 5 n1 and x', = O otherwise, can be 
seen to  be an eigenvector of L(G1 V Gî) with eigenvalue Xi + na. Similarly, 
we obtain the eigenvalues X j  + nl for 1 5 j 5 722 - 1. The all-ones vector 
gives, as usual, the eigenvalue 0, and the eigenvector whose value is -nl on 
the vertices of Gl and n2 on the vertices of G2 gives the eigenvalue nl + 712. 

We have proved the  following theorem, due to  Merris [41] 

Theorem 1.4.5. Given graphs G1 and G2 with spectra O = al 5 a 2  _< . . . 5 
%, and O = pl < fi2 5 - . . 5 Pn,, then the spectrum of Gl vG2 is the multiset 
{0 ,cui+nî ,Bj+nl ,n i+n2 1 1 5 i 5 n i - 1 , 1  5 jsn2). 

In  particular, X2(G1 V G2) = min{X2(G1), X2(G2)} 



We note that this theorem gives a simple way of determining the Lapla- 
cian spectmm of a complete bipartite graph, since Km,+ = KmC V KnC. 

Merris [41] notes as a corollary of this that 

Corollary 1.4.6. I f x  is an eégenuector corresponding to  X with O < X < n, 
then xj = O whenever d j  = n - 1 

Proof. To see this result, let G be  a graph, and j a vertex of degree n - 1. 
We see that G = (G\{j)) v {j). Thus, by Theorem 1.4.5, me have that the 
vector y, which takes the value n- 1 at  vertex j and 1 otherwise, corresponds 
to the eigenvalue n. The all-ones vector e corresponds to the eigenvalue 0. 
If x is an eigenvector corresponding to  the eigenvalue A, O < X < n, then 
x is orthogonal to both y and e, and hence is orthogonal to x - e. Hence 
Xj = O. Cl 

We therefore have that the number of eigenvalues less than n (including 
multiplicities) is no more than the number of vertices of degree less than n-1, 
and hence that the multiplicity of n is a t  least equal to  the number of vertices 
of degree n - 1. We can do better than this. Recall that the multiplicity of O 
is equal to the number of connected components, and that the multiplicity of 
n is equal to  the number of connected components in the cornplement. Since 
vertices of degree n - 1 in a graph correspond exactly to isolated points 
in the complement, we have that the total number of eigenvalues (counting 
multiplicities) strictly between O and n is exactly the number of vertices of 
degree inclusively between 1 and n - 2. 

We see that the union and join operations preserve 'integrality". That 
is, if G1 and G2 have only integers in their spectra, then the same can be 
said of G1 v Ga and G1 u G2- Merris observes that any graph that  can 
be expressed as a series of unions and joins of isolated vertices will have 
only integral eigenvalues; he refers ta  these as decomposable graphs. Note 
that for decomposable graphs, the final sentence of the preceeding paragraph 
says that the number of vertices of degree between 1 and n - 2 gives the 
number of eigenvalues between 1 and n - 1. In particular, we have that al1 
connected decomposable graphs have Xî 3 1. The fact that X2 is bounded 
away from zero for this class of graphs is intuitively consistent, as connected 
decomposable graphs were necessarily constructed with a join as the final 
operation, meaning that the resulting graph is highly connected. 



1.5 Bounds on eigenvalues 
Anderson and Morley [l] gave one of the first bounds on X2, as 

Theorem 1.5.1. An 5 m.(& + dj) 
2-3 

We omit the proof of this result. 
Using the relationship between the LapIacian spectrum of a graph and 

its complement, we can of course write 

In a sirnilar spirit, Li and Zhang [27] show that 

Theorem 1.5.2. A, 5 2 + ,/(di + dj - 2)(di + d: - 2) 

where 4, dj are the degrees of the endpoints of the edge with the largest 
number of adjacent vertices, and di, d i  are the degrees of the endpoints of 
the edge (not including the previous edge) with the (next) Iargest number of 
adjacent vertices. 

Merris noted the following bound [42] (mhich he says is usually better than 
Theorem 1.5.2), where nq represents the average degree of al1 the neighbours 
of the vertex i 

Theorem 1.5.3. An 5 mc(mi  + d j )  
1-3 

Li and Zhang [28] were able to improve their bound to 

Theorem 1.5.4. A, < rnax di(di+mi)+dj(dj+mj) 

i- j &+dj 

Proof. To prove this result, we recall that L = K F ,  where K is the oriented 
vertex-edge incidence matrix. It is well known that K f l  and p K  share the  
same nonzero eigenvalues. So A, is in fact the largest eigenvalue of Ii?K. 
It is also well known that the largest eigenvalue of KtK is no greater than 
the largest eigenvalue of K + t ~ + ,  where K+ is the unoriented vertex-edge 
incidence rnatnx (it's entries are just the absolute value of the corresponding 
entries of pK). A simple calculation shows that K + ~  K+ = 21 + B, where 
B is the adjacency matrix of the line graph of the original graph. Let y be a 
vector of m components, where m = 1 E(G)I. We then have that 

A, 5 max ( ( 2 1  + B)Y), 
Yu 



Choose x, = c$ + d j ,  where the edge u joins vertices i and j. We then have 

( ( 21  + B ) y ) ,  = 2(di + d j )  + C(& + da) - (di + di) + C ( d j  + d b )  - ( d j  + di) 

The result follows. CI 

Given the "standard" nature of the proof, it is perhaps somewhat surpris- 
'ans on ing that this result was not published until 1998, while the observat' 

p K  and K+'K+ were made specifically in the context of Laplacian eigen- 
values as early as 1971 in [Il. 

We note the role of the average degree, and the average degree arnong 
neighbours in these bounds. In fact, the quantity dimi has been termed the 
Sdegree of the vertex, as it gives the number of paths of length 2 originating 
from the vertex. 



Chapter 2 

Isoperimet ric Inequalit ies 

2.1 Introduction 

Let X C V(G).  Define dX  to be the set of edges of G with exactly one 
endpoint in X; this is sometimes referred to  as the edge boundary of X ,  and 
is useful in analysing eut-set problems. Ive define the isope~imetric constant 
of a graph to be 

Definition 2.1.1. h(G) = min 
1xl<n/2 I X I  

We can interpret the quantity IdX[/IXI as the average boundary degree 
of X .  More precisely, given a graph G and a subset of vertices X ,  create a 
new multigraph G' by coalescing X ont0 a single new vertex x, preserving 
multiple edges but deleting any loops that would be formed. The degree of 
x is then precisely [aXl .  Thus [aXl/lXl is the average contribution of the 
vertices in X to the degree of x. 

The isoperimetric constant can be understood as a measure of how easy 
it is to  disconnect a luge  part of the graph. To a terrorist wi th  an eye 
t o  knocking out the phone system, this is the reciprocal of the "bang for 
the bu&'. We note that like X2, we have that h(G) = O if and only if G 
is disconnected. We will see that X2(G) and h(G) are in fact quite closely 
related. It should be noted, however, tha t  h(G) is quite d e c t e d  by local 
properties, since it finds the weakest part of the graph. In other mords, 
"most'~ of the graph could be quite well-connected, with only one weak link, 
and the isoperimetric constant would reflect only this weak link. As an 
example of this, let G be the graph composed of two copies of Kn joined by a 



single edge, and let H = P2*. kVe then have h(G) = l /n  = h(H) .  Intuitively, 
one of these is more connected than the other, and in fact X2(G) = n (This 
is a consequence of Theorem 6.1.1) and A2(Pa) = 2(1- cos(nl2n)). We give 
values of h for certain graphs. 

We have the following elementary bounds on h(G). 

di + d j  - 2 
h(G) 5 min i f n > 4  

a- î  2 

L 

h(G) 1 - if G is connected 1 4 2 1  
The first two may be seen by considering X to  be a (single) minimal 

degree vertex and a pair of connected vertices, respectively. The third cornes 
from considering that ldXl 5 (1x1) (n - 1x1). The fourth is a consequence 
of the fact laXl 3 1 and 1x1 < n/2. 

Chung [7] gives an alternative characterisation of the isoperimetric con- 
stant similar to  (1.3), narnely that 

h = min 
5 

where x ranges over al1 non-constant vectors. So h is just A2 measured with 
a different norm- Note that the value of t that achieves the maximum may 
be taken as the median of the values {xj}. If n is odd, this is unique; if n 
is even, then t may be taken to  be any value in the closed interval between 
the two median values of the set {y). Recall that  in (1.3) the value t was 
uniquely determined to  be  the mean of the values { ~ j )  



Recall the interpretation of Lx given in Section 1.1, namely that given a 
{O, 1)-vector x (Le., the characteristic vector of a subset X of vertices) Lx 
describes exactly the boundary of X. We see that 

In other words, me may give the equivalent definition of 

where the minimum is over al1 {O, 1)-vectors x with (x,x) 5 7-42 - or 
equivalently over al1 subsets X of vertices with 1x1 5 7212. This has obvious 
similarities with the definition of X P ,  however, it should be noted that the 
sets of vectoe over which x ranges in these definitions are disjoint. Also, 
though the set of vectors orthogonal to the constant vector is certainly a 
vector space, the set of {O, 1)-vectors î: with (x, x) 5 n / 2  is certainly not. 

Computationally, determining X2 amounts to  minimising a quadratic form 
over a vector space, while determining h amounts to minimisiog a quadratic 
form over a set. So it's not surprising that determining h seems to be in 
general exponential [45]. In fact, in that sarne paper, Mohar does show that 
the determination of h for general graphs with multiple edges is NP-hard. 

2.2 Bounds on h(G) 

A first approximation, due to  Mohar [45] gives that the isoperimetric number 
is bounded by approximately half the average degree: 

This is not entirely unexpected, as for sets X of a single vertex, we have 
exactly that laXl is the (average) degree of that vertex, and for sets X 
where 1x1 > 1, unless the subgraph induced by X has no edges, then 13x1 
wili be at most the average degree of the vertices in X .  

Proof. To show this result, we will, following Mohar, define the quantities 

13x1 min - 
k(G)  = IX,=r<n/2 1x1 



Consider 
there are 

the T-subsets of V(G)  ; t here are ( z )  of them. Fix an edge i j E E (G) ; 
2@1:) T-subsets X mith ij E aX. Therefore, 

This gives that 

and thus 

Informally, we see that both X2 and h(G) tend to increase as the G be- 
comes "more connected", and decrease as it becomes "less connected". For 
a given n, they are both maximal (only) for K, and minimal for P, (though 
h is also minimal on other graphs, such as two copies of Kn/2 joined by a 
single edge). The link between them can be made explicit by the following 
two theorems, due to Mohar [45]: 

Theorern 2.2.1. X2/2 h(G) 

Theorem 2.2.2. h(G) 5 ,/A2(2A - X 2 )  f o r  G # Ki, K2, K3 

Note that 2A 2 X2 is a positive quantity for graphs on n 2 3 vertices (in 
fact, we will shortly establish a stronger result), so this bound is well-formed. 
By simply observing 2A - A2 5 2 4  we have a weaker form of Theorem 2.2.2 
which is (sometimes) easier to use. 

Proof. To show Theorem 2.2.1, let X be a set that achieves h(G), i-e. such 
that h(G) = laX[/lXl. Let a = 1x1 5 n/2 and b = n - [XI.  Define the 
vector 



We have that x is orthogonal to the all-ones vector, and hence that 

To prove Theorem 2.2.2, we will need the following 

Lemma 2.2.4. For a complete graph, A2 = n = A + 1. Otherwise, Xp 5 A. 

Proof. We have dready noted that A:, = n for complete graphs; it is a sim- 
ple consequence of (among other things) the fact that the complement of a 
cornplete graph has n components. 

If the graph is not regular, then by Theorern 1.3.9, we have 

If the graph is regular but not complete, then it contains P3 as an induced 
subgraph. Let p2 be the second largest eigenvalue of the adjacency matrix 
A of the graph. Applying the interlacing theorem, we see that p2 must be 
larger than the second largest eigenvalue of the adjacency matrix of P3, i.e., 
p2 2 0. however, since the graph is regular, L = D - A = AI - A, and thus 
A - X2 = pa, giving that X2 < A. 13 

We note parenthetically that there is a gap in the permissible values of 
A*. If it is larger than the maximal degree, then it must be exactly one more 
than the maximal degree. 



Proof. The following proof of Theorem 2.2.2 is due to Mohar [45]. We 
first note some special cases. Obviously, if G is disconnected, then h(G) = 
&(G) = O and the theorem holds. If G = K,, n > 4, then we have that 

Also, if X2 > 6 and the graph is not complete, then by Lemma 2-24 

So we may assume that G is connected, not a complete graph, and that 
AB 5 6. Let f be an eigenvector of A2. Define the set W = {j 1 fj > O}. 
We may assume that IWI 5 n/2 (othermise negate f).  Define a vector g by 
gj = fj if j E W and gj = O otherwise. Denote by E(W) the set of edges 
of the induced subgraph of the vertex set W. Recalling that the eigenvalue 
condition for X2 may be written a t  each vertex as 

we see that 



Also, note that 

> C ( d j f j  + c fi)  fj 

= C ( g i  + gj12 + C f i f j  

Combining these two, and writing A = CijEaw( fi f j )  , we have 

- g j ) 2  C ( g i  + gj)2 - A A + 4  C f i f j  
i-j  i- j  

( ) (2-3) 
i j ~ E ( b V )  

Obseme that A 5 0. Also note that since X2 5 6, we have 

A + 4  C f i f j = 2  C f i f j  + C C f i f j  

Denote B = xi-j lg: - g ; l .  We then have 

i- j  i- j  

We now obtain a lower bound on B. Let the distinct values of the com- 
ponents of g be O = ta < ti < . - -  < t,. Define the set Vk = {j 1 gj 2 t k ) .  



Putting these two bounds together me get 

which completes the proof- 

As a general comment on the discipline, it is interesting to note that the 
vectors f and g were also used in proving results on magnifier graphs [2] 
(Theorem 3.2.3 of the present paper). 

Note that 2A- X2 > A is never "small": for a complete graph, 2A-X2 = 
n - 2 and otherwise 2A -A2 3 A. SO for J A ~ ( ~ A  - AL>) t o  be smail we need 
to have & small. Thus by combining Theorem 2.2.1 and Theorem 2.2.2, we 
have 

In other words, srna11 values of X2 force hhe graph to have a poorly-connected 
subset, and a graph with no poorly-connected subset has a large A?. We can 
formalise this for a aven infinite family of graphs Gr by 

lim h(G,) = O lim X2(Gr) = O 
r+oo r + m  

It is relevant to note that, in general, there is no known efficient way to 
calculate h(G) for a given graph. Although it seems to  be a difficult quan- 
tity to calculate, it is not been formally proved that  there is no polynomial 



algorithm to determine h(G) in general. As noted above, it is NP-hard for 
graphs with multiple edges. Computing X2, however, is much easier. Thus we 
may use X p  to obtain an easily computable upper bound for h(G). This is a 
recurring theme, in fact. Although X2 does not directly measure most graph 
properties, we will see that it often provides useful (and easily computable) 
bounds. 

Theorem 2.2.1 can be seen t o  be tight for the cube graphs, where we have 
AS = 2 and h = 1. Corollary 2.2.3 can be seen to be roughly tight to (mithin 
a constant factor) for a path or  a complete graph, for instance: 

In general, however, this is not always the case. For example, if G is the 
graph formed by joining two copies of Kn with a single edge, then h ( G )  = n 
mhile h(G) = l /n .  

It is useful to  note (by observing the final inequality in the proof of 
Theorem 2.2.1) that if the set X that achieves h is such that 1x1 is much less 
than 7212, we may (almost) state X2 < h. Informally, for a graph to have a 
large value of Xat not only should h be large, but also any set that achieves 
h should be as close as possible to half the total nurnber of vertices in size. 

Note that in Theorem 2.2.1 me needn't insist that X achieves h(G), so in 
fact for mbitrary 1x1 we have (following the proof of Theorem 2.2.1) that 

For a given set X, we define the edge density of X to be 

This represents the ratio of edges to  vertex pairs ("potential edges") between 
X and its complement. It is a relative measure of the extent to which X is 
connected to its cornplement. 



Given X, is uniquely defined. If the graph is connected, then d X  
is the edge boundary only of X (or the complement of X). If the graph is 
disconnected, it is possible for two distinct non-complementary sets X I  and 
X2 to have d X l  = dX2. Thus if G is connected, and Y is a minimal set 
of edges that disconnects the graph, then Y = dX for a unique X (up to 
complementation) and we see that p(X) depends only on Y. 

We see then that the bounds (2.8) gives rise to bounds on the edgedensity 
in a graph: 

Also, letting X be a set that achieves h(G), we have, in light of Theorem 2.2.1, 
t hat 

and we see that the minimal edge density in the graph is bounded above by 
A1. This is an extremely important observation, as the value of X2 allows US 

to conclude the existence of a "weak link" in the graph, where weakness is 
measured in terms of edge density. For a graph to have no set X with low 
edge density, it is necessary (though not sufficient) that X2 be large relative 
to n. 



Chapter 3 

Expanders 

3.1 Introduction 

The isoperimetric constant was motivated by a desire to find the "weakest:' 
point of a graph, the part that is (for its size) least connected to the rest 
of the graph. We may ask essentially the same question in reverse: Can 
we construct a graph such that any ''srnaIl" set of vertices is well-connected 
to the rest of the graph? Here we are looking for graphs with large growth 
rate, i.e., the nurnber of vertices at distance k from some (fixed but arbitrary) 
point increases rapidly with k. This leads to several related notions, including 
concentrators, superconcentrators, magnifias ... al1 based on essent ially t his 
one idea. 

Such graphs are useful in computer science. Expander graphs are used in 
parallel sorting algorithms, as well as graph pebbling algorithms (see [3] and 
the references therein). According to [2] they axe quite common (e-g. almost 
al1 regular bipartite graphs on n inputs and n outputs are expanders for some 
value of c) .  They are also used to build superconcentrators, which are used 
in computer science (again, see the references in [3]). Explicit constructions, 
though possible ([17], [31]) are more difficult and may have expansion prop- 
erties that actually compare quite poorly with the expectation for a random 
graph (21. Although this means that random guessing is the "best" wax the 
explicit calculation of the expansion properties of any given graph can be 
quite difficult. This dilemma can be resolved using the Laplacian eigenvalues 
of the graph. 



3.2 Relations with eigenvalues 

An (n, A, c)-ezpander graph is a bipartite graph on two sets of vertices I and 
O ("inputs" and "outputs"), with 111 = 101 = n, the maximal vertex degree 
is 4, and for every subset X of 1 with 1x1 $ n/2 we have 

where N ( X )  is the neighbourhood of X: the set of vertices adjacent to a 
vertex in X .  It is a strong (n, A, c) --ander if the result holds for al1 subsets 
/Y of 1. 

It turns out that the expansion properties of a graph are related to the 
Laplacian eigenvalues of the grap h. This h a  direct pract ical consequences. 
By randomly generating graphs, we are almost sure that the gr&phs will be 
expanders; by checking the value of Al,  we c m  establish a bound on the 
amount of expansion. That is the essential result of [2]. To demonstrate 
this, we will need to consider magnifiers. An (n, A, c)-magnifier graph is a 
graph on n vertices, with maximal degree A, such that for every subset X of 
vertices with 1x1 5 n/2 we have 

This is essentially the non-bipartite version of an expander graph. Were it 
not for the fact that the applications are more in terms of expanders, this 
might well be regarded as the more cTundarnental" definition. The relation 
between the two can be made more explicit by observing that magnifiers give 
rise to  expanders. Specifically, [2] we see by direct calculation that 

Lemma 3.2.1. Let G be an (n, 4 ,  c) -magnifier on vertices {ul, ul,  . - - , un) - 
F o m  the graph H with inputs {xi, xl, . . . , xn) and outputs {YI, ~ 2 , .  . - , yn) 
such that the edges of H are exactly the pairs {(xiyi)) for i = 1,2, . . . , n and 
the pairs {(zigj)) where (uivj) is an edge of G. (This is the extended double 
cover of G.) Then H is an (n, 4 + 1,c)-expander. 

Alon establishes the relationship between magnifiers and eigenvalues by 
the following two lemmas (the notation is slightly changed from the original 
pape.) Pl 
Theorem 3.2.2. Giuen a graph G on  n  vertices with maximal degree A, 
then G is an (n, A, c)-magnifier with c = 2X2/(A f 2X2) 



Theorem 3.2.3. Giuen an (n, A, c)-magnifier, then X2 2 c2/(4 + 2c2) 

Thus a graph with good magnification properties (which means a graph 
such that any small subset is well connected to the rest of the graph) is more 
or less the same as a graph with large X2. We have as a straightforward 
consequence, that  given a n  (n, A, c)-magnifier, we can proue (by computing 
eigenvalues), that it is an (n, A, c')-magnifier with d = c2/(? + h ( 2  + c2)) - 
This is relevant in that if we are generating graphs randomly, we don% know 
what c is explicitly even though we may be fairly certain that it is large. This 
makes the random generation and subsequent verification (by eigenvalues) of 
magnifier graphs an efficient process. 

The proof of Theorem 3.2.2 depends on the following lemma from [3]. 
Define the distance between two sets of vertices A and B as the length of the 
shortest path that  starts in A and ends in B. 

Lemma 3.2.4. Giuen two disjoint sets of vertices A and B such that the 
distance between them is d > 1. Let a = IAlln and b = 1 Bl/n. Then 

Informally, this says that if X2 is large, then "large" sets of vertices cannot 
be "far" apart. 

Proof To show Theorem 3.2.2, let X be a subset of vertices such that 1x1 5 
7112. Using Lemma 3.2.4 with A = X and B = V(G)  - (X U N ( X ) ) ,  we 
obtain 

For /2, this gives that 



which says that the graph is an (n, A, c)-magnifier with c = 2X2/(A + 2X2). 

Proof. To proof of Theorern 3.2.3 is a little trickier. We define, as we did in 
the proof of Theorem 2.2.2, the vector f to be an eigenvector of Ag with at 
most 7212 positive entries, the set W = {j 1 fj > O), the set E(W) to  be the 
set of edges both of whose endpoints are in W, and the vector g -by gj = fj 
if j E W and gj = O otherwise. 

Making use- of prior work, 
for Ag: 

we find that (2.2) gives the following bound 

We now construct a network, with an eye towards applying the mell- 
known ma,-flow min-cut theorem. The network h a  vertex set {s, t )  UX u Y, 
where s is the source, t is the sink, X is a copy of W and Y is a copy of 
V(G). The arcs are defined as follows: 

1. The arc (s, i) has capacity 1 + c for every i E X 

2. The arc (i, j) has capacity 1 if ij E W or if i = j, and O o t h m i s e  

3. The arc ( j ,  t )  has capacity 1 for every j E Y 

The cut consisting of d l  arcs (s, i) has capacity 1 WI (1 + c); the daim is that 
this is minimal. Let C be some cut that does not include al1 arcs originating 
from the source. Let U be the set of arcs of the form (s, i) that are not in 
C. Consider the set { j  E Y 1 (i, j) is an arc for some i E U). But the graph 
is a magnifier. Therefore, this set has cardinality a t  least (1 + c) lUI. Since 
C is a cut, it must contain a t  Ieast one arc incident to each element of this 
set. Thus the total capacity of C is at  least 

The max-flow min-cut theorem @es that there exists an orientation Ë of 
the E(G) and a function a! defined on the directed edges such that 

2. xjcr(i, j) = 1 + c if i E W, and O otherwise 



One can check that the function a! satisfies 

and 

Combining (3. l), (3.2), and (3.3), we obtain 

O 

In the same paper, Alon also establishes the following two results, which 
we reproduce here without proof: 



Theorem 3.2.5. If G is an (n, A, c) strong expander, then G is a (272, A, c/16)- 
magnifier. 

Theorem 3.2.6. r f  G Zs a A-regular bipartite graph on the vertex sets I 
and O with 111 = 101 = n, and G is a (an, A,c)-rnagnijier then G is a 
(n,  A, 2c/ ( ( d  + 1) (c + 1) ) )  strong expander. 

It is remarked that the constant 16 is not optimal. Combining this with 
previous results, this gives 

c= Corollary 3 -2.7. If G is an (n, A, c)  strong expander, then X2 2 1024+cF. 

If G is a A-regular bipartite graph o n  the vertex sets 1 and O with 111 = 
4X )-expander. 1'1 = then is a (n, A ï  (A+1)(2+4A2) 

Alternatively, he also derives the follawing result, which is in principle 
the same thing, but with a better bound. 

Theorem 3.2 -8. Tf G is a A-regdar bipartite graph on the vertex sets I and 
2A-A=) A:! O with [Il = [O1 = n, then G is a (n, A, ,*.)-expander. 

3.3 Vertex expansion 

One can view the  properties of expamders as being similar to the properties 
of the isoperimetric constant h. One can define the vertex boundary of a set 
X as being the set bX = {y E V(G) 1 y $! X, 9 - x E X). We c m  then give 
the alternative definition of the parameter hr in an (n, A,  hl)-magnifier as 

Definition 3.3.1. hi = min 
1xl<n/2 I x l  

where this definition includes the rather uninteresting case where h' = O. 
W-e can see trivially that 16x1 5 laXl, so that h' 5 h. Thus by Theo- 

rem 2.2.2 (or the  weaker version, Corollary 2.2.3) that 

K ( G )  5 J x ~ ( ~ A  - X 2 )  for G # I(i, K2, K3 

These bounds can sornetimes be tight to within a constant factor: for exam- 
ple, for the path, we have h1(Pn) = h(P,), and (2.7) applies t o  hf(P,) as well 
as t o  h(Pn). Homever, for the complete graph, we obtain 



In fact, we see directly from the definition that for any graph, M 5 1. 
Considering any graph, we see that the magnification constant hl is 

bounded below by 

where the minimum is taken over al1 subset X of vertices with 1x1 5 n/2. 
So we also have the bound 

This bound can be tight to within a constant factor. For example, for the 
graph H composed of two copies of K, joined by a single edge and for a path 
we have 

Note that as a corollary to  Theorem 3.2.8 and Theorem 2.22, we obtain 
a lower bound on h', allowing us to  give 



Chapter 4 

Other Graph Parameters 

4.1 Diameter and mean distance 

Due to the way in which the Laplacian matrix rneasures the boundaq of a 
subset of vertices, we should not be surprised to find that i t  is related to the 
diamet er. 

As a first relationship, we have that (writing D for the diameter of the 
Faph)  

Theorem 4.1.1. 

Proof. TO prove this, me use the "standard" Rayleigh quotient formulation, 
adapted from [7] (where it was proved in the context of the matrix 13; see 
Section 8.1). Let x be a vector achieving AL> in (LI), and let u be a vertex 
such that lxUl = rne lx i l .  Since x is orthogonal to the all-ones vector, there 

t 

is another vertex vsuch that xux, < O. Let P be a shortest path joining u 
to  v. Let t be the Iength of P. We then have: 



where we used the Cauchy-Schwarz inequality in the third line. 

Another bound, d u e  to Nilli [49] gives that 

Theorem 4.1.2. 

Proof. To prove this result, consider trvo edges a t  a distance of at  l e s t  2t + 2. 
Define the set Va to be t h e  the set containing the two vertices of one of these 
edges, and Uo to be t h e  set containing the two vertices of the other edge. 
Let Vk, 1 5 k 5 t be t h e  set of al1 vertices of distance k from Va, and let 
Uk, 1 5 k 5 t be the set of al1 vertices of distance k from Uo. We note 
that these are al1 disjoint, and tbat furthemore there is no edge joining a 
vertex of the set UL=, Vk with a vertex of the set U:=, Uk. AIso, we have 
IVk[ 4 (A-i)lvk-,l a n d  IVkI 5 (&-l ) lVk- , l  for 1 5 k 5 t .  For given a, b E ]W, 

define a n-vector x on t h e  vertices by xj = a ( A  - 1)k /2  for j E &, O 5 k 5 t,  
Xj = b(A - 1 )k /2  for j E &,O 5 k 5 t, and xj = O othemise. Note that  we 
may choose a, 6 so as ta make j E V ( G ) x j  = O ;  in other words, we may 
choose x to be orthogonal to the all-ones vector. Thus 

It is a simple calculation to determine that &,(G)(xj)2 = Al + BI mhere 



The number of edges connecting vertices in Vk to vertices in Vktl is at most 
A - 1, and there are no edges from & to any Uk for O 5 k 5 t. So we have 
Ci,j (xi - xjl2 = A2 + B2 where 

with a similar expression for & 
We obtain an upper bound for the quantity A2/Al, observing that the 

same bound holds by symmetry for B2/Bl, and therefore will be an upper 
bound for (A2 + B2) / (AL + Bi), which is itself an upper bound for X2- 

Note that lhl 5 (A -1) lvk-ll impiies Iq/(a - I ) ~  5 Ivk-,l/(a - i)"-', 
and we have 

( A -  (A - i )k  

Thus we have 

which establishes the  bound on X2. Cl 

Theorem 4.1.2 has, as  a corollary, a result which was first obtained by 
another method by Alon and Boppana [2] ,  namely that given an infinite 
family of A-regulax graphs, t hat 



This bound is important in that it is, asymptotically, best possible. Lubotzky, 
Phillips, and Sarnak gave an explicit construction for the secalled Ramanu- 
jan graphs, that  have X2 2 A - 2d- [29]. These are graphs mith large 
girth, small diameter, and large X2. In fact, we see that the conditions "srna11 
diameter" and ''large Xz" are essentially the same thing. 

Alon and Millman [3] show that 

Theorem 4-1-3. 

D 5 2 log, n $ 2 a / X 2  

By combining Theorem 4.1.1 and Theorem 4.1.3, me see that for a given 
number of vertices, the diameter is small for large values of X2 and large for 
small values of A2. Noting that X2 = O means that D = oo (the graph is dis- 
connected) and X2 = n means that the graph is a complete graph, we are not 
surprised to  discover that these results are approximated for nearly extremd 
values of X2. Theorem 4.1.1 gives X2 x O + D large and Theorem 4.1.3 
gives X2 N n D small . 

In fa&, we can do better than either Theorern 4.1.3 or Theorem 4.1.1. 
Mohar establishes the following two upper bounds on the diarneter [U]. They 
are not, in general, comparable, although he says the second is "in most cases, 
much stronger than" the first. The second aIso represents a better bound 
than Theorem 4.1.3. 

Theorern 4.1-4. 

For the proof see [46]. The second bound is valid for any ri. > 1 (he 
provides tables giving "good" choices for a). 

Theorem 4.1.5. 

A, a2 - 1 4/- A2 40 + 1 log, ( 4 2 )  

The proof of Theorem 4.1.5 will follow trivially frorn the following two 
lemmas. We will use the notation established previously, that Bk(w) will be 
the set of vertices a t  distance at most k from some (fxed) vertex W. ~USO, 
we will write e k  for the number of edges with exactly one endpoint in Bk. 



Lemma 4.1.6. Let r > 1 and k 2 O be integers and let w be some ($mi) 
vertex ofG.  DeJine b = lBkl and c =  IV\Bk+,l = n - IBk+,l. Then 

Proof. Note that Bk and V\Bk,, are two sets of vertices separated by a 
distance r. 

We define a vector 

We can choose the value of t t o  make x orthogonal to the all-ones vector, 
and can thus apply (1.1). Direct computation shows that 

k f r - 1  We need an upper bound on the quantity xi=,+, ei. Consider the subgraph 
H induced by Bk+,\&. The interlacing inequalities give that Xn(H) 5 
A,(G). Define the following vector on H 

+i if j E B2i+l\B2i for some i 
Yj = 

-1 otherwise 

It may readily be seen that by (1.2), we now have 

which establishes the desired result. 



Lemma 4.1.7. Let r > 1 and k 2 O be integers and let w be some (fized) 
uertex of G. D e h e  b = lBkl and c = IV\Bk+J = n - IBk+,l. I f n -  c 5 
a b  5 n / 2  then 

Proof. Note that since b + c 2 n - a b  + b and n - a b  + b 2 n / 2  we have 

Note that the left-hand side appears in Lemma 4.1.6. Using Lemma 41.6, 
we obtain the result. O 

Proof. The proof of Theorem 4.1.5 follows for basically the same reasons as 
the other bounds on the diameter. We simply determine how far out from 
(a fixed but arbitrary) w we have to  go in order to include a t  least half the 
vert ices. 

If r 2 ,/@ + 1, then by Lernma 4.1.7 either we have [Bk[ > 7-42 or 

1 Bkhl 2 aIBkl. Thus, for such an r ,  we are guaranteed to find at  least half 
the vertices within a distance of T rlog,(n/2)1 from W .  Note that w is a fixed 
but arbitrary vertex; the result follows trivially. O 

-4s a consequence of the work that gave the two bounds on the diameter, 
we also have the following two bounds on the mean distance in the graph. 

Theorem 4.1.8. 

The second is again valid for any a! > 1. 

Theorem 4.1.9. 

Also in [47], we have the following lower bound on the diameter, due to 
McKay (compare with Theorem 4.1.1). 



Theorem 4.1.10. 

Mohar efiends this to a lower bound on the mean distance. 

Theorem 4.1.11. 

4.2 Expansion 

Given the tight connection between expansion and X2, it is not surprising 
that we can directly relate the expansion properties of the graph t o  Xp. For 
instance, the following is mentioned in [8] without proof: 

Proposition 4.2.1. Given an (n, A, c)-magnifier, the diameter D is bounded 
by 

Proof. The proof is somewhat similar to the proof of Theorem 4.1.2 in style, 
in that we consider nested balls of consecutive radius. Letting Bk(u)  be the 
set of vertices a t  distance less than or equal to k from vertex v,  we see that 
as long as IBk (v) 1 5 7212, 

Consider tnro vertices u and v at distance D. We must have IBLp-ll121 (u) [ 5 
n/2 or IBL(D-1)/2J(v)1 5 n/2 (or both); without loss of generality, assume 
IB1(~-1)/2] ( ~ ) l  5 ni2- Thus 

The result follows. 

A similar result, proved using a similar technique, gives a bound based 
on the isoperimetric constant [45] 



Theorem 4.2.2. Given a graph with maximal 
constant h: the diameter D is bounded by 

Proof This is proved by considering the growth 

degree A and isoperimetric 

of the graph, Le., the ratio 
of the number vertices a t  distance k to the number vertices a t  distance k - 1. 
Letting Bk(v) be the set of vertices at distance less than or equal to k Erom 
vertex v, we see that as long as 1 Bk(u) 1 5 4 2 ,  

and thus that 

4.3 Trees 

For trees, we have the result that says that X is bounded by the largest path 
in the tree. Doob shows that [9] 

Theorem 4.3.1. Let G be a graph with diameter D,  and let p be the smallest 
eigenvalue of its adjacency rnatrix Then -2 5 p 5 -2 cos(&) 

By virtue of the relation between the Laplacian spectrum of a graph and 
the adjacency spectrum mentioned in the proof of Theorem 1.5.4, we can 
translate this into Laplacian terms as 

Compaxing this with Theorem 1.3.11, we can give the range of permissible 
As for trees. 

Corollary 4.3.2. Let T be a tree o n  n vertices with diameter D. Then 
x2(pn) 5 x2(T) 5 x2(P~+l)-  



We will close this section with a direct connection between the rnean 
distance and the Laplacian spectrum, which Mohar attributes to McKay [47] 

Theorem 4.3.3. FOT any tree o n  n vertices we have 

Proof. Let the characteristic polynomial of L(T) be x n f  ~ - L x n - l + -  -+c2x2+ 
cix. By Corollary 1.3.2, cl = n, and by the more general Theorem 1.3.3, me 
have that - is the number of spanning trees of d l  graphs El& obtained by 
identi@ing any pair of vertices i and j. If we identib two vertices of a tree, 
we create a graph with exactly one cycle, whose length is the distance (in T) 
between the two vertices. Thus the number of spanning trees in Ha is the 
distance (in T) between i and j .  So c2 is e~ac t ly  the sum of al1 the distances 
between any pair of vertices. 

Furthermore, by writing the coefficients in terms of the roots (eigenval- 
ues), we see that 
eigenvalues t aken 

ci = n,, Ai, and q is the surn of d l  productç of n - 2 
from X2, XJ, . . . , An. Sirnpli@ing) we obtain, 



Chapter 5 

Integral Spectra 

5.1 Pendant vertices and multiplicities 
We wi11 use the term pendant uertex for a vertex of degree 1 and quasipendant 
vertex for a vertex adjacent to a pendant vertex. 

We recall the eigenvalue condition at a vertex: 

(di - X)xj 

We have as a n  immediate consequence 

= E X i  
i - j  

Lemma 5.1.1. Let x be an eigenvector corresponding to X2, and suppose 
there is a pendant uertex u such that xv = O. Let a be the uertex adjacent to 
W. Then xu = O. 

Thus pendant vertices are never isolated zeroes of eigenvectors. 
In the same vein, we may observe that if x is an eigenvector corresponding 

to X = 1, then x is always zero on quasi-pendant vertices. Inspired by this 
obsenmtion, let us consider the following scenario. Start mith a graph that 
has (at least) two pendant vertices attached to a common (quasipendant) 
vertex. For concreteness, take P3, the simplest such example. Define a vector 
to be +1 and -1, respectively on the two pendant vertices and O on the 
quasipendant vertex. This is an eigenvector corresponding to X = 1 for P'. 
W e  can see, either by Theorem 6.1.1 or by directly verifying the eigenvalue 
condition a t  each vertex, that we may adjoin whatever other graph we wish 
to the quasipendant vertex and extend the vector to be O on on the rest of 



the graph. The result is an eigenvector corresponding to X = 1 for the new 
graph (note that although = 1, X = 1 is not necessarily X2(G)). Such 
a vector, with exactly one fl, one -1, and al1 other entries 0, corresponding 
to the eigenvalue X = 1 is termed a Fana vector. Denote by m&) the 
multiplicity of X as an eigenvalue of L(G). It iç a matter of counting to see 
that 

Theorem 5.1.2. mc(l) 2 p(G)-q(G), wherep(G) is the nunber of pendant 
vertices of G and q(G) is the number of quasipendant vertices of G. 

This was first observed (as a corollary to other results) by Faria in [12], 
where she refers to p(G)  - q(G) as the "star degree7' of the graph. This result 
"explains" why 1 is often an eigenvalue, and so often a multiple eigenvalue 
of trees (see Appendix A). There is a similar result for the adjacency matrix 
of trees. Specifically, using %&) for the multiplicity of p as an eigenvalue 
of A(G), we have ([9], p.258). 

Theorem 5.1.3. p(T) - q(T) 5 *T@) 5 p ( T )  - 1 

For trees, we can add an upper bound to Faria's inequality to obtain the 
following t heorem [21]. 

It is worth recalling that as trees are not regular we do not expect a direct 
relationship between the two spectra. The similarity between Theorem 5.1.3 
and Theorem 5.1.4 is thus a little unusual. 

Proof. The lower bound is already established. Let v be a pendant vertex 
and u be the quasipendant vertex adjacent to v, Let x be  an eigenvector 
corresponding to 1. If x, = O, then the eigenvalue condition at vertex v gives 
that x, = O a s  well. Then we could define a nem tree T' by removing vertex 
v (and edge UV) from T; the vector x' obtained by restricting x to T would 
be an eigenvector of T' corresponding to 1. But this new vector would be O 
on u, a pendant vertex of T' (though not of T). As x cannot be identically 
zero on T, we see that there must be a t  least two pendant vertices of T on 
which it is non-zero. If mc(l) > p(T) - 1, then we would have a t  ieast p(T) 
linearly independent eigenvectors corresponding to 1 from which we could 
form a combination that would be zero on p ( T )  - 1 (pendant) vertices. O 



More strikingly, we have the following theorem for integral eigenvalues 
for trees [21]. 

Theorem 5.1.5. Let X > 1 be an integer eigenvalue for some tree T on n 
vertices, and x be a corresponding eigenvector. Then 

Proof. The characteristic polynomial is always an integer polynomial, with 
leading coefficient &1. Factoring the characteristic polynomial as x f (x), we 
see that X must divide the constant term of f (x), which is the linear term of 
the characteristic polynomial, which is, by Corollary 1.3.2, equal to n (a tree 
has exactly one spanning tree). Thus X must divide n. 

Assume some coordinate of x is zero. We may assume it is xn = O. We 
then obtain the following block structure for L(T), 

where d = dn is the degree of vertex n, and the R's [C's] represent appro- 
priately sized row [column] matrices whose only nonzero entry is a -1 in 
the column [row] corresponding to  the vertex in that block that  is adjacent 
to  vertex n. Since xn = O and x is not identically zero, we see that the 
restriction of x to one of the blocks must give an eigenvector of some (the 
only reason it might not be an eigenvector would be because it is identically 
zero. Thus X > 1 is an integer eigenvalue of, Say, BI. If we consider the set 
of vertices corresponding to the block Bi, we see that B1 is equal to L(T1); 
the Laplacian matrix that these vertices induce on T, plus a single 1 added 
to  one of the diagonal dements (the vertex adjacent on T to vertex n). So 
det BI = det L(Tl) + det LI, where LI is the matrix obtained by deleting 
the row and column corresponding to the vertex adjacent (in T) to  vertex 
n fiom L(Tl). Since det L1 = 1 (Matrix-Tree Theorem) and det L (Tl) = 0, 
we have that det Bl = 1. But again, the characteristic polynomial of B1 is 



an integer polynornial with leading coefficient f 1 and constant coefficient 1. 
So the only possible nonnegative rational eigenvalue is f l ,  which X is not. 
Thus no coordinate of x can be zero. 

If mT(l) > 1, then we could construct (by Iinear combination) an eigen- 
vector corresponding to 1 that had any desired coordinate equal to zero. CI 

This can be extended somewhat [20]. 

Theorem 5.1.6. Let G be a graph vith n vertices and t spanning trees. If X 
is a positive integral eigenvalue, then X 1 nt. If, furthemore, G is Laplacian 
integral, then X~ 1 nt, where k = rnc(X) 

Proof. As in the proof of Theorem 5.1.5, write the characteristic polynomial 
as x f (x), and observe that Theorem 1.3.1 and Corollary 1.3.2 give that the 
constant term of f (x) is f (O) = nt = l-JYzL=, Xi. Again, we see that A must 
divide f (O), so X 1 nt. Also, if al1 eigenvalues are integers, then Xk is contained 
in the product n:=, Ai, and hence Ak 1 nt. O 

Certain types of pruning give us information about multiplicities of eigen- 
values in terms of multiplicities of eigenvaiues in subgraphs. As one example 
Pl1 7 

Theorem 5.1.7. Let G be a graph and let Sk = be the star graph o n  
k vertices. Let G' be a graph obtained by joining, in any manner, G and Sk 
with a single edge. Then mc(k) = mcl (k). 

In practice, this allows one to "prune OF' copies of Sk from a graph. 
For instance, we see that mp, (k) = me@), since P5 c m  be obtained by 
joining P2 and P3 with a single edge. Note that this process of joining with 
a single edge is not uniquely well-defined, in that there is another graph not 
isomorphic to P5 that can be obtained by joining P' and P2 by a single edge. 
We can give the following 

CoroUary 5.1.8. mp, (2) = 1 if 2/72 and O otherwise. rnp,  (3) = 1 if 3ln and 
O otherwise. 

A cornpanion to Theorem 5.1.7 is [21] 

Theorem 5.1.9. Let G be any graph, and P3 be the path on three vertices. 
Let G1 be a graph obtained by  joining any vertex G to a pendant vertex of P3 
with a single edge. Then m&) = mGr(l). 



Theorem 5-1-10. Let G' be a graph obtained by  joining any uertex G to 
the quasipendant vertex of P3 with a single edge. Then mc(l) 5 r n ~ t  (1) 5 
mc(l) + 2, where al2 three possibilities for m p  (1) can occur. 

The proofs aven in [21] examine directly the kernels of the eigenspaces 
of the two graphs. We will not prove either of these results yet, as they will 
follom from Theorem 6.1.1 by considering the structure of the eigenvectors. 

As an example, we note that Theorem 5.1.7 allows us to prune off copies 
of P2 from the first graph of Figure 5.1 to obtain C4. Indeed, since the eigen- 
values of C4 are 0,2,2,4, we have that rnG(2) = 2. Using both Theorem 5.1.7 
and Theorem 5.1.9, we may prune off copies of P3 from the first graph in 
Figure 5.2 to  obtain Cs. The eigenvalues of Cs are 0,1,1 ,3 ,3 ,4 ,  giving that  
mc(3) = 2 and mc(l) = 2. 

Figure 5.1: pruning off P2's to see mc(2 )  = mc, ( 2 )  

Figure 5.2: pruning off P3's to see mG(3)  = mc6 (3) and mc(1) = mc&) 

In considering Theorem 5.1.10, we note that ,  with the exception of G = 
Kl, G' = we have 

so that Faria vectors alone cannot account for al1 three cases. Examples for 
the three possibilities for Theorem 5.1.10 are shown in Figures 5.3-5.5, where 
the open circles correspond to the P3 that is to  be pruned. Note tha t  al1 



Figure 5.3: pruning P3 from Gr to give G = Pd: mc,(i) - mG(l) = 2 - O = 2 

Figure 5.4: pruning P3 hom G' to give G = P3: mcf(l) - mc(l) = 2 - 1 = 1 

but one of the vectors shown is a Faria vector, and that this one is linearly 
independent from the Faria vector. 

To close this section, we will mention two more results that, while not 
dealing directly with integral eigenvalues, seem to be connected [21]. For an 
interval 1, we write mG(l)  for the total number of eigenvalues of G, counting 
mult iplicit ies, in I .  

Proposition 5.1.11. Let G be a graph, with p(G) pendant vertices and q(G) 
quasipendant vertices. Then q(G) 5 mc[O, 1) and q(G) 5 m&, KI). 

Furthermore, by Theorem 5.12, we may write q(G) 5 mG[O, 1)  5 n-p(G) 
and q(G) 5 mc(l,  cm) 5 n - p(G) .  Note that this last observation explains 
why 1 tends to be a "middle" eigenvalue of trees (see Appendix A). 

Proposition 5.1.12. Let T be a tree v i th  diameter D. Then rD/'21 5 
m~(O,2)  and 5 mT(2, oo) 

5.2 Degree sequences 

The degree sequence of a graph may be thought of simply as a sequence of 
nonnegative integers. Of course, not every sequence of positive integers is in 
fact the degree sequence of some graph. For instance, [3,0,0, O] and [1,1,1,1] 
are both obviously not degree sequences. It is perhaps less obvious (without 
drawing pictures) that [5,4,3,3,2,1] is, or that [5,4,4,2,2,1] is not. We Ml1 



Figure 5.5: pruning P3 h m  G' to give G = P3: mc, (1) - mc ( 

adopt the convention that the degree sequence is arranged in nonincreasing 
order- Certainly, we have as necessary conditions that the first elernent must 
be Iess than the number of elements in the sequence, and that the sum of al1 
the elements must be even. 

More precisely, let p = [pi, f i ,  . . . , p,] be a sequence of nonnegative inte- 
gers arranged in nonincreasing order, which we will refer to as a partition. 
Define the transpose of a partition as p*, where p*i = l{j 1 pj  > i)l. The 
Femers diagram of p consists of rows (left-justified) of boxes, with pi boxes 
in the z * ~  row. Thus the Ferrers diagram of the transpose of a partition is the 
(visual) transpose of the Ferrers diagram of the original partition. If p repre- 
sents the degree sequence of a graph, then the number of boxes in the z? row 
of the Ferrers diagram is the degree of vertex i, while the number of boxes in 
the zqh row of the Ferrers diagram of the transpose is the number of vertices 
with degree at  least i. The trace of a partition p is tr(p) = I{i 1 pi 2 i)l; this 
is the length of the "diagonal" of the Ferrers diagram for p (or p*). Figure 5.6 
illustrates this for the partition p = {5,4,3,3,2,1). 

Figure 5.6: a Ferrers diagram for [5,4,3,3,2,1] and its transpose [6,5,4,2,1], 
(both) having trace 3 

The following theorem from [50] determines whether or not a given par- 
tition corresponds to  an actual degree sequence. 



Theorem 5.2.1. Thepart i t ion  p = [p lkp2 , .  . . , p,] represents a (simple loop- 
Zess) graph if  and only i f  ~ f = ~  P * ~  2 + 1) for 1 5 k 5 tr(p). 

Thus we see that p = {5,4,3,3,2,1) does indeed correspond to a graph; 
it is shown in Figure 5.7. In fact, we see that for p, the inequalities in 
Theorem 5.2.1 are in fact equdities. Any partition for which pi + 1 = p*,, 1 5 
k 5 tr(p) is said to be a maximal partition. The graph corresponding to this 
partition is said to be a threshold graph. Note that (if me ignore isolated 
vertices) for a threshold graph we always have A = n - 1, so threshold 
graphs are always connected. 

In general, the degree sequence does not determine a graph; this is easy 
to see, even in the case of regular graphs, or trees. However, if we ignore 
isolat ed vert ices, t hreshold grap hs are uniqudy det ermined by t heir degree 
sequence [50]. This is important in light of the following theorem of [35] 

Theorem 5.2.2. Let G be a threshold graph with no  isolated vertices. Then  
the transpose of its degree sequence is q u a 1  t o  its (nonzero) Laplacian spec- 
trum. 

Thus threshold graphs are characterised by their Laplacian eigenvalues, 
which are furthermore integers. We may also conclude that al1 threshold 
graphs have A* 2 1. AS an example, the star graphs are threshold 
graphs, and hence are Laplacian integral graphs that are characterised by 
their spectra and furtherrnore have Xî(Kl,,-l) = 1. 

Figure 5.7: (the) threshold graph with degree sequence [5,4,3,3,2,1] 

The inequalities of Theorem 5.2.1 are reminiscent of the  technique of 
rnajorisation. More precisely, given two sequences a = [al, a*, . . . , a,] and 
b = [bl ,  b2, . . . , b,] then a majorkes b if 

C ai 2 C bi for 1 5 k 5 n. 



Define d(G) = [A = di, d2, . . . , dn = 6] to be the degree sequence of the 
graph, with the vertices ordered so that d(G) is nonincreasing. Note that 
elsewhere in the present paper we were not assuming any special ordering of 
the  vertices. It follows from a result of Schur [32] that the spectrum majorises 
the  degree sequence, that  is that 

Theorem 5.2.3. Xn+i-i > Ci=, d, for 1 5 k 5 n. 

This @es, among other things, that X, 2 A. By Theorem 1.3.9 we 
already had that X, > A+A/(n-1), and in [20] it was shonm that A, > A+l.  
This can in fact be strengthened [18] (as mas conjectured in [20]) to 

Theorem 5.2.4. Let G be a (simple, loopless) connected graph on uertices 
{1,2, -.  . ,n),  ordered so that A = dl 2 d2 2 - - - 2 dn = 6. Let tk be 
the number of components of the graph induced on the uertices {1,2, . . . , k). 

k 
Then Ci=, An+i-i 2 tk + di for 1 5 k 5 n. 

We omit the proof of this result. 
Wnte d(G)* for the transpose of the degree sequence d(G). We have that 

d(G)* majorises d(G), and that the spectrum majorises d(G). Theorem 5.2.1 
and Theorem 5.2.4 suggest that the second majorisation is a t  least as strong 
as the first. It has been conjectured [20] that 

Conjecture 5.2.5. d(G)* majorises the Laplacian spectmm for connected 
graphs. 

The first inequality (n = d*l 2 A,) is certainly true, but the others are 
not established. This conjecture would give as a straightforward consequence 
we would have the following, which we can in fact show that PO] 
Proposition 5.2.6. dai, the number of vertices of degree n - 1, is at most 
A2 

Proof. Let k = the number of vertices of degree n - 1. If k = n, then 
G = Kn and X2 = n. Otherwise, we see immediately that GE has a t  least 
k + 1 components, the largest having no more than n - k vertices. Thus 
X,(GC) 5 n - k and Corollaqy 1.3.7 gives that A2(G) 2 k. O 

Recall that the 2 k + 1 components of GC give that the multiplicity of O as 
a n  eigenvalue of GC is at least k + 1, and hence the multiplicity of n as an 
eigenvalue of G is at least k. 

In investigating this conjecture, Merris derives the following 



Theorem 5.2.7. Let G be a connected graph, and let u be a cut-vertex of 
G. If the lurgest component of G\{u) has r vertices, then 5 r + 1. 

CorolIary 5.2.8. Let G be a connected graph on n > 2 vertices. Suppose 
that u is a quasipendant vertex with k pendant neighbours. Then An-= 5 n-k. 

CoroIlary 5.2.9. Let G be a connected graph with integral Laplacian spec- 
trum on n > 2 vertices, with p pendant vertices. Then in fact all p pendant 
vertices are adjacent to the same quasipendant vertex and hence 5 n-p.  

It is interesting to compare this result with Theorem 5.1.4, where p hinc- 
tions as a bound on the multiplicity if an eigenvalue. -41~0, looking at the com- 
plements of the graphs and making use of Corollary 1.3.7, we may rephrase 
these as 

Corollary 5.2.10. Let G be a connected graph on n > 2 vertices. Suppose 
that there are k vertices of degree n - 2 that are adjacent to the same set of 
neighbours ( i e .  they are al1 not adjacent to the same vertex) Then X3 2 k 

Let G be a connected graph with integral Laplacian spectrzlm on n > 2 
vertices, with p vertices of degree n - 2. Then in fact they all are adjacent to 
the same neighbours ( i e .  they are al1 not adjacent to the same vertex) and 
A3 2 P 

5.3 Cospectral graphs 

It had once been conjectured that two graphs are isomorphic if and only if 
they are adjacency-cospectral. This was strongly answered answered in the 
negative by [51]. 

Theorem 5.3.1. Let tn be the number of nonisomorphic trees on n vertices- 
Let Tn be the number of trees T on n vertices for which there exists a tree T' 
that is  cospectral to T .  Then lim,, rn / t ,  = 1. 

In fact, even more cari be said. Recall that the distance matrix of a 
graph is the n x n matrix whose i j th  entry gives the length of a shortest path 
between vertices i and j. We have the following result of [33], 

Theorem 5.3.2. Let t, be the number of nonisomorphic trees on n vertices. 
Let r, be the nurnber of trees T on n vertices for which there ezists a tree T' 
such that simultaneously: 



1. T and T' are adjacency-cospectral 

2. T and T' are distance-cospectral 

3. T and T' are Laplacian-cospectraL 

It is perhaps relevant to note that in the same paper, it is shown that 
given any two trees Tl and T2, there is some matrix B that can be expressed 
as some polynomial function of the matrices D and A, such that Tl and T2 
are not B-cospectral. 

Generalising the concept of the characteristic polynornial to the immanan- 
ta1 polynomials, we can extend Theorem 5.3.2 to [4] 

Theorem 5.3.3. Let tn be the number of nonisomorphic trees on n vertices. 
Let rn be the number of  trees T on  n uertices for which there exists a tree T' 
such that simultaneously for euery chamcter x of Sn 

Then lim,,, rn/tn = 1. 

We may conclude that trees that are uniquely determined by their Lapla- 
cian spectrum (such as the star graph) are, in some sense, exceptional objects. 

Thus it is not surprising to find large collections of cospectral graphs. 
Merris [39] gives an explicit construction of such, which we reproduce here. 

Theorem 5.3.4. For injînitely many n, there exist a family ofP q-connected, 
nonisomorphic, Laplacian integral, Laplacian cospectral g~aphs o n  n vertices, 
where k > nl(2 log, n) and q > n - log2 n. 

Merris [38] proves that there are exactly (nonisomorphic connected) 
threshold graphs on n vertices. Thus we have an easy example of an infinite 
family of graphs that are chacterised by their Laplacian spectra. This is also 
useful in the following proof of cospectral graphs. 

Proof. The proof is by construction. Let G be a threshold graph on n vertices 
with degree sequence [A = n - 1 = d l ,  d2,. . . , dn]- Thus the eigenvalues of 
G are 



Define the graph G to be the graph formed by adding a single pendant vertex 
to a vertex of degree n - 1 of G (there may be more than one such vertex 
in G) .  The new graph G may be seen to also be a threshold graph on n - 1 
vertices. In particular, the eigenvalues of G are 

Now if X is another (distinct) threshold graph on n vertices with eigenvalues 

then we see that the graphs G+ H and G+H have as their (cornmon) spectra 

Thus we have constructed a pair of Laplacian integral cospectral graphs. 
Now consider the set of al1 nonisomorphic threshold graphs on k vertices, 

{ G }  There are, as remarked above, 2'-* such graphs. Let I be any set of 
2k-3 distinct values chosen from {172,3,. . . 2k-2). Define the graph 

The number of vertices of Kr is n = 2k-3k + 2"3(k f 1 )  = 2k-3(2k t 1). We 
see by induction that  the eigenvalues of KI are independent of the particular 
choice of 1. Assuming k > 3, the number of such choices is 

giving 2k-3 = n / ( 2 k  + 1) > nl(2 log2 n) , and thus there are at l e s t  

2(2*-3) -., 2n/(21ogz n) 



choices for 1, each leading to a distinct graph KI.  
We note that these graphs are very disconnected. However, due to Corol- 

Iary 1.3.7, the set of graphs KIC are a set of connected Laplacian integral 
nonisomorphic cospectral graphs. Furthemore, as the maximum eigenvalue 
of KI is k + 1, we have that X2(KIC) = n - (k + 1) > n - log, n, for k 2 8. As 
KIc is not complete, Theorem 1-3-10 aHows us to conclude that the vertex 
connectivity is at least n - log, n. 



Chapter 6 

Eigenvect ors 

6.1 Edge principle 

Certain operations are more properly looked at in the context of the eigenvec- 
tors associated with the eigenvaiues. An important result (which can be used 
to  obtairi Theorem 5.1.7 and Theorem 5.1.9)is the Edge PrÏnciple obtained 
by Mems [41]. 

Theorem 6.1.1. Let G be a graph, and x an eigenvector with corresponding 
eigenvalue X such that z, = x, for some u # v. Let Gr be the graph obtained 
b y  either removing or adding or the edge uu (depending on whether it is or  
2s not an edge of G). Then x is an eigenvector of Gr with corresponding 
eigenvalue A. 

It should be emphasized that this theorem does not state that X2(G) = 
A2(Gf). This is not the case, as can be seen by the following simple example 
(Figure 6.1. Take two (disjoint) copies of any graph (say P3); cal1 this graph 
G. Add an edge between any two corresponding vertices; cal1 this graph G'. 
Clearly X2(G) = O < X2(Gr). 

Figure 6.1: X2(G) = O < X1(Gr) 



The eigenvector illustrated in Figure 6.1 is an eigenvector of the graph P3 
corresponding to X2(P3) = 1. This is obviously an eigenvalue of G = f i  + P3. 
The result of the Edge Principle is that X2(P3) = 1 is an eigenvalue of Gr as 
well. In fact, we see as an easy consequence that the set of eigenvalues of P2n 
contains the set of eigenvalues of P,. Note that Theorem 5.1.7 gives that 3 
is an eigenvalue of Gr, and Theorem 5-1.9 dso  gives that 2 is an eigenvalue 
of Gr. 

Prooj Proving the Edge Principle is a simple matter of checking the eigen- 
value conditions a t  each vertex. For any vertex j 
is both the degree in G and in Gr of vertex j ,  we 

is identical for the two graphs. Consider the case 

# u, v, and noting that d j  
see that the condition 

where uu is not an edge of 
G. Noting here dj for the degree in G of vertex j, the eigenvalue condition 
for G is 

and that for Gr is 

which are easily seen t o  be equivalent as ru = x". The conditions for v are 
the same (by symrnetry). O 

We have the following obvious corollaries: 

Corollary 6.1.2. Let G be a given graph. Let H be the graph fonned by 
joining two copies of G with a single edge betveen corresponding vertaces. 

If X is  an eigenvalue of G with multiplicity k ,  then X is an  eigenualue of 
H with multiplicity at least k .  Furthemore, any eigenvector x of G muy be 
extended to an eigenvector of H by tuking two copies of x .  

Corollary 6.1.3. Let G be a given graph. Let H be the Cartesian product 
of two copies of G. 

If X is an eigenualue of G with rnultiplicity k ,  then X is an eigenualue of 
H with multiplicity at least k .  Furthennore,any eigenvector x of G may be 
extended to an eigenvector of H by taking tu10 copies o f x .  



We also have 

Corollary 6.1.4. Let X be an eigenvahe of G with eigenvector x such xj = 
O .  Let G' be t he  graph fonned b y joining some arbitrary graph H t u  vertex j 
of G with a single edge. 

Then X is a n  eigenvalue of Gr with eigenvector x' such that xi = xi fur 
i E V(G)  and x: = O othenuise. 

To see this result, we need merely observe that, for the purposes of The- 
orem 6.1.1 the dl-zero vector behaves like an eigenvector of H for any eigen- 
value. Furtherrnore, if there are k linearly independent eigenvectors for an 
eigenvalue A, then there are at least k - 1 lineady independent eigenvectors 
for this same eigenvalue such that they are al1 zero for any arbitrarily chosen 
(but fixed) vertex of the graph. So we have 

CoroUary 6.1.5. Let X be an eigenvalue o f G  ofmultiplicity k. Let Gr be 
the graph fonned by joining some arbitrary graph H to some  vertex of G .  

Then X is a n  eigenvahe of Gr of multiplieity ut least k - 1; the  corre- 
sponding eigenvectors mn be chosen so as to  be eigenvectors of X o n  G,  and 
zero on  H.  

In fact, we rnay even prove Theorem 5 -13  and Theorem 5.1.9 using the 
Edge Principle. This is essentially the same as the argument given originally 
in [21]. 

Proof. Note first that R is a simple eigenvalue (actually, the largest eigen- 
value) of Sk. If we list the pendant vertices first and the central vertex last, 
then a corresponding eigenvector is (1,1, . . . ,1, -k + 1). Thus given any 
nonzero constant c and any fixed vertex j of Sk7 there is a unique eigenvector 
of Sk corresponding to k that takes on the value c at j. 

Let G be any graph on n vertices, and let Gr be a graph on n + k vertices 
formed by joining a vertex of G with a vertex of Sk, the star graph on k 
vertices. Order the vertices such that G is listed first, then Sk, and such that 
the added edge connects the nth and (n + l)st vertices. Consider a basis of 
eigenvectors {x('), d2), . . . , x ( ~ ) )  for G corresponding to k. T e  may define 
extensions of these to Gr, {y(L), y(2), . . . , y(a)) by the following. If r i )  = 0, 
then y(i) = O on Sk. If I:) = c # O, then define y(') on Sk by = c and 

such that the extension is the unique eigenvector (of Sk) with = c. By 
the edge principle, this is an eigenvector of Gr. It may easily be seen that 
the y(')'s are linearly independent. 



Conversely, let {y('), y(*), . . . , y(")) be a basis of eigenvectors for G' cor- 
responding to k. List the vertices of Gr as before. Then it rnay be seen by 
multiplying y(') with the rows {n + 1, n + 2, . . . , n + k) of L(G') that the 
last k coordinates of y(') either form an eigenvector of Sk, or else are al1 zero. 

(4 (4 In either case, by considering the nth row of L(Gt), we see that y,,, = yn . 
Note that if y(a) is identically zero on Sk, then it cannot be identically zero on 
G. Thus by the edge principle, removing the edge between Sk and G results 
in a graph for which y(') is still an eigenvalue corresponding to  k, and thus 
its restriction to G is also an eigenvalue corresponding to k. The restrictions 
of the will al1 be linearly independent. O 

Theorem 5.1.9 rnay be proved using similar techniques. In fact, we rnay 
generalise this in the following 

Corollary 6.1.6. Let H be any graph with a simple eigenvalue A. Let u be 
a vertex of H such that an eigenvector x corresponding to X is nonzero on u. 
Let G be any graph, and let G' be the graph formed by joining an arbitrary 
vertex of G to u. Then  the multiplieity of A as an eigenualve of G is equal 
t o  the rnultiplicity of X as an  eigenvalue of G' . 

The proof follows the same lines as the argument just given. 
Theorem 5.1.9 rnay be proved in a sirniiar way 

Proof. Let u be the quasipendant vertex of P2, and let u be the vertex of G' 
that is adjacent (in G') to u. If there are Ic linearly independent eigenvectors 
of G corresponding to  1, then we rnay assume that k - 1 of them are O on u. 
The vector x that takes on the values f 1 on the two pendant vertices and O 
at v is an eigenvector of P3 corresponding to  1. Thus, by the edge principle, 
we obtain k - 1 linearly independent eigenvectors of G' corresponding to 1. 
Extending x to  be O on G gives one more. 

For the other inequality, assume we have k+ 2 linearly independent eigen- 
vectors of G' corresponding to 1. They must al1 be O at  vertex u ,  as u is a 
quasipendant vertex of G'. We rnay assume that one of these, is the extension 
of x that is O on G. Using this vector, we rnay assumer that the remaining 
k f 1 vectors are O on P3. Furthamore, of the remaining k + 1 vectors, we 
rnay assume that k of these are O on vertex u. Thus we have k eigenvectors 
of G' corresponding to  1 that are al1 O on vertices u and P3. Thus the re- 
strictions of these vectors to G give k linearly independent eigenvectors of G 
corresponding to 1. O 



6.2 Furt her principles 

In a similar vein, Merris gives the following result, which he refkrs to  as the 
Principle of Reduction and Extension [41]. 

Theorem 6.2.1. Let G be a graph and X be a non-empty subset of vertices 
of G. Define the graph G{X} to have vertex set X u { i  E V(G) 1 i - X ) ,  
and edge set { i j  E E(G) 1 i E X or j E X). Suppose x is  an  eigenuector of 
G{X} corresponding to X such that x is  nonzero only on X. T h e n  x extends 
to  a n  eigenuector of G (the extension being zero) corresponding to A. 

Proof. G(X) can be  thought of as the graph induced on X with the addition 
of its boundary: V(G{X)) = X U 6 X  and E ( G { X ) )  = E ( X )  U aX.  The 
proof is a simple consequence of the Edge Principle. We may further remark 
that the multiplicity of X as an eigenvalue of G is at least as great as the 
multipIicity of X as an eigenvalue of G{X). 0 

A furt her technique is the Alternat ing Principle 

Theorem 6.2.2. Let G be a graph, and let x be an eigenvector corresponding 
t o  A. Let X be the se t  of vertices on which x iS nonzero. Suppose the uertices 
of X can be paired u p  in such a way that if i, j are two paired vertices then 
X i  = -xj. Suppose f ir ther that al1 paired uertices are adjacent [not adjacent]. 
Let Gr be the graph obtained by deleting [adding] the edges bdween paired 
uertices. Then x is a n  eigenuector of Gr corresponding to X - 2 [A + 21- 

Proof. The eigenvalue condition is the same in G and Gr for vertices not in 
X. If u E X, then it is paired with a vertex v E X. Writing for the degree 
in G of vertex i, the eigenvahe condition in G is 

and the eigenvalue condition in G' is 

which are easily seen to be equivalent. 



Given a graph G and some subset X of its vertices, we may define a 
contraction to be a graph Gr with vertex-set (V(G) \X) U {a )  and! edge-set 
E(G\X) U {iu ( i - u for some v E X). We identiG the set X with a 
new vertex u, which is joined to exactly those vertices in V(G)\X that the 
vertices of the set X were. 

Theorem 6.2.3. Let x be an  eigenvector of G corresponding to A, with two 
vertices a and b such that they have n o  cornmon neighbours and xi = xj = 0. 
Define the graph G' to have vertex set (V(G)\{a, 6 ) )  U {u),  and edge set  
E(G\{a, b} )  U {iu 1 i - a or i - b ) .  Define the uector z! tto be t h e  vector 
obtained by deleting the zth (or jth) coordinate of x. Then x' is an eigenvector 
of G' corresponding to A. 

ProoJ Proving this is a simple matter of checking the eigenvdue condition at 
each vertex. It should be noted that if we consider the weighted Laplacian, 
then we rnay remove the condition that contracted vertices have no common 
neighbours by defining the weight of edges iu (where u is the new vertex) to  
be the sum of the weights over al1 edges ix, with x E X. O 

6.3 Constructions 

These principles may be used to generate eigenvectors (and hence eigenval- 
ues) for certain graph constructions. Using these principles, as well as The* 
rem 1.4.5, Merris determines a pair of non-isomorphic cospectral graphs Gz 
and G2. We give his construction here (slightly modified) as an example of 
the application of these principles. 

Let Hl = H2 = K2,3 = K2' V K3'. Then by Theorem 1.4.5, we have that 
the spectrum of Hl is {O, 2,2 ,3 ,5) .  Eigenvectors illustrating these eigenval- 
ues are shown in Figure 6.2. 

Figure 6.2: X2 = 3 ,5 ,2 ,2  



Consider the graph H shown in Figure 6.3, obtained by adding three 
edges to Hl + H2. Using the Principle of Reduction and Extension, the first 
eigenvector of Figure 6.2 gives two linearly independent eigenvectors of H 
corresponding to 3. Using the edge principle, the remaining eigenvectors of 
Figure 6.2 give eigenvectors corresponding to 5, 2, and 2. Using the Alter- 
nating Principle, the last two also give two IinearIy independent eigenvectors 
corresponding to 4. By o b s e ~ n g  that H rnay be written as CIO with the addi- 
tion of five edges, as s h o w  in Figure 6.4 (the eigenvector shown corresponds 
to the eigenvalue 4 of Ci*), the Alternating Principle gives the eigenvalue 6 
for H as well. As usual, Xl(H) = 0, and the rernaining eigenvalue rnay be 
determined (by counting spanning trees or otherwise) to be 1. 

Thus 

We note that H is one of exactly 13 cubic, connected, graphs with integral 
(Laplacian) spectra [5]. 

Figure 6.3: The graph H 

Figure 6.4: Adding five edges to CIO would give H 

We already have that the spectrum of K2,3 is {5,3,2,2,0). Using The- 
orem 1.4.4 and Corollary 1.3.7, one c m  easily determine the spectrum of 



GI = K2,3 + (K& + KI)' to  be the same as that of G2 = H f  KI.  Comparing 
the  degree sequences, we have 

Furthemore, Gl is decornposable but not bipartite, mhile G2 is bipartite 
but not decomposable. As A, < n, the complements of these graphs are 
connected and cospectral. 



Chapter 7 

Trees 

7.1 Characteristic vertices 

We note firstly a straightforward though useful: 

Theorem 7.1.1. X2(T) 5 1 for any tree T with equality i f  and only i f  T = 
the star on n vertices. 

The inequality is a simple consequence of Theorern 1.3.10. The equality 
is obtained in (341. It is not surprising that X2(T) should be maximal (over 
trees) when T = Sn, as the star is the best-connected tree. It is also easy 
to  see that the same inequality applies to  the isoperirnetric constant, Le. 
h(T) 5 1 for any tree T with equality only when T = Kl,n-i. It is a 
recurrent theme: the second-smallest eigenvalue of L mimics the behaviour 
of the isoperimetric constant. Consider the set of eigenvectors corresponding 
to X2. It may happen that for some eigenvector x and some vertex j that 
xj = O. If the multiplicity of X2 is greater than one, this is guaranteed to  
happen. Depending on which eigenvector x we pick, this rnay (or may not) 
be true for any given vertex. The following result of Fiedler strengthens this 
sornewhat [14]. 

Theorem 7.1.2. Let T be a tree such that X2(T) is a multiple eigenvalue. 
then f o r  any eigenvector x of T corresponding tu X2, there is a vertex j such 
that xj = 0. 

We will denote by E(G) be the set of eigenvectors of L(G) corresponding 
to  X2(G). These are commonly referred to  as 'Fiedler vectors" (or "char- 



acteristic vduations:' in some papers). The following theorern describes the 
structural possibilities of the elements of c(G) [15]. 

Theorem 7.1.3. Let T be a tree, and x an eigenvector corresponding to X2. 
There are two possibilities for x- 

Case I r  If xj # O for all vertices j, then there ezZsts a unique edge {u, v) 
such that xu > O and xu < O .  The values of x along any path originating at 
u and not including v are increasing, while the values of x along any path 
originating a t  u and not including u are decreasing. 

Case 2: If Z = {j E V(T) 1 xj = O )  # 0, then the graph induced on T 
by  Z is  connected, and there m s t s  a unique vertex w E 2 such that w is 
adjacent to a vertex not in 2. The values of x along any path starting at w 
are either stnctly increasing, strictly decreasing, or identicully zero. 

We will refer to the vertices 21, v (or W) in Theorem 7.1.3 as the charao 
teristic vertices of the tree. The [characteristic vertices] is justified by the 
following theorem of Merris, which establishes that they are in fact inde- 
pendent of the choice of eigenvector x and hence an invaxiant of the tree 

Theorem 7.1.4. Let T be a tree, and x, y be eigenvectors corresponding to  
X P -  Then j is  a characteristic vertex of T with respect ta x if and only if j 
is  a characteristic vertex of T with respect to y. 

Proof. To prove this, we first note that if X2 is a simple eigenvalue, then x 
and y are multiples of each other and the result is obvious. 

Define the sets X I  = { j  E V(T) 1 fj = 0) and X = n f e e ( ~ )  X .  f If 
X were empty, then there would be a vector f E c(T) that is never zero, 
contradicting Theorem 7.1.2. So X is non-empty. As T is connected, there 
is (at least) one vertex in X that is connected to a vertex not in X. If there 
were two distinct vertices {tu1, w2) in X and two (not necessarily distinct) 
vertices {vl, v2)  not in X such that wl N vl and w2 - v2, then there would 
be a vector f E E(T) such that f",, fu2 # 0, contradicting Theorem 7.1.3. It 
remains to show that w is a characteristic vertex for any g E E(T); clearly 
there can be no other characteristic vertex 

Let g E c(T) have a characteristic vertex j, with j # W. By Theorem 7.1.3 
there exîsts a vertex i such that i - j and gi # O. Since w is the unique 
vertex of X connected to a vertex not in X, it follows that j $ X. Thus 
there ensts  h E <(T) such that hj # O. Since O = g, = gj # gi, the (unique) 



path from w to i passes through j ;  it follows (by Theorem 7.1.3) that hi is 
nonzero as well. Comparing g and h, we can take a linear combination of 
them (and hence a n  element of c(T)) which will be zero on i but nonzero on 
j, again contradicting Theorem 7.1.3. Thus j = w, the unique characteristic 
vertex of T. 

Define F(G) to  be the set of characteristic vertices of G. If there is one 
characteristic vertex, then we will Say T is a type 1 tree, and if there are 
two characteristic vertices, then we will Say that T is a type 2 tree. These 
definitions correspond of course to the two cases in Theorem 7.1.3 (though 
not in that order). Note as a corollary of this that if T is of type 2, then 
XI is a simple eigenvalue; the converse does not hold. Thus the eigenspace 
corresponding t o  Ar is less interesting for type 2 trees, and we will concentrate 
principally on type I trees. 

It should be noted that F(G) need not coincide with either the centre or 
the centroid of a graph, despite the apparent similarities. 

Given a vertex j, define R(j) to be the length of the longest path starting 
at j. Then j is a centre point if 

R( j )  = min R(i) 
iEV(G) 

A branch rooted at j is a maximal connected subtree containing exactly 
one edge incident with j. Define W(j)  t o  be the maximum number of edges 
in any branch rooted at j. A vertex j is a centroid point if 

W(j) = min W(i) 
iEV(G) 

The set F shares some characteristics with both the centre and the cen- 
troid. Al1 of these are either a single vertex or a pair of adjacent vertices. 
However, F need not coincide with the centre or the centroid of a graph. 
In Figure 7.1 the centre is at IL, the centroid is a t  v ,  and the characteristic 
vert ices are rnarked F I  

7.2 Trees with a single characteristic vertex 

Let us consider type 1 trees. These include (but are not limited to) al1 trees 
where A2 is a multiple eigenvalue. Motivated by the fact that the (unique) 
characteristic vertex is a graph invariant, we may speak of the branches of 



Figure 7.1: characteristic vertices 

the tree (at the characteristic vertex). -4s a consequence of Theorem 7.1.4, 
we rnay describe the branches as passive if every x E E(T) is identically zero 
on that branch, or  active if some x E c(T) is not identically zero on that 
branch. Note that a given eigenvector x may be partly or completely zero 
on an active branch. Since x E E(T) is of constant sign on each branch, 
and is orthogonal to the dl-ones vector, there must be (at least) two active 
branches: one positive and one negative. 

For the adjacency matrix, there is a simple and obvious relationship be- 
tween subgraphs and submatrices: by deleting sorne set of rows and the same 
set of columns, we obtain the adjacency matrix of the subgraph obtained by 
deleting that same set of vertices. This is not true for Laplacian matrices, 
unless the deIeted vertices al1 have degree zero. However, if we consider the 
rooted branches of a tree, we almost have the same relationship. More pre- 
cisely, let T be a tree, and consider a branch B at  v (we do not for the 
moment assume anything special about u) .  There is exactly one vertex in B 
that  is adjacent (in T) to u; cal1 this vertex the mot  of B and denote it T ( B ) .  
The vertex r  (B) is uniquely determined 
the vertex u in B. Define the matrix 

by a. Note that we do not include 

1 i f i = j = r ( B )  
otherwise 

This is alrnost the sarne as L(B). In fact, the deterrninant of L(B)  is ex- 
actly the sum of the determinant of L(B) and the determinant of the matrix 
obtained by deleting the row and column corresponding to r (B) from L(B). 
The determinant of L(B) is zero, as it is a Laplacian matrix, and the deter- 
minant of the deleted matrix is exactly the nurnber of spanning trees of B. 
We have proved [19] 



Consider a type 1 tree. Label its characteristic vertex w, and let d = d, 
be the degree of W. If we now consider the set of al1 branches of T at w, 
{Bi, B2, . . . , Bd), then we see that w is adjacent to (exactly) the vertices 
{r(Bl), r(B2), . . . , r (Bd)) .  We may order the vertices of T such that the 
vertices of BI are listed first (with r(B1) last among these), followed by the 
vertices of B2 (with T (B2) last among these), and so on, with w Iisted last of 
all. This gives the following block structure 

where the R's [C's] represent appropriately shed row [column] matrices whose 
only nonzero entry is a -1 in their last column [row]. 

This form allows us to deduce results on the rnultiplicity of X2, as well 
as possibilities for the sets of active and passive branches, and hence the 
automorphism group of the tree. 

7.3 Mult iplicity 
In this section we will deal with type 1 trees. We will always consider branches 
to be rooted at  r(B) ,  the vertex of the branch adjacent to  the characteristic 
vertex. We will label the characteristic vertex w and denote its multiplic- 
ity (and hence the number of branches at w) by d, and order the vertices 
according to form (7.1). 

The following theorem [19] describes the relationship between X2 and 
active branches. 

Theorem 7.3.1. A branch B is active if and only if X2(T) is un eigenvalve 
of QB). Furthemore, if X2(T) is an eigenvalue of Z ( B )  then it is the small- 
est eigenvalue of Z ( B )  and it is simple. 

Proof. Let the active branches (at w) be {BI,  B2,. . . , Bk) and the passive 
branches be {Bk+l,  BkC2,. - . , Bd), so that the active branches are listed first 
in form 7.1. By Theorem 7.1.3, there exist eigenvectors f ('1, f (2), . . . , f (k) 
corresponding to X2 such that f(') takes on the value 1 at r(Bi) and al1 other 



coordinates of f are greater than 1. Thus there is an eigenvector f that 
is non-zero on every active branch. Follonring the ordering of the vertices 
induced by 7.1, we may m i t e  f as 

where each x(') corresponds to an  active branch, each O(') corresponds to a 
passive branch, and the final O corresponds t o  W. Block multiplication gives 
that each di) is an eigenvector of E(B~)  corresponding to X2(T). By dividing 
each x(') by their last coordinate (i-e., the coordinate corresponding to r(Bi)), 
we obtain rescaled eigenvectors y( i )  that take on the  value 1 at r(Bi) and are 
strictly greater than 1 on the rest of r(Bi). More irnportantly, the vectors y(i) 

are entrywise positive eigenvectors of the matrices e(&). These matrices are 
irreducible (Theorem 1.3.5) positive definite M-matrices (see, e-g., [44]), and 
so letting Ai be the  inverse of sE(&), we see that Ai is entrywise nonnegative. 
Thus we have ~i~(') = and A;' is the (simple) maximal eigenvalue of 
Ai- Thesefore X2 is the (simple) minimal eigenvalue of L(B~) .  

Suppose now that  X2 is an eigenvalue of Z(B~) for some i > k, i-e., for a 
passive branch. Let di) be a corresponding eigenvector. If the last coordinate 
of .di) is zero, then the vector 

is an eigenvector of L corresponding to X2 which is nonzero on a passive 
branch, and thus a contradiction. If the last coordinate of di) is nonzero, 
then we may (by rescaling) assume that it is -1. Define z(') to be the vector 
whose only nonzero coordinate is a -1 in the 1 s t  position. Shen the vector 

is an eigenvector of L corresponding to AL> which is nonzero on a passive 
branch, and thus also a contradiction. 

As a corollary we have [19] 

Corollary 7.3.2. Let Lw be the matrik obtained by deleting the last row and 
column of L (i. e., the ro w and colurnn corresponding to w). Then the nzmber 
of active branches of T is equal to the m~ltiplicity of X2 as un eigenualue of 
Lw 



Proof. This is a simple consequence of the structure of Lw: it is the direct 
sum of the matrices Z ( B ~ ) ,  1 5 i 5 d. Since X2 is a simple eigenvalue of Z(B) 
if B is active, and not an eigenvalue of Z(B) if B is passive, the result is 
immediate. Cl 

We also have a direct relationship between the number of active branches 
and the multiplicity of A2 as  an eigenvalue of L(T) [19]. 

Theorem 7.3.3. Let m be the multiplicity of X2 as a n  eigenvalue of L. Then 
there are exactly m + 1 active branches- 

Proof. Let the vectors f ,  x ( ~ ) ,  y(') be as in the proof of Theorern 7.3.1. It can 
then be seen that the set of vectors { f i ) ,  2 5 i 5 k, where 

forms a set of linearly independent eigenvectors of L corresponding to A*. 
Now suppose that we have g E E(T). By Theorem 7.1.3, we may m i t e  g 

as 

Block multiplication with (7.1) gives that each (nonzero) g(') is an eigenvector 
of Z(B~) corresponding to the (simple) eigenvalue Xp. Thuç S(i) = for 
some constants ci. In fact, the ci are exactly the last coordinate of the g('). 
Multiplying g by the last row in (7.1), we see that the sum of the 4 is zero, 
and hence that 

Thus (fl, f2, . . . , fk) forms a basis for E(T), which gives the result. 0 

Note that we have as an obvious corollary that there are always a t  least 
two active branches, which was already deduced by more direct observations. 

More importantly, Theorem 7.3.1 and Corollary 7.32 allow us to deduce 

Corollary 7.3.4. The multiplicity of XÎ as an eigenvalue of L, is one more 
than  the multiplicity of X2 as an eigenvalue of L- 

As a corollary, we have [19] 



Corollary 7.3.5. X 2  is the srnallest eigenvalue of Lw. Equiualently, if B is 
a passive branch, then the srnullest eigenvalue of i ( ~ )  is greuter than X 2 .  

Proof. Writing m for the multiplicity of A2 as an eigenvalue of L(T) ,  we have 
the following eigenvalues for L(T) : 

If we let the eigenvalues of L, be 

then the Cauchy interlacing inequdities give that 

Since Amfl = X2, this gives C Y ~  = QQ = . - = h. Corollary 7.3.4 t hen gives 
that al = a,+, = X P i  and thus the smdlest eigenvalue of Lw is ALI The 
word "Equivalently" is justified by Theorem 7.3.1. This gives the result. Ci 

7.4 Structural operations on trees 

We may use the characteristic vertex to determine the effects of certain prun- 
ing and grafting of vertices. The following theorem of Merris [34] allows us 
to remove vertices without changing properties related to A*- 

Theorem 7.4.1. Let x E <(T) be an eigenvector corresponding to A?. Sup- 
pose there is a pendant vertex v such that x,, = O. Let u be the v e r t e  
adjBcent to v. Define TV t o  be the tree obtained by deleting vertex v and the 
edge UV from T .  Define y to be the restriction of x to TV. Then x, = 0 ,  
X 2 ( Z )  = h ( T ) ,  y E E(Tv), and F ( T )  = F ( Z )  

Note that in order to have an eigenvector x E c(T) and s. pendant vertex 
j such that xj = 0, the tree must be of type 1. Theorem 7.1.3 guarantees 
one positive and one negative branch. The vertex j then makes a minimum 
of four vertices. 

Proof. The first result is true by Lemma 5.1.1. 
Order the vertices of T so that v is last and u is second last. Define L, 

to  be the matrix obtained by removing the last row and column from L, and 



Lu to  be the matrix obtained by rernoving the last row and column fiom L,, 
giving the foms: 

Since x, = O ive see that y is an eigenvector of Lu corresponding t o  X2(T), 
and furthermore since xu = x, = O, that L,y = L(Tv)y and hence X2(T) is 
an eigenvalue both of L, and L(Tv)- Denote the eigenvalues by 

eigenvalues of L(T) O = X 1  < A2 SA3 5 - - -  < A n  
eigenvalues of L(T,) O=pi < P 2 9 3 L - - - S k  
eigenvalues of L, O < a l  < a 2  <a3 5 - - -  5 %  
eigenvalues of L, O C P I  ~ 8 2 S P 3  I - - - S A  

Since L, is a principal submatrix of L(T) ,  and Lu is a principal submatrix 
of bot h L, and L (TV), the int erlacing inequalit ies give 

Now X2 is a (nonzero) eigenvalue o f  L(T,), so if X2 # p2 then (7.2) gives that  

with the final inequality a consequence o f  Theorem 7.1.1. 
Denote the characteristic p olynomials by 

q(x) = det ( X I  - L ( T ) )  
r(x) = de t (x1 -  L(T,))  

a ( x )  = d e t ( x 1 -  Lw) 
b(x)  = det ( X I  - Lu).  

These polynomials are not independent. We have from the structure of the 
matrices t hat 

Q ( x ) = ( x - l ) a ( x ) - b ( x )  and a ( x ) = r ( x ) - b ( ~ ) ,  (7.3) 



giving t hat 

By examining signs, we will show that it is impossible to  have p2 < A2- We 
rnay first note that (7.3) gives that any common root of a(x) and b(x) is also 
a root of q(x), and (7.4) gives that any common root of r (x)  and b(x) is also 
a root of q(x). Thus we rnay sharpen (7.4) to 

The polynomial q(x) is of degree n, the polynomial T(X) is of degree n - 1, 
and the polynomial b(x) is of degree n - 2. The leading coefficients are al1 
+l. So we rnay use (7.4) to construct sign diagrams for these polynomials. 

If n is even we have: 

If n is odd al1 signs are reversed. 
ObseMng that x - 1 is negative on (O, A2), we see that (7.1) gives a 

contradiction on the interval (p2, X2)- Thus we rnay confidently assert that 
this interval does not exïst, and p:! = AI?- 

We rnay determine the characteristic vertex of T using x and Theo- 
rem 7.1.3; we rnay determine the characteristic vertex of TV using y and The- 
orem 7.1.3. As vertex v cannot be the characteristic vertex (Lemma 5.1.1), 
the two characteristic vertices are necessarily the same. 

(p*, A*) 
- !?(XI 

We have as a corollary that passive branches rnay be removed without 
changing Xî. Indeed, by removing passive branches, we conserve c(T), except 
of course that  the excess coordinates (which are al1 zero) are removed. Note 
however that this theorem does not only apply to passive branches. 

As an example, the three graphs in Figure 7.2 show the result of suc- 
cessiveIy removing two pendant vert ices, t oget her wit h an eigenvect or corre- 
sponding to  X2 = (3 - &)/2 in each case. 

Though we can arbitrarily remove passive branches, we cannot almays 
add to them. Merris presents a partial converse to Theorem 7.4.1 [34]. 

(0, Pl) 
- 

(Pl, p*) 
- 



Figure 7.2: pruning vertices 

Theorem 7.4.2. Let T be a type 1 tree. Let x E E(T) and u E V(T)  such 
that x, = O .  Let T' be the tree obtained by adding a new pendant vertex u 
adjacent t o  u, and let x' be the extension of x to T by defining x: = O .  Then 
x' is an eigenvector of T with eigenvalue X2(T). Furthemore,  if X2(T) = 
X2(T1), then d E c(Tf) and F ( T )  = F ( T f ) .  

Proof. Since x: = O ,  we see directly that L(Tt)x' = A2(T)xr. If X2(T) = 
X2(T1), then by definition we have x' E C(Tr). In this case, the characteristic 
vertices must coincide for the same reasons given at the end of the proof of 
Theorem 7.4.1. We note parenthetically that since X2(T) > O and X2(T1) > 0,  
we must always have X2(T) 2 X2(T1). 0 

This is illustrated in Figure 7.3, where we show f he result of grafting a 
pendant vertex ont0 the first tree of Figure 7.2. Two eigenvectors are shown: 
the eigenvector of Theorem 7 - 4 2 ,  and the eigenvector corresponding to X 2  of 
the new tree. 

Figure 7.3: adding a new passive vertex; X 3  = (3 - &)/2 and A2 = 0.2434 

However, we can always add pendant vertices to the characteristic vertex, 
as demonstrated by the following result from [19]: 



Theorem 7.4.3. Let T be a type 1 tree with characteristic vertex W. Let x E 
c(T). Let T' be the tree obtained by adding a new pendant vertex v adjacent 
to w, and let xf be the extension of x to T' b y  dejking xi = O.  Then i is 
an eigenuector of T' with eigenvalue X2(T). Furthemore, X2(T) = X2(Tf), 
xf E E(Tr), and F(T) = F(Tf). 

Proof. By Theorem 7.4.2, we need merely show that X2(Tr) 2 X2(T). 
Let Lw be the matrix obtained from L(T) by deleting the row and column 

corresponding t o  w; Let Lk be the matrix obtained from L(Tf) by deleting 
the row and column corresponding to W. Thus we have the forms 

where the R's [Cs]  represent appropriately sized row- [colurnn] matrices whose 
only nonzero entries indicate the vertices of T adjacent to W. Obviously the 
eigenvalues of LL are precisely the eigenvalues of Lw with the extra eigenvalue 
1. Corollary 7.3.5 gives that the smallest eigenvalue of Lw is X2(T), which is 
thus also the smallest eigenvalue of LL. As Lk is a principal submatrix of 
L(Tr), the interlacing inequalities give that this can be no larger than X 2  (Sr) : 
i.;., that X2(T) 5 X2(Tr). 

Hence wit hout furt her ado, the 
(3 - &)p. 

O 

graph shown in Figure 7.4 has X2 = 

Figure 7.4: adding pendant vertices to the char. vertex; X 2  = (3 - 4 ) / 2  

Furthermore, we have 

Corollary 7.4.4. Let T # Sn be a type 1 tree with characteristic vertex w, 
with a pendant vertex p adjacent to W. Then xp = O for al1 x' E <(Tr).  

Proof. Let B be  the branch of T containing only p. Then Z ( B )  is the 1 x 1 
rnatrix (l), with the single eigenvalue 1. Since T # Sn, X2(T) < 1 and thus 
X2(T) is not an eigenvalue of Z(B) .  By Theorem 7.3.1, B is a passive branch, 
and hence xp = O for al1 x' E E(Tf). 



Thus me may add pendant vertices to the characteristic vertex without 
changing X2; the eigenvectors corresponding to X2 will extend to zero on the 
newly added pendant vertices. Furthermore, (with the exception of T = Sn) 
any pendant vertices adjacent to the characteristic vertex got there by virtue 
of Theorem 7.4.3. This gives a complete "explanation" of pendant vertices 
adjacent to the characteristic vertex. 

In fact, given any two type 1 trees TL and T2, we can form a new type 
1 tree T by identi&ing the two characteristic vertices of Tl and T2. It c m  
readily be seen that the result will be a type 1 tree mith the characteristic 
vertex being the amalgamated characteristic vertices of the two originaI trees. 
Furthermore, if we take an eigenvector of Tl, and extend it to an eigenvector 
of T by defining i t  to be O on T2, we obtain an eigenvector of T. We can do 
the same for eigenvectors of T2. Thus X2(T) 5 min{X2(T1), X2(T4). We c m  
do better. If we take a set of (non-zero) linearly independant eigenvectors 
for Tl and T2, and extend them in the above manner to eigenvectors of 
T, then the extensions are al1 linearly independant as well. So not only 
is X2(T) = min{X2(Tl), X2(T2)), but in fact the non-zero spectrum of T is 
simply the collection of dl non-zero eigenvalues of Tl and Tz. 

7.5 Structure of the automorphismgroup 

Recall that an automorphism is a bijective mapping 4 : V ( G )  -t V(G)  
such that ij is an edge if and only if d(i)#(j) is an edge. Of course, the 
automorphisms form a (permutation) group under composition. We will 
refer to this group as r(G). 

We had previously mentioned the Faria vectors of a graph. These are 
eigenvectors (corresponding to 1) al1 of whose only non-zero entries are a 
+1 and a -1 respectively, on two pendant vertices which are adjacent to a 
common vertex. There are (Theorem 5.1.3) p ( G )  - q(G) of these vectors, 
and they are linearly independent. We will refer to the space that they span 
as the Faria space. It may be that there are eigenvectors corresponding to 1 
that are not in the Faria space, as Theorem 5.1.2 is not necessarily sharp. 

It will be useful to consider the orbits of the automorphisrn group. These 
are a partition of the vertex set of the graph into maximal sets such that 
given any two vertices i and j in the  sarne part of the partition, there exists 
an automorphisrn mapping i to j. We will abuse the language by speaking of 
"app1ying an automorphisrn to an eigenvectory', and write 4(x); by this we 



mean permuting the values of the coordinates of the eigenvector according 
to  the permutation corresponding to the automorphism. 

It may happen that an eigenvector is constant on al1 the orbits. Thus, 
by applying automorphisms to this eigenvector, we do not obtain any new 
eigenvectors. Note that even if an eigenvector is not constant, applying 
a permutation does yield a 'hew" eigenvector, but it may not necessarily 
produce a linearly independent one. As a trivial example, consider the graph 
P3 shown in Figure 7.5. There is only one non-trivial automorphism. Two 
of the eigenvectors are constant on the orbits, one is not, though they are dl 
simple. 

Figure 7.5: eigenvectors for P3 corresponding to XI = O, X2 = 1, X3 = 3 

We will define the symmetric spectrum of a graph as that part of the 
spectrum with corresponding eigenvectors that are constant on the orbits, 
and the alternating part of the spectrum as that part of the spectrum with 
corresponding eigenvectors that are not constant on the orbits, both counted 
according to the number of linearly independent eigenvectors. Note that a 
(multiple) eigenvalue may belong to both parts; the (total) multiplicity of an 
eigenvalue is the surn of its rnultiplicity in the alternating spectrum and its 
multiplicity in the symmetric spectrum. We observe that if r (G) is trivial, 
then the orbits consist of one vertex each, in which case the alternating part 
of the spectrum is empty; if the graph is vertex-transitive, then there is 
exactly one orbit, consisting of all the vertices, and the symmetric part of 
the spectmm consists of the eigenvalue O of multiplicity one. So as the graph 
becomes more "symmetric", the spectrum becomes "less so". 

The Faria vectors are never constant on al1 the orbits, so the dimension of 
the alternating spectrum is at least p(G)  -q(G). It is possible that 1 belongs 
to  the alternating spectrum without originating from a Faria vector, or that 
1 belongs to the symmetric spectrurn. The examples of Cs or P' shown in 
Figure 7.6 (the idea extends e a d y  to or PGk7 as well a s  other graphs using 
Merris's Edge Principle or other techniques). As an exarnple (Figure 7.7), 
the star graph Sn has as its alternating spectrum 1 of multiplicity n - 2, al1 
of which originates in the Faria space, and 0, n as its symmetric spectrum. 
Figure 7.6 and Figure 7.7 also illustrate the following characterisation of 



the alternating spectrurn for trees, given in [19]. The alternating spectrum 
consists exactly of those eigenvalues for which there exists a nonzero vector 
x such that for some automorphism 4, $(x) = -x (see also Theorem 7-62). 

Figure 7.6: eigenvectors for C6 and P6 corresponding to 1 

I l 1  L L I  

Figure 7.7: a typicd eigenvector for the alternating spectrum, and two eigen- 
vectors giving the symmetric spectrum 

The number of syrnmetric eigenvalues (counting multiplicities) is simply 
the number of orbits of the graph. In fact, we may easily determine the 
symrnetric spectrum as the spectrum of another matrix, in the following way 
[19]. Partition the mat* L according to the orbits. Let k be the number of 
orbits, and define ni, 1 < i < k to be the number of vertices in the tTh orbit. 
Form the k x k matrix by defining (E), to be the sum of the elements 
in the i j th blods of L divided by ,/W. The spectrurn of is exactly the 
symmetric spectrum of L. Furtherrnore, there is a one-to-one correspondence 
between the eigenvectors as follows: 55 is an eigenvector of if and only if x 
is an  eigenvector of L, where xi&' = iZj where vertex i is in orbit j. So for 
the graph in Figure 7.8, we have 



Figure 7.8: a graph with four orbits 

In fact, let &), 1 5 j 5 k be the vector that takes on the value 1/& 
on those vertices in the jth orbit and zero otherwise. Form any orthonormal 
matrix U that has as its first k columos the vectors uu). Then the rnatrix 
V L U  is block diagonal with the upper block being exactly (giving the 
symmetric spectrum) and the lower block giving the alternating spectrum. 

7.6 Automorphisms on trees 

Consider the automorphisrn group r of a tree T. Of course, F is fixed by r, 
and thus if S is of type 1, then the characteristic vertex is a fixed point. 

We can characterise whether or not X2 is in the alternating spectrum based 
on the isomorphic branches at the characteristic vertex. It turns out that 
X2 is in the alternating spectrum exactly when there are two nonisomorphic 
branches at the characteristic vertex, To show this, we will need two lemmas, 
h m  [19]. 

Lemma 7.6.1. Let T be a tree and u some vertex of T .  If there are k 
isomorphic branches BI, B1? . . . , Bk at v, with X an eigenvalue of L(B~) with 
multiplicity m, then X is an alternating eigenvalue of T with multiplicity at 
leust m(k - 1). 

Proof. For each linearly independent eigenvalue z of Z ( B ~ ) ,  define a vector 
y(') that is equal to z on BI, equal to -x on Bi, and zero elsewhere. This 
gives a set of m(k - 1) linearly independent eigenvectors corresponding to A, 
none of which are constant on the orbits. 0 



Lemma 7.6.2. Let T be a type 1 tree with centre w, and B one of its 
branches at  W. Defàne Ui = BnK7 where are the orbits o f G .  Ifx E <(T), 
then x is constant on each Ui. 

Proof. The  result is obvious for passive branches, so assume B is active. Let 
u be a vertex in B, and 4 E T(G) such that 4(v) E B. By Theorem 7.1.3, we 
may assume that both x, and x4(,) are positive. Furthermore, Letting T (B) 
be the vertex of B that is adjacent (in T )  to w, we see that #(w) = W. If 
x, # x4(,,, then we can construct (as a linear combination of x and cj(x)) a 
vector tha t  is zero on u, nonzero on v ;  yet in E(T). By Theorem 7.1.3, this 
is impossible. Thus x, = x+(,) and the result follows. 0: 

Hence we can now prove [19] 

Theorem 7.6.3. Let T be a type 1 tree with characteristic vertex W. Then 
X2 is in  the alternating spectrum if and only i f  T has two isomorphic actiue 
branches at w- 

Proof. If there are two nonisomorphic branches, then Theorem 7.3.1 and 
Lemrna 7.6.1 give that X2 is in the alternating spectrum. 

If XÎ is alternating, then there is a x E <(T) and a vertex v such xv # x4(,) 
(obviously v must be in an active branch). So Lemma 7.6.2 gives that v and 
4(v) are in different branches. Since w is a fixed point, we conclude that q5 
permute. the branches, and hence that q5 is an automorphism that maps the 
branch containing u to the branch containing #(v). 

In [19], the following construction to obtain type 1 trees is given, based 
on Theorem 7.3-1. Take any two rooted trees, Tl and T2 such L ( T ~ )  and 
E(T~) have the same smallest eigenvalue, A. Forrn the tree T by taking the 
disjoint union of Tl and T2, and adding a single vertex, w, that is adjacent to 
both roots. Define a vector x which is zero on the new vertex, the restriction 
of x to Tl or  T2 gives an eigenvector corresponding, respectively, to J?(T~) 
or E(T*), and x takes on the values +1 and -1, respectively, at the two 
roots. Following the ideas of Theorem 7.3.1, it may be seen that X2(T) = X, 
with the new vertex being the characteristic vertex of T. Note that in this 
construction, that y E E(T) forces y, = O. Now if y is not zero at  one of 
the vertices adjacent to w, then the eigenvalue condition a t  w forces y = cx, 
where c is some constant. On the other had, Theorem 7.1.3 guarantees that, 
since y # O, it cannot be zero at both vertices adjacent to W. 



If Tl and are isomorphic branches, then in fact the restrictions of x 
to  Tl and T' respectively will be equal in value but opposite in sign. Thus 
X 2 ( T )  will be in the alternating spectrum. If Tl and T2 are nonisomorphic 
branches, then by Theorem 7.6.3: X2 will not be in the alternating spectrum. 
Furthermore, by adjoining in the same manner a second copy of Ti (or T2), 
we see that X2 c m  be in both the alternating and symmetric spectra. In fact , 
we can construct a tree with any prescribed values for the multiplicity of A2 
as both an dternating and a syrnmetric eigenvalue. 



Chapter 8 

Ot her Mat rices 

8.1 O t her Laplacians 
We will specifically mention tTvo other Laplacians; both can be viewed as 
ways of normalising with respect to the number of vertices. 

Chung [7] considers eigenvalues of the matrix 1: defined by 

i f i = j a n d & # O  
if i - j 
otherwise 

Note that if we define D-' to be the inverse of D, the (diagonal) matrix of 
vertex degrees (with the convention that (D-'), = O if D, = O, then we have 

Thus the two matrices are related. In fact, given an eigenvector x of L, the 
vector 0 ' I2x  is an eigenvector of L. In terms of operators, we see that 

Note that in the case of regular graphs, the spectrum is again equivalent 
to the spectrum of the ordinary adjacency matrix. 



In general, one can Say that the bounds obtained for f are 'hormalised" 
with respect to n, in some sense. This does not mean that they are obtained 
by dividing the eigenvalues of L by n. In general, the properties of the 
two spectra are different, though they share some global similarities. For 
instance, we still have that the multiplicity of O is equal to the number of 
connected components of the - graph. We give here witliout proof some basic 
results from [7], using O = XI 5 & 5 - - - < for the eigenvalues of Ç. 

- n 
An 2 - if G has no isolated vertices 

n - 1  
i2 1 unless G is complete 

x&2 

b = 2 G has a nontrivial connected bipartite component 
(8.2) 

Recall that for bipartite graphs the spectrum of the adjacency matrix 
is symmetric about zero, and that for trees the spectrum of L is "roughly 
symmetric about one7= (see Proposition 5.1.1 1 and the remarks following) . 
For f we have the following result [7]. 

Theorem 8.1.1. A graph G is bipartite i f  and only Zf the spectrum o f f @ )  
is symmetric about 1. 

Most of the major results in this paper have analogies for L. Using the 
alternative definitions of the isoperimetric constants 

where vol(A) = C di for A C V(G) . (8-3) 
iEA 

Chung obtains analogies for Theorem 2.2.1, Theorem 2.2.2, Theorem 3.2.2, 
Theorem 3.2.3, and Theorem 4.1 -2, among others. It is perhaps worth noting 
that the relationship between vertex expansion and edge expansion is differ- 
ent. Although we trivially have hl(G) 5 h(G), here we have &'(G) 3 h ( ~ ) .  



Some authors also consider the Laplacian defined by 

This matrix is again related t o  the combinat orïal Laplacian, through 

Again, for the  case of regular graphs, we have nothing that we didn't al- 
ready know fkom the spectrum of the ordinary adjacency matrix- In general, 
however, the spectra of these different Laplacians do not coincide, although 
analogous results do often hold. 

One cm,  as  does Colin de Verdière [8], consider a more general family of 
operators, such that  the corresponding matrix A has 

A Laplacian is such an A 
the constant vector is an 

with the condition that  the rom-sums are zero (Le.: 
eigenvector) . 

The results of Chapter 2 can be summed up by saying that the connectedness 
properties can be approxïmated by the spectrurn of a matrix ( L )  of the graph. 

It is interesting in this regard to  mention a paper of Desai and Rao [Il]. 
They consider the  matrix Q = D+A, and specifically, it's srnaIlest eigenvalue. 
For a set S C V(G), define e(S) to  be the minimum number of edges that 
need to be removed from the induced subgraph on S so as to make it bipartite. 
Then define 

This may be thought of as an analogue to the isoperimetric constant of the 
graph, except that @ measures how close G is to being bipartite. Clearly 
@ = O if and only if G is bipaxtite. 



Note that the mat+ Q is positive semidefinite. This follows for basicdly 
the same reasons as for L, except that here Q = K+K+', where K+ is the 
unsigned version of the incidence matrix- Write the eigenvalues of Q as 
ri < 72 5 O - -  5 % a  If G is d-regiiIar, then we trivially have that yi = 
2d - Ai = d + pi, where pi are the eigenvaiues of A. Thus we may state for 
regular graphs, using a well known property of the A-spectrum that 

Proposition 8.2.1. A regular graph G is bipart i te  i f  a n d  o n l y  i f  yl = 0. 

In fact, we can Say more [Il]. 

Proposition 8.2.2. The matriz Q 2s singular (ie. 7.1 = O) i f  and only if 
@ = o. 

Their main results can be thought of as analogous t o  Theorem 2.2.1 and 
Theorem 2 - 2 2  In fact even the proofs share some of the spirit of the proofs 
of Theorem 2 - 2 1  and Theorem 2.2.2. 

Theorem 8.2.3. yl < 4$ 

Theorem 8.2.4. yi 2 

Furt hermore, define the parameter 

(which also gives a slight variation on Theorem 8.2.3). For any eigenvector 
x of Q corresponding to  71, define Val(x) = {lxi[ 1 xi # O, 1 5 i 5 n). They 
give an alternate lower bound for rl,mhich may sometimes be better than 
Theorem 8.2.4 as 

w5' Theorem 8.2.5. > 
Echoing remarks made elsewhere on X2 and h, they remark at the end of 

the paper that computation of is typically difficult and thus that 71 pro- 
vides easily cornputable bounds on an otherwise hard t o  compute structural 
parameter of the graph. 



8.3 An "inverse" of L 
Obviously, L is singular and has no inverse. Homever, it turns out that the 
rnatrix 

encapsulates some interesting properties of the graph. We note that I + L is 
positive definite. Indeed, the eigenvalues of R are 

In fact the eigenvectors of R are the same as the eigenvectors of 1;. Observing 
that the all-ones vector is an eigenvector of R corresponding to 1, we see that 
R has constant row-sum equal to  1. Since it is symmetric, the same can be 
said for the column-sum, hence Merris refers to a as the doubly stochastic 
rnatmx of the graph. 

We have some relations between R and the structure of the graph, which 
we reproduce here without proof. 

Proposition 8.3.1. Let G be a graph, and R its doubly stochastic graph 
matriz.  I f  du = n - 1 for some vertex n then wu, = 2(n + 1 )  and wuj = 
l (n+l ) ,  j # u. I f &  = O for some vertex v then w,, = 1 and w, = 0,  j # u. 
wjj 2 2(n + 1) with equality if and only i f  d j  = n - 1. If Uui = wuj for all 
i # u # j then e i therd ,  = O  or d, = n -  1. 

Proposition 8.3.2. Let u, v be nonadjacent vertices of a graph G. Let the 
graph Gr be obtahed by adding the edge UV to G. Let 0 and 0' be the doubly 
stochastic graph matrices of G and C, respectiuely. Then wu, > w',, and 
w,,, > w',,. Furthemore, wii 2 wJii vlith equality if and only i f  wi,  = wi, i f  
and only if wij = wfij for al1 j # i 

Define p( i ,  j )  = w~ + wjj - 2wij. This behaves like a distance, rnotivating 
the definition of the p-diameter D, to be the maximum of p(i, j )  over al1 
pairs of vertices i, j .  

For each vertex j ,  define 



Based on this definition, a vertex j that maximises [minimises] r ( j )  i s  said 
to be a m o s t  remote [Zeost remote] vertex. The following result characterises 
the most and least remote vertices of the graph. 

Theorem 8.3.3. Let G be a graph and 52 = (w), = (L+I)-'. T h e n  v e r t e x  k 
is a m o s t  remote vertex i f  and only if wkk is a maximal main  diagonal e n t r y ,  
and a least remote vertex if and only i fwkk  is a min imal  main  diagonal ent ry .  

Proof. The proof is straightforward. By the definition of p ( i ,  j) we have  

i#j 

(n - Z)wjj + trace(n) - Wjj - 2(1 - w j j )  

W j j  + trace(n) - 2 

Not surprisingly, we can also relate r back to A. 

Proof. Following the proof above, we have 

Merris remarks that the quantity W, is analogous to the chernical Weiner 
Index, thus giving a link between the definition of "remoteness" given above, 
the Laplacian eigenvalues of the graph, and the chemistry of a rnolecule based 
on that graph. 

This section is based principally on [43], [40], to  which the reader is 
referred for more details. 



8.4 Further directions 

Ive mention here sorne further reading for more resuits relating t o  Laplacian 
mat rices. 

The survey papers [46, 48, 36, 371 deal with the Laplacian as we have 
defined it. The two books [7, 81 deal extensively with different forms of the 
Laplacian then we consider here. 

Graphs with boundary and the Dirichlet problem are considered exten- 
sively in [56, 571. The theory of the Laplacian matrkfor  graphs is seen in the 
contact of the theory of the Laplacian operator on Riemannian manifolds. 
Infinite graphs are considered in, for instance, [8]. 

The Laplacian can be used to partition graphs into sets with minimal 
overlap. This c m  be seen partly as a specific consequence of the bounds 
relating to the isoperimetric constant, among others, but more can be said. 
The eigenvectors of A2 can be used to heuristically divide the graph into two 
sets with minimal crossover; this is a consequence of the fact that ordering 
the vertices based on an eigenvector of X2 cornes close to minimising the 
bandwidth of L [46, 531. 

J Tan has shown that  the inequality in Theorem 2.2.2 is in fact strict [55]. 
Further results on the diameter can be found in [58], and in [52, 541, a 

more general method is advanced than that seen here. 
Graph theory has many applications in chemistry, and in fact the Lapla- 

cian spectrum of the underlying graph of certain molecules can be used to 
predict some of their chernical properties; see [46, 361 and the references 
t herein. 

There is much more that could be said about Laplacian spectra. Indeed, 
a "complete7' survey of al1 the material relating to the Laplacian spectrum 
is beyond the scope of this paper. Hopefully, this paper has demonstrated 
some of the important connections that exist between the structure of graphs 
and their Laplacian spectrum. 



Appendix A 

Graph Tables 

We give tables of the Laplacian spectrum and characteristic polynomial for 
trees up to n = 10 vertices and connected graphs up to  n = 6 vertices. 
They are sorted with A2 in nonincreasing order. The eigenvalue Al = O is 
omitted for brevity, as is the (zero) constant coefficient of the characteristic 
polynomial. So, for instance, the first tree on four vertices, has spectrum 
{O, 1,1,4) and characteristic polynomial det (D - XI) = 4x - 9x2 + 6x3 - x4. 
Of course, 4 is exactly the number of vertices multiplied by the number of 
spanning trees, and 6 is the sum of the degrees, or twice the number of edges, 
which (for trees) is 2(n - 1). 

There are two pairs of isospectral graphs within these tables: 79,80 and 
82,83, both from the table of connected graphs on six vertices. Within each 
pair, exactly one edge has been moved; between the two pairs, one edge (the 
"same'' one) has been removed/added. Within each pair, the number of edges 
and diameter are equal. Graphs 79,80 have the same @th and chromatic 
nurnber. However, graph 82 has girth 3 and chromatic number 3, while graph 
83 is bipartite. The isospectral constants are $,1, $, 1, respectively. 

The graphs were generated using geng, a subset of Brendan McKay7s 
nauty software package, available from http : //CS. au. edu. au/people/bdm/. 
The spectra were calculated using ~ a ~ l e @  and were then sorted by XP. The 
pictures were generated automatically from the graph files by the author. 
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n tree 
8 1 

2 
3 
4 
5 
6 
7 
8 
9 
1 0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

eigcnvaiues 

1 1 1 1 1 3 8 
l 

l 

l 

l 

l 

- 

characteristic polynomiai 
8, -49, 126, -175, 140, -63, 14, -1 
8, -54, 146, -205, 160, -68, 14, -1 
8, -59, 168, -238, 180, -72, 14, -1 
8, -64, 192, -273, 198, -75, 14, -1 
8, -57, 158, -223, 172, -71, 14, -1 
8, -58, 162, -229, 176, -72, 14, -1 
8, -62, 180, -255, 190, -74, 14, -1 
8, -67, 204, -286, 204, -76, 14, -1 
8, -63, 182, -256, 190, -74, 14, -1 
8, -62, 174, -241, 180, -72, 14, -1 
8, -65, 100, -267, 196, -75, 14, -1 
8, -67, 198, -275, 198, -75, 14, -1 
8, -68,204, -286,204, -76, 14, -1 
8, -72,224, -307,212, -77, 14, -1 
8, -66, 188, -259, 190, -74, 14, -1 
8, -7Q, 208, -287, 204, -76, 14, -1 
8, -71, 210, -288, 204, -76, 14, -1 
8, -71, 204, -277, 198, -75, 14, -1 
8, -75, 228, -308, 212, -77, 14, -1 
8, -74, 214, -289, 204, -76, 14, -1 
8, -76, 228, -308,212, -77, 14, -1 
8, -79, 232, -309, 212, -77, 14, -1 
8, -84, 252, -330, 220, -78, 14, -1 





n tree 
9 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 

eigenvalues characteristic polynomial 
1 1 1 1 1 1 1 9 9, -64, 196, -336, 350, -224, 84, -16, 1 

- 





n tree 
9 27 

28 
29 
30 
3 1 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

eigenvalues 
0.202 0.569 1 1 1,412 2.827 3,705 5.284 
0.198 0,412 1 1,406 1,555 3 3.247 5,182 
0,198 0.300 1 1.555 2.239 3 3.247 4,461 
0,195 0.382 1 1.211 2.145 2,618 3.906 4,543 
0.188 1 1 1 1 2,275 3.482 6.055 
0,188 0.614 1 1 1,533 2,380 4.154 5.130 
0.186 0.482 0.704 1.407 2,134 2,853 3,537 4,696 
0.183 0.572 1 1 1,509 3 4.044 4,691 
0.177 0.524 1 1 2.161 2.496 3,467 5.174 
0,173 0.559 0.662 1.433 2,209 2,485 3,956 4,523 
0,171 0.382 0.850 1,676 2,416 2.618 3.442 4.444 
0.166 0.468 1 1.343 1.653 3 3.879 4,491 
0,165 1 1 1 1 2.568 4.165 5.102 
0,163 0.532 1 1 2.089 3 3.572 4.644 
0.154 0.576 1 1 2.113 2,676 4.075 4.406 
0,151 0,427 1 1.423 2,172 3 3.458 4,370 
0.149 0.717 1 1 1.663 2.740 3.633 5.098 
0.140 0.536 0.775 1.580 2,245 2.778 3.599 4.346 
0.139 0.697 1 1 1.746 3 4.115 4.303 
0,129 0.554 1 1,261 2,133 3 3.688 4,235 
0.121 0,468 1 1,653 2.347 3 3.532 3.879 

characteristic polynomial 
9, -92, 334, -596,585, -326, 101, -16, 1 





w- 
Cu * 
Cu- 
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n tree 
10 82 

83 
84 
85 
86 
8 7 
88 
89 
90 
9 1 
92 
93 
94 
95 
96 
9 7 
98 
99 
100 
101 
102 
103 
1 O4 
105 
106 

characteristic polynomial 
10, -131,586, -1285, 1586, -1165,514, -132, 18, -1 





Laplacian spectra of connected graphs, 2 5 n 5 6 

eigenvalues 
n 

characteristic polynomiai 
2, -1 









eigenvalues 
1.519 3.311 4 5.170 6 

characteristic polynornial 
624, -980, 566, -154, 20, -1 





eigenvalue s 
0.893 2.212 3 4.526 5.369 
0.885 1.697 3.254 4.861 5.303 
0.882 1.451 2.534 3.865 5.269 
0.764 3 4 5 5.236 
0.764 3 3 4 5.236 
0.764 3 3 4 5.236 
0.764 2 3 5 5.236 
0.764 2 3 3 5.236 
0.764 2 3 3 5.236 
0.764 1.268 4 4-732 5.236 
0-764 1.268 2 4.732 5.236 
0.764 1 3 4 5.236 
0.764 1 2 3 5.236 
0.731 2.135 3.466 4.549 5.118 
0.722 1.683 3 3.705 4.891 
0.697 2 2.382 4.303 4.618 
0.697 1.382 2 3.618 4.303 
0.697 1.139 2.746 4.303 5.115 
0.697 0.697 2 4.303 4.303 
0.657 f 2.529 3 4.814 
0.631 1.474 3 3.788 5.107 
0.631 1 1.474 3.788 5.107 
0.586 1.268 3.414 4 4.732 
0.586 1.268 2 3.414 4.732 
0.486 2.428 4 4 5.086 
0.486 2 2.428 4 5.086 
0.486 1 2.428 3 5.086 
0.486 1 1 2.428 5.086 
0.438 3 3 3 4.562 
0.438 2 3 4 4.562 
0.438 2 2 3 4.562 
0.438 1 3 3 4.562 
0.438 1 1 3 4.562 
0.413 1.137 2.359 3.698 4.393 
0.382 0.697 2 2.618 4.303 
0.325 1.461 3 3 4.214 
0.325 1 1.461 3 4.214 
0.268 1 2 3 3.732 

characteristic p olynomial 
la, -333,266, -96, 16, -1 
126, -305,256, -95, 16, -1 
66, -176, 168, -72, 14, -1 
240, -548,390, -123, 18, -1 
144, -348, 214, -97, 16, -1 
144, -348, 274, -97: 16, -1 
120, -304,256, -95, 16, -1 
72, -192, 176, -73, 14, -1 
72, -192, 176, -73, 14, -1 
96, -264, 244, -94, 16, -1 
48, -144, 152, -70, 14, -1 
48: -148, 158, -71, 14: -1 
24, -80, 96, -51, 12, -1 
126, -320, 264, -96, 16, -1 
66, -184, 174, -73, 14, -1 
66, -185, 174, -73, 14, -1 
30, -95, 106, -53, 12, -1 
48, -149, 158, -71: 14: -1 
18, -69; 92, -51, 12: -1 
24, -83, 100: -52, 12, -1 
54, -165, 166, -72, 14, -1 
18, -67, 88, -50, 12: -1 
48, -156, 164, -72, 14: -1 
24, -84, 100, -52, 12, -1 
96, -304,262, -96, 16, -1 
48, -164: 166, -72, 14, -1 
18: -72, 94, -51, 12, -1 
6, -28, 46, -33, 10, -1 
54, -189, 180, -74, 14, -1 
48, -172, 172, -73, 14, -1 
24, -92, 106: -53: 12, -1 
18, -75, 98, -52, 12, -1 
6, -29, 48, -34: 10, -1 
18, -76, 98, -52, 12, -1 
6: -31, 52, -35: 10, -1 
18, -84, 204, -53, 12, -1 
6, -32, 52, -35, 10, -1 
6: -35: 56: -36, 10, -1 
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