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Abstract. We investigate the problem of detecting termination of a
distributed computation in systems where processes can fail by crash-
ing. Specifically, when the communication topology is fully connected,
we describe a way to transform any termination detection algorithm A
that has been designed for a failure-free environment into a termination
detection algorithm B that can tolerate process crashes. Our transfor-
mation assumes the existence of a perfect failure detector. We show that
a perfect failure detector is in fact necessary to solve the termination
detection problem in a crash-prone distributed system even if at most
one process can crash.

Let µ(n,M) and δ(n,M) denote the message complexity and detection
latency, respectively, of A when the system has n processes and the un-
derlying computation exchanges M application messages. The message
complexity of B is at most O(n + µ(n, 0)) messages per failure more
than the message complexity of A. Also, its detection latency is at most
O(δ(n, 0)) per failure more than that of A. Furthermore, the overhead
(that is, the amount of control data piggybacked) on an application mes-
sage increases by only O(log n) bits per failure.

The fault-tolerant termination detection algorithm resulting from the
transformation satisfies two desirable properties. First, it can tolerate
failure of up to n−1 processes, that is, it is wait-free. Second, it does not
impose any overhead on the fault-sensitive termination detection algo-
rithm until one or more processes crash, that is, it is fault-reactive. Our
transformation can be extended to arbitrary communication topologies
provided process crashes do not partition the system.
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1 Introduction

One of the fundamental problems in distributed systems is to detect termination
of an ongoing distributed computation. The termination detection problem was
independently proposed by Dijkstra and Scholten [1] and Francez [2] more than
two decades ago. Since then, many researchers have studied this problem and, as
a result, a large number of efficient algorithms have been developed for detecting
termination (e.g., [3–14]). Most of the termination detection algorithms in the
literature have been developed assuming that both processes and channels stay
operational throughout an execution. Real-world systems, however, are often
prone to failures. For example, processes may fail by crashing and channels may
be lossy. In this paper, we investigate the termination detection problem when
processes can fail by crashing. We assume that process crashes do not result in
restarting of the primary computation.

One of the earliest fault-tolerant algorithm for termination detection was
proposed by Venkatesan [15], which was derived from the fault-sensitive (that
is, fault-intolerant) termination detection algorithm by Chandrasekaran and
Venkatesan [9]. Venkatesan’s algorithm achieves fault-tolerance by replicating
state information at multiple processes. However, it assumes a prespecified bound
k on the maximum number of processes that can fail by crashing. Its message
complexity is O(kM + c), where M is the number of application messages ex-
changed by the underlying computation and c is the number of channels in
the communication topology. As a result, the overhead incurred by the algo-
rithm depends on the maximum number of processes that can fail during an
execution rather than the actual number of processes that fail during an exe-
cution. Moreover, the algorithm assumes that it is possible to send up to k + 1
(possibly different) messages to different processes in an atomic manner. Unlike
other fault-tolerant termination detection algorithms, however, Venkatesan’s al-
gorithm does not assume that the communication topology is fully connected
and works as long the topology is (k + 1)-connected [15].

Lai and Wu [16] and Tseng [17] modify fault-sensitive termination detection
algorithms by Dijkstra and Scholten [1] and Huang [8], respectively, to derive
two different fault-tolerant termination detection algorithms. Both algorithms
assume that the communication topology is fully connected. However, unlike
Venkatesan’s algorithm, both have low message complexity of O(M + fn + n),
where n is the initial number of processes in the system f is the actual number
of processes that fail during an execution. The algorithm by Lai and Wu [16]
has high detection latency of O(n) whereas the algorithm by Tseng [17] has
high application and control message overheads of O(M) and O(f log n+ nM),
respectively.

Shah and Toueg give a fault-tolerant algorithm for taking a consistent snap-
shot of a distributed system in [18]. Their algorithm is derived from the fault-
sensitive consistent snapshot algorithm by Chandy and Lamport [19]. As a re-
sult, each invocation of their snapshot algorithm may generate up to O(c) control
messages. It is easy to verify that, when their algorithm is used for termination
detection, the message complexity of the resulting algorithm is O(cM) in the
worst-case. Similarly, Gärtner and Pleisch [20] give an algorithm for detecting
an arbitrary stable predicate in a crash-prone distributed system. (Note that



termination is a stable property.) In their algorithm, every relevant local event
is reliably and causally broadcast to a set of monitors, thereby increasing the
message complexity significantly.

In this paper, when the communication topology is fully connected, we de-
scribe a way to transform any fault-sensitive termination detection algorithm
A into a fault-tolerant termination detection algorithm B. Our transformation
assumes the existence of a perfect failure detector, which we show is necessary
to solve the problem. Let µ(n,M) and δ(n,M) denote the message complexity
and detection latency, respectively, of A when the system has n processes and
the underlying computation exchanges M application messages. The message-
complexity of B is O(f(n + µ(n, 0))) messages more than the message com-
plexity of A. Also, the detection latency of B is O(fδ(n, 0)) more than the
detection latency of A. For most termination detection algorithms, when the
topology is fully connected, µ(n, 0) is either O(n) or O(c), and δ(n, 0) is O(1).
(For example, for the Dijkstra and Scholten’s algorithm [1], µ(n, 0) = O(n) and
δ(n, 0) = O(1) when their algorithm is adopted for a non-diffusing computa-
tion.) Further, the application and control message overheads of B are at most
O(f log n) and O(f log n + n logM) more than those for A. (Message overhead
refers to the amount of control information piggybacked on a message.) The over-
head of O(n logM) applies only to those control messages that are exchanged
whenever a crash is detected. The fault-tolerant termination detection algorithm
resulting from the transformation satisfies two desirable properties. First, the it
can tolerate failure of up to n−1 processes, that is, it is wait-free. Second, it does
not impose any overhead on the fault-sensitive termination detection algorithm
if no process actually crashes during an execution, that is, it is fault-reactive.

Typically, generalized transformations tend to be inefficient compared to cus-
tomized/specialized transformations. However, when our transformation is ap-
plied to fault-sensitive termination detection algorithms by Dijkstra and Scholten
[1] and Huang [8], the resulting fault-tolerant algorithms compare very favorably
with those by Lai and Wu [16] and Tseng [17]. Specifically, when our transforma-
tion is applied to Dijkstra and Scholten’s algorithm [1], the resulting algorithm
has the same message-complexity and detection latency as the algorithm by Lai
and Wu [16]. However, the message overhead—application as well as control—is
higher for our algorithm. On the other hand, when our transformation is applied
to Huang’s weight throwing algorithm [8] (which is similar to Mattern’s credit
distribution and recovery algorithm [7]), the resulting algorithm has the same
message-complexity and detection latency as that of the algorithm by Tseng [17]
but has slightly higher application message overhead (O(logM + f log n) versus
O(logM)). Surprisingly, the overhead of control messages exchanged due to pro-
cess crashes by our algorithm, which is given by O(f log n + n logM), is much
lower than that of Tseng’s algorithm [17], which is given by O(f log n + nM).
For comparison between various fault-tolerant termination detection algorithms,
please refer to Table 1. The results of applying our transformation to some im-
portant termination detection algorithms are given in [21].

The main idea behind our approach is to restart the fault-sensitive termina-
tion detection algorithm whenever a new failure is detected. A separate mecha-
nism is used to account for those application messages that are in-transit when
the termination detection algorithm is restarted. Arora and Gouda [22] also



Venkatesan [15] Lai and Wu [16] Tseng [17]
Our Approach

[this paper]

Message Complexity O(kM + c) O(M + fn+ n) O(M + fn+ n)
µ(n,M) +

O(f (n+ µ(n, 0)))

Detection Latency O(M) O(n) O(f + 1)
δ(n,M) +

O(f δ(n, 0))

Application Message

Overhead
k-way duplication - O(logM)∗

α(n,M) +

O(f logn)

Control

Message

Overhead

Termination

Detection
O(logn+ logM) O(f logn+ logM) O(logM)∗

β(n,M) +

O(f logn)

Failure

Recovery
- O(f logn+ logM) O(f logn+ nM)

O(f logn) +

O(n logM)

Assumptions
FIFO channels +

atomic multicast

fully connected

topology

fully connected

topology

fully connected

topology

∗Assuming an efficient implementation of weight throwing scheme such as the one described in [7]

n: initial number of processes in the system

c: number of channels in the communication topology

f : actual number of processes that crash during an execution

k: maximum number of processes that can crash during an execution

M : number of application messages exchanged

µ(n,M) : message complexity of the fault-sensitive termination detection algorithm with n

processes and M application messages

δ(n,M) : detection latency of the fault-sensitive termination detection algorithm with n

processes and M application messages

α(n,M) : application message overhead of the fault-sensitive termination detection algorithm

with n processes and M application messages

β(n,M) : control message overhead of the fault-sensitive termination detection algorithm with

n processes and M application messages

Table 1. Comparison of various fault-tolerant termination detection algorithms.

provide a mechanism to reset a distributed system. Their approach is different
from our approach in many ways. First, the semantics of their reset operation is
different from the semantics of our restart operation. Specifically, if their reset
mechanism is applied to our system, then it will not only reset the termination
detection algorithm but will also reset the underlying distributed computation
(whose termination is to be detected). Further, application messages exchanged
by the underlying computation before it is reset will be discarded. If a failure
occurs near the completion of the underlying computation, the entire work needs
to be redone if the distributed reset procedure is used. In contrast, in our case,
the distributed computation continues to execute without interruption. (When
there are process crashes, we assume that the primary computation may be able
to cope with process failures without the need to restart itself.) Therefore, in
our case, application messages exchanged before the termination detection algo-
rithm is restarted, especially those exchanged between correct processes, cannot
be ignored. Arora and Gouda’s approach is more suitable for applications that
can be reset on occurrence of a failure whereas our approach is more suitable for
applications that continue to execute despite failures. Second, in their approach,
the system may be reset more than once for the same failure. This may hap-
pen, for example, when multiple processes detect the failure of the same process
at different times. Third, their reset operation, which is self-stabilizing in na-



ture, is designed to tolerate much broader and more severe kinds of faults such
as restarts, message losses and arbitrary state perturbations than just crash
failures. Not surprisingly, their reset operation has higher message and time
complexities than our restart operation. Fourth, their approach is non-masking
fault-tolerant, which implies that the safety specification of the application may
be violated temporarily, even if there is a single crash fault. When translated to
our problem, this means that the termination detection algorithm may falsely
announce termination, a case which our approach avoids.

We build upon the work by Wu et al [23]. We do this in the context of the
failure detector hierarchy proposed by Chandra and Toueg [24], a way to compare
problems based on the level of synchrony required for solving them. We show
that termination detection needs the synchrony assumptions of a perfect failure
detector to be solvable even if at most one process can crash. This result can be
used to further understand the relationship between termination detection and
other problems in fault-tolerant distributed computing, such as consensus and
atomic broadcast.

Our transformation can also be extended to an arbitrary communication
topology provided process crashes do not partition the system. (In case par-
titioning occurs, termination is detected separately in each partition.) For an
arbitrary topology, however, the increase in message-complexity and detection
latency per failure is higher than that for fully connected topology. Due to lack
of space, we only focus on the transformation for fully connected topology in
this paper. Details of the transformation for arbitrary topology can be found
elsewhere [21].

This paper is organized as follows. In Sect. 2, we present our model of a crash-
prone distributed system and describe what it means to detect termination in
such a system. We discuss our transformation in Sect. 3. In Sect. 4 we determine
the type of failure detector which is necessary for solving termination detection.
Finally, we present our conclusions and outline directions for future research in
Sect. 5.

2 Model and Problem Definition

2.1 System Model

We assume an asynchronous distributed system consisting of multiple processes,
which communicate with each other by exchanging messages over a set of com-
munication channels. There is no global clock or shared memory.

Processes are not reliable and may fail by crashing. Once a process crashes,
it halts all its operations and never recovers. We use the terms “non-crashed
process”, “live process” and “operational process” interchangeably. A process
that crashes is called faulty. A process that is not faulty is called correct. Note
that there is a difference between the terms “live process” and “correct pro-
cess”. A live process has not crashed yet but may crash in the future. Let
P = {p1, pn, . . . , pn} denote the initial set of processes in the system. We as-
sume that there is at least one correct process in the system at all times.

We assume that all channels are bidirectional but may not be FIFO (first-
in-first-out). Channels are reliable in the sense that if a process never crashes,



then every message destined for it is eventually delivered. A message may, how-
ever, take an arbitrary amount of time to reach its destination. Unless otherwise
stated, we assume that the communication topology is fully connected, that is,
every pair of operational processes can directly communicate with each other.

We assume the existence of a perfect failure detector [24], a device which
gives processes reliable information about the operational state of other pro-
cesses. Upon querying the local failure detector, a process receives a list of cur-
rently suspected processes. A perfect failure detector satisfies two properties [24]:
strong accuracy (no correct process is ever suspected) and strong completeness
(a crashed process is eventually permanently suspected by every correct pro-
cess). By varying definitions of completeness and accuracy, different types of
failure detectors can be defined. For example, the eventually perfect failure de-
tector satisfies eventually strong accuracy (eventually no correct process is ever
suspected) and strong completeness.

2.2 Termination Detection in a Crash-Prone System

Informally, the termination detection problem involves determining when a dis-
tributed computation has ceased all its activity. The distributed computation
satisfies the following four properties or rules. First, a process is either active or
passive. Second, a process can send a message only if it is active. Third, an active
process may become passive at any time. Fourth, a passive process may become
active only on receiving a message. Intuitively, an active process is involved in
some local activity, whereas a passive process is idle. In case both processes and
channels are reliable, a distributed computation terminates once all processes
become passive and stay passive thereafter. In other words, a distributed com-
putation is said to be classically-terminated once all processes become passive
and all channels become empty.

In a crash-prone distributed system, once a process crashes, it ceases all
its activities. Moreover, any message in-transit towards a crashed process can be
ignored because the message cannot initiate any new activity. Therefore, a crash-
prone distributed system is said to be strictly-terminated if all live processes are
passive and no channel contains a message in-transit towards a live process.
Wu et al [23] establish that, for the strict-termination detection problem to be
solvable in a crash-prone distributed system, it must be possible to flush the
channel from a crashed process to a live process. A channel can be flushed using
either return-flush [15] or fail-flush [16] primitive. Both primitives allow a live
process to ascertain that its incoming channel from the crashed process has
become empty.

In case neither return-flush nor fail-flush primitive is available, Tseng sug-
gested freezing the channel from a crashed process to a live process [17]. When a
live process freezes its channel with a crashed process, any message that arrives
after the channel has been frozen is ignored. (A process can freeze a channel only
after detecting that the process at the other end of the channel has crashed.) We
say that a message is deliverable if it is destined for a live process along a chan-
nel that has not been frozen yet; otherwise it is undeliverable. We say that the
system is effectively-terminated if all live processes are passive and there is no
deliverable message in-transit towards a live process. Trivially, strict-termination



implies effective-termination but not vice versa. Deciding which of the two ter-
mination conditions is to be detected depends on the application semantics. We
believe that detecting effective-termination is sufficient in most cases.

Wu et al [23] also show that in order for strict-termination detection to be
solvable, process faults must be detectable. Translated into the terminology of
Chandra and Toueg [24], the failure detector used should satisfy strong complete-
ness. We fulfill this requirement by assuming the existence of a perfect failure
detector, which additionally satisfies strong accuracy. We justify this assumption
later by proving that we need at least a perfect failure detector to solve even
effective-termination detection in a crash-prone distributed system. Further, we
assume that it is possible to freeze the channel from a crashed process to a
live process (that is, application allows messages from crashed processes to be
discarded). Hereafter, we focus on effective-termination detection. The transfor-
mation results in Section 3, however, remain valid even for strict-termination
detection assuming that channels can be flushed instead of frozen.

For convenience, we refer to messages exchanged by the underlying dis-
tributed computation as application messages and to messages exchanged by
the termination detection algorithm as control messages. The performance of
a termination detection algorithm is measured in terms of three metrics: mes-
sage complexity, detection latency and message overhead. Message complexity
refers to the number of control messages exchanged by the termination detection
algorithm in order to detect termination. Detection latency measures the time
elapsed between when the underlying computation terminates and when the ter-
mination detection algorithm actually announces termination. Finally, message
overhead refers to the amount of control data piggybacked on a message by the
termination detection algorithm.

We call a termination detection algorithm fault-tolerant if it works correctly
even in the presence of faults; otherwise it is called fault-sensitive or fault-
intolerant. In this paper, we use the terms “crash”, “fault” and “failure” in-
terchangeably.

3 From Fault-Sensitive Algorithm to Fault-Tolerant
Algorithm

We assume that the given fault-sensitive termination detection algorithm is able
to detect termination of a non-diffusing computation, when any subset of pro-
cesses can be initially active. This is not a restrictive assumption as it is proved
in [25] that any termination detection algorithm for a diffusing computation,
when at most one process is initially active, can be efficiently transformed into a
termination detection algorithm for a non-diffusing computation. The transfor-
mation increases the message complexity of the underlying termination detection
algorithm by only O(n) messages and moreover, does not increase its detection
latency. We also assume that, as soon as a process learns about the failure of its
neighbouring process, it freezes its incoming channel with the process.

Due to lack of space, we only describe the main idea behind our transfor-
mation. Further, we only state the main lemmas and theorems that are used to



prove its correctness and analyze its performance. The formal description of the
algorithm and omitted proofs can be found in [21].

3.1 The Main Idea

The main idea behind our transformation is to restart the fault-sensitive termi-
nation detection algorithm algorithm on the set of currently operational processes
whenever a new failure is detected. We refer to the fault-sensitive termination
detection algorithm—an input to our transformation—by A, and to the fault-
tolerant termination detection algorithm—the output of our transformation—by
B. Before restarting A, we ensure that all operational processes agree on the set
of processes that have failed. This is useful as explained further.

Consider a subset of processes Q. We say that a distributed computation has
terminated with respect to Q (classically or strictly or effectively) if the respective
termination condition holds when evaluated only on processes and channels in
the subsystem induced by Q. Also, we say that Q has become safe if (1) all
processes in P \Q have failed, and (2) every process in Q has learned about the
failure of all processes in P \Q. We have,

Theorem 1. Consider a safe subset of processes Q. Assume that all processes
in Q stay operational. Then a distributed computation has effectively-terminated
with respect to P if and only if it has classically-terminated with respect to Q.

The above theorem implies that if all alive processes agree on the set of
failed processes and there are no further crashes, then it is sufficient to ascertain
that the underlying computation has classically-terminated with respect to the
set of operational processes. An advantage of detecting classical termination is
that we can use A, a fault-sensitive termination detection algorithm, to detect
termination. We next show that even if one or more processes crash, A does not
announce false termination.

Theorem 2. When a fault-sensitive termination detection algorithm is executed
on a distributed system prone to process crashes then the algorithm still satisfies
the safety property, that is, it never announces false termination.

Now, when A is restarted, a mechanism is needed to deal with application
messages that were sent before A is restarted but are received after A has been
restarted. Such application messages are referred to as stale or old application
messages. Clearly, the current instance of A may not be able to handle an old
application message correctly. One simple approach is to “hide” an old appli-
cation message from the current instance of A and deliver it directly to the
underlying distributed computation. However, on receiving an old application
message, if the destination process changes its state from passive to active, then,
to the current instance of A, it would appear as if the process became active
spontaneously. This violates one of the four rules of the distributed computation.
Clearly, the current instance of A may not work correctly in the presence of old
application messages and therefore cannot be directly used to detect termination
of the underlying computation.



We use the following approach to deal with old application messages. We
superimpose another computation on top of the underlying computation. We
refer to the superimposed computation as the secondary computation and to the
underlying computation as the primary computation. As far as live processes are
concerned, the secondary computation is almost identical to the primary com-
putation except possibly in the beginning. Whenever a process crashes and all
live processes agree on the set of failed processes, we simulate a new instance of
the secondary computation in the subsystem induced by the set of operational
processes. The processes in the subsystem are referred to as the base set of
the simulated secondary computation. We then use a new instance of the fault-
sensitive termination detection algorithm to detect termination of the secondary
computation. The older instances of the secondary computation and the fault-
sensitive termination detection algorithm are simply aborted. We maintain the
following invariants. First, if the secondary computation has classically termi-
nated then the primary computation has classically terminated as well. Second, if
the primary computation has classically terminated, then the secondary compu-
tation classically terminates eventually. Note that the new instances of both the
secondary computation and the fault-sensitive termination detection algorithm
start at the same time on the same set of processes.

We now describe the behavior of a process with respect to the secondary
computation. Intuitively, a process stays active with respect to the secondary
computation at least until it knows that it cannot receive any old application
message in the future. Consider a safe subset of processes Q. Suppose an instance
of the secondary computation is initiated in the subsystem induced by Q. A
process pi ∈ Q is passive with respect to the current instance of the secondary
computation if both of the following conditions hold:

1. it is passive with respect to the primary computation, and
2. it knows that there is no old application message in transit towards it from

any process in Q

An old application message is delivered directly to the primary computation
and is hidden from the current instance of the secondary computation as well
as the current instance of the fault-sensitive termination detection algorithm.
Specifically, only those application messages that are sent by the current in-
stance of the secondary computation are tracked by the corresponding instance
of the fault-sensitive termination detection algorithm. (In other words, all appli-
cation messages are exchanged through the current instance of the termination
detection algorithm except for old application messages.) It can be verified that
the secondary computation is “legal” in the sense that it satisfies all the four
rules of the distributed computation. Therefore the fault-sensitive termination
detection algorithm A can be safely used to detect (classical) termination of the
secondary computation even in the presence of old application messages. First,
we show that, to detect termination of the primary computation, it is safe to
detect termination of the secondary computation.

Theorem 3. Consider a secondary computation initiated in the subsystem in-
duced by processes in Q. Then, if the secondary computation has classically ter-
minated with respect to Q, then the primary computation has classically termi-
nated with respect to Q.



Next, we prove that, to detect termination of the primary computation, it is
sufficient to detect the termination of the secondary computation under certain
conditions.

Theorem 4. Consider a secondary computation initiated in the subsystem in-
duced by processes in Q. Assume that the primary computation has classically
terminated with respect to Q and each process in Q eventually learns that there
are there are no old application messages in transit towards it sent by other
processes in Q. If all processes in Q stay operational, then the secondary com-
putation eventually classically terminates with respect to Q.

We next describe how to ensure that all operational processes agree on the
set of failed processes before restarting the secondary computation the fault-
sensitive termination detection algorithm. Later, we describe how to ascertain
that there are no relevant old application messages in transit. We assume that
both application and control messages are piggybacked with the complement of
the base set of the current instance of the secondary computation in progress,
which can be used to identify the specific instance of the secondary computation.

Achieving Agreement on the Set of Failed Processes: Whenever a process
crashes, one of the live processes is chosen to act as the coordinator. Specifically,
the process with the smallest identifier among all live processes acts as the co-
ordinator. Every process, on detecting a new failure, sends a NOTIFY message
to the coordinator containing the set of all processes that it knows have failed.
The coordinator maintains, for each operational process pi, processes that have
failed according to pi. On determining that all operational processes agree on
the set of failed processes, the coordinator sends a RESTART message to each
operational process. A RESTART message instructs a process to initiate a new
instance of the secondary computation on the appropriate set of processes, and,
also, start a new instance of the fault-sensitive termination detection algorithm
to detect its termination.

It is possible that, before receiving a RESTART message for a new instance, a
process receives an application message that is sent by a more recent instance of
the secondary computation than that of the secondary computation currently in
progress at that process. In that case, before processing the application message,
it behaves as if it has also received a RESTART message and acts accordingly.

Tracking Old Application Messages: A process stays active with respect to
the current instance of the secondary computation at least until it knows that
it cannot receive any old application message from one of the processes in the
relevant subsystem. To that end, each process maintains a count of the number
of application messages it has sent to each process so far and, also, a count of
the number of application messages it has received from each process so far.

A process, on starting a new instance of the secondary computation, sends
an OUTSTATE message to the coordinator; the message contains the number
of application messages it sent to each process before restarting the secondary
computation. The coordinator, on receiving an OUTSTATE message from ev-
ery operational process, sends an INSTATE message to all live processes. An



INSTATE message sent to process pi contains the number of application mes-
sages that each process has sent to pi before starting the current instance of
the secondary computation. This information can be easily computed by the
coordinator after it has received an OUTSTATE message from all live processes.

Clearly, once a process has received an INSTATE message from the coordina-
tor, it can determine how many old application messages are in transit towards
it and at least wait until it has received all those messages before becoming
passive for the first time with respect to the current instance of the secondary
computation.

3.2 Proof of Correctness

We now prove that our transformation produces an algorithm B that solves the
effective-termination detection problem given that A is a correct fault-sensitive
algorithm for solving the classical termination detection problem. The following
proposition can be easily verified:

Proposition 1. Whenever an instance of A is initiated on a process set Q, all
processes in P \Q have in fact crashed and all channels from processes in P \Q
to Q have been frozen.

First, we prove the safety property.

Theorem 5 (safety property). If B announces termination, then the under-
lying computation has effectively terminated.

Next, we show that B is live. That is,

Theorem 6 (liveness property). Once the underlying computation effectively
terminates, B eventually announces termination.

3.3 Performance Analysis

Let µ(n,M) and δ(n,M) denote the message complexity and detection latency,
respectively, of A when the system has n processes and the underlying computa-
tion exchanges M application messages. We now analyze the message complexity
and detection latency of the fault-tolerant termination detection algorithm B.
Let f denote the actual number of processes that fail during an execution of B.

Lemma 1. The number of times A is restarted is bounded by f .

To compute the message complexity of B, we assume that µ(n,M) satisfies
the following constraint for k ≥ 1:

k∑

i=1

µ(n,Mi) ≤ µ(n,

k∑

i=1

Mi) + (k − 1) µ(n, 0) (6.1)

For all existing termination detection algorithms that we are aware of, µ(n,M)
is linear in M . It can be verified that if µ(n,M) is a linear function in M , then
the inequality (6.1) indeed holds.



Theorem 7 (message complexity). The message complexity of B is given by
µ(n,M) +O(f (n+ µ(n, 0))).

We now bound the detection latency of B. To compute detection latency in
an asynchronous distributed system, it is typically assumed that message delay
is at most one time unit. Moreover, we assume that the failure detection latency
is bounded by one time unit as well.

Theorem 8 (detection latency). The detection latency of B is given by
δ(n,M) +O(fδ(n, 0)).

We next bound the message overhead of B. Let α(n,M) and β(n,M) denote
the application and control message overhead, respectively, of A when the sys-
tem has n processes and the underlying computation exchanges M application
messages.

Theorem 9 (application message overhead). The application message over-
head of B is α(n,M) +O(f log n).

Finally, we bound the control message overhead of B. Note that control mes-
sages can be categorized into two groups. The first group consists of control mes-
sages exchanged by different instances of A. The second group consists of control
messages exchanged as a result of process crash, namely NOTIFY, RESTART,
OUTSTATE and INSTATE. We refer to the messages in the first group as ter-
mination detection messages and to the messages in the second group as failure
recovery messages.

Theorem 10 (control message overhead). The control message overhead of
B for termination detection messages is given by β(n,M) + O(f log n) and for
failure recovery messages is given by O(f log n+ n logM).

4 The Weakest Failure Detector for Termination
Detection

Failure detectors are not only an abstraction to yield information about the op-
erational state of processes, they can also be regarded as synchrony abstractions
since they are usually implemented using heartbeat messages and timeouts [26].
For example, an eventually perfect failure detector is strictly weaker than a per-
fect failure detector, and, therefore, can be implemented with weaker synchrony
assumptions (namely those of partial synchrony [27] instead of full synchrony).
Proving that a certain type of failure detector is necessary for solving a prob-
lem gives an indication about the minimal amount of synchrony needed to solve
that problem. In this section, unless otherwise stated, “termination” refers to
“effective-termination”.

We now show that a perfect failure detector is necessary for solving termina-
tion detection in a crash-prone distributed system. To that end, we transform an
instance of a fault-tolerant termination detection algorithm into a perfect failure
detector at one process q, that is, q is able to reliably detect process crashes. A



perfect failure detector can then be implemented by using n parallel instances
of the transformation algorithm, one per process.

Assume that we are given an algorithm A that can detect termination of
an arbitrary computation among n processes even in the presence of process
crashes. We now set up n independent computations Ci, one for each process
pi. The computation Ci is such that process pi is initially active and all pro-
cesses apart from pi are passive. In the computation no messages are sent and
received and pi never becomes passive. Now consider some process q 6= pi and
the corresponding computation Ci. Process q starts an instance of the termi-
nation detection algorithm A with respect to the computation Ci. Whenever
A announces the termination of Ci, q henceforth permanently suspects pi. The
same actions are performed for every other process in the system, that is, q
invokes n parallel instances of A, one for each computation Ci.

We now show that this algorithm implements a perfect failure detector if
A correctly solves the effective-termination detection problem. First consider
strong accuracy (a process is never suspected before it crashes) and assume
that q suspects pi. It follows from our transformation that A has announced
termination of the computation Ci. This means that all processes in Ci are
either crashed or passive. Since Ci is such that pi is never passive, it implies that
pi has crashed.

Now consider strong completeness (eventually every crashed process is sus-
pected by every correct process) and assume that pi has crashed and q is correct.
Once pi crashes, clearly the termination condition holds for the computation Ci.
Since A is a correct termination detection algorithm, A eventually announces
termination of Ci at q. Upon announcing termination, q starts suspecting pi,
concluding the proof.

Overall, this shows that if we can solve termination detection in a crash-
prone distributed system, then we can also implement a perfect failure detector
in such a system. Hence, it is impossible to solve termination detection when
one or more processes can crash assuming only a failure detector that is strictly
weaker than a perfect failure detector. In other words, a perfect failure detector
is necessary for solving the effective-termination detection problem.

The weakest failure detector for a problem is a failure detector that is neces-
sary and sufficient to solve that problem. We show above that a perfect failure
detector is necessary. Our transformation in Sect. 3 shows that a perfect failure
detector is also sufficient. Combining the two, we can conclude that a perfect fail-
ure detector is the weakest failure detector for solving the effective-termination
detection problem. The result holds as long as at least one process can crash
and assuming that channels can be frozen. Therefore, it generalizes the result of
Wu et al [23], which shows that a failure detector must be complete. Our result
also further clarifies the relationship between the termination detection problem
and the consensus problem: Wu et al [23] show that termination detection is
at least as hard to solve as consensus. By relating termination detection to the
failure detector hierarchy of Chandra and Toueg [24], our result has two interest-
ing corollaries. First, termination detection is strictly harder than consensus in
environments where a majority of processes remains correct. This follows from
the result that in such cases the weakest failure detector for consensus is strictly



weaker than a perfect failure detector [24]. Second, when any number of processes
can crash, termination detection is actually equivalent to consensus [28].

5 Conclusions and Future Work

In this paper, we presented a transformation using a perfect failure detector that
can be used to convert any termination detection algorithm for a fully connected
communication topology that has been designed for a failure-free environment
into a termination detection algorithm that can tolerate process crashes. Our
transformation does not impose any additional overhead on the system (besides
that imposed by the underlying termination detection algorithm) if no process
actually crashes during an execution. Moreover, when applied to fault-sensitive
termination detection algorithms by Dijkstra and Scholten [1] and Huang [8],
the resulting fault-tolerant termination detection algorithms compare very fa-
vorably with those by Lai and Wu [16] and Tseng [17]. Our transformation can
be generalized to an arbitrary communication topology provided process crashes
do not partition the system. We also proved that a perfect failure detector is
the weakest failure detector for solving the termination detection problem in a
crash-prone distributed system. This holds even if at most one process can crash.

As part of future work, we plan to investigate the termination detection
problem when crashed processes may recover and channels may be lossy. We
also plan to apply ideas proposed in this paper to transform other fault-sensitive
algorithms—such as for detecting other stable properties—into fault-tolerant
algorithms.
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