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A. The most popular method for computing LALR(1) lookaheads is not the most
efficient one, mainly (as we conjecture) due to certain deficiencies in the description of core
algorithms. Similarly, full LR(1) parser generators are not as common as their LALR(1)
counterparts, despite their usefulness regarding conventional semantic routine attachment
and attribute grammar compilation. We address these two issues by describing an effi-
cient algorithm to compute either LALR(1) or LR(1) lookahead sets without requiring any
modification of the underlying transitive closure algorithm.

1. I

Most compiler building tools employ LL(1) or LALR(1) parser generation algorithms.
Modern methods for generating LALR(1) lookahead sets are almost invariably based on
computing the transitive closure of certain relations and associated set-valued functions,
a problem for which efficient algorithms are known, notably the one by Eve and Kurki-
Suonio [5].

Among these methods, the most popular is undoubtedly DeRemer and Pennello’s [4],
although the algorithm by Park, Choe and Chang [14] (henceforth called simply PCC) is
arguably more efficient, and another by Ives [8] is claimed to be even more so. Recent
research into the subject includes the method of Anzai [1].

A natural question to ask is why the more efficient algorithms are not as popular as
DeRemer and Pennello’s. We conjecture that the main reasons are:

• Clarity of presentation. DeRemer and Pennello provide a very clear and complete
exposition of the problem, the theory underlying the proposed solution, and the
implementation steps to be followed. On the other hand, the description of PCC is
heavily theoretical, and Ives’s paper is very brief and somewhat sketchy.

• Lack of an efficient Path/ctx algorithm. Both PCC and Ives define and use a new
function between nonterminals, called Path by PCC and ctx by Ives, that asso-
ciates certain sets of terminals to pairs of nonterminals. The concept of Path/ctx
is essential in their methods for lookahead computation. However, Ives does not
provide any algorithm for computation of ctx, and the method employed by PCC
for Path is only superficially described but even so requires a nontrivial change
in Eve and Kurki-Suonio’s closure algorithm; besides, no formal proof of correct-
ness is given for the modified algorithm. To be sure, the definition of ctx is slightly
different from that of Path, as it includes a special symbol Λ in ctx(A, B) to flag
that B figures in a right derivation from A in any number of steps; this is, however,
unnecessary, as the unit derivation relationship can be indicated explicitly.
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We also notice that, in many circumstances, it might be convenient to resort to the full
power of LR(1) parsers. A typical situation is semantic routine invocation, which usually
takes place at nonterminal reductions. If a semantic routine must be activated somewhere
within a production (not at its end), the usually adopted strategy is to introduce into the
grammar a new nonterminal that only generates the empty string and serves exclusively
as placeholder for the semantic routine call. This technique may be implicitly applied to
implement certain classes of attribute grammars like the ECLR class described in [15]. Un-
fortunately, this procedure may destroy the LALR(k) property for any k, a feature clearly
undesirable in compiler construction tools [2]. The use of full LR(1) items in parser au-
tomaton states may also be attractive to remove parser conflicts arising in the compilation
of regular right-part grammars [12]. Syntax error repair methods like that of [11] also
benefit from finer LR(1) lookahead sets.

Although the canonical LR(1) construction [10] may be too expensive for practical ap-
plications due to the large number of states in the generated parser, an efficient algorithm
was proposed in [13] and refined in [6] and [16] to build equivalent but state-minimized
LR(1) automata. These methods are based on iterative generation and merging of compat-
ible LR(1) states, and are still inefficient in the sense that the transitive closure of a state
(the completer operation) must be computed repeatedly.

Our contributions in this paper are the following. We address the LALR(1) issues by
describing a new algorithm for Path/ctx computation that does not require any changes in
the underlying transitive closure algorithm; rather, we simply construct a different relation
graph and show that the new construction is formally correct. Besides, using a lemma
by Park, Choe and Chang [14, lemma 3.1], we show how to use the Path/ctx function to
eliminate the need for the repeated completer computation, thus removing this inefficiency
from the full LR(1) generation algorithm.

The remainder of this paper is organized as follows. We define the adopted notation in
section 2. On section 3 we briefly review the construction of the minimal LR(1) automaton.
Section 4 describes the proposed lookahead set algorithm and proves its correctness. On
section 5 we report on the results obtained from the proposed algorithm. We conclude in
section 6.

2. N

Throughout this paper we adopt the following notation.

• Σ is the set of terminal symbols and N is the set of non-terminal symbols, with
Σ ∩ N = ∅. The vocabulary is the setV = Σ ∪ N .

• P is the set of productions, which have the form A→ α where A ∈ N and α ∈ V∗.
• A −→

rm
α denotes a right derivation of α ∈ V∗ from A ∈ N in one step, and A

∗
−→

rm
α

denotes a right derivation in any number of steps. We also use the shorthand
A

∗
−→

rm
B . . . , meaning ∃w ∈ Σ∗ : A

∗
−→

rm
Bw.

• ∀α ∈ V∗ : (α) ≡ {t ∈ Σ | α
∗
−→ tβ, β ∈ V∗}.

• ∀ρ, σ ⊆ Σ∗ : ρ ⊕ σ ≡ (rs) : r ∈ ρ ∧ s ∈ σ. That is, ρ ⊕ σ is simply (ρ) if
ε < ρ, or (ρ) ∪ (σ) otherwise (the ⊕ operation is called ε-free ).

• ∀A, B ∈ N : ctx(A, B) ≡ {t ∈ Σ | A
∗
−→

rm
Btα, α ∈ V∗}. Our notation is only

slightly different from that of [8], where ctx(A, B) contains ε if A
∗
−→

rm
B; we prefer

to indicate this fact explicitly when needed, and to extend the semantics of ⊕ so
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that:

ctx(A, B) ⊕ σ =

 ctx(A, B) ∪ σ, if A
∗
−→

rm
B;

ctx(A, B), otherwise.

3. C  M LR(1) A

The first and still the most efficient method to construct the LR(1) automaton with min-
imal number of states for general LR(1) grammars was described in [13]. It is an iterative,
fixed-point algorithm that partitions the generated states into visited and unvisited states,
starting with a single unvisited state (corresponding to the grammar’s start symbol) and
proceeding while any unvisited states remain. At each step, an element is removed from
the set of unvisited states, its successors are computed, new successor states are marked as
unvisited, and the removed state is marked as visited.

The efficiency of this algorithm derives from the possibility of merging distinct states
that satisfy certain compatibility criteria; in particular, one can show that one of the criteria
described in [6] (called strong compatibility) produces the automaton with the minimum
possible number of states for the given grammar.

A central aspect of the algorithm is thus the computation of successors of an LR(1)
state. For each item [A → α · Xγ, u] of the state being processed, one must insert into the
successor state not only the item [A → αX · γ, u] but also, if X is a nonterminal, all items
of form [N → Y · β, v], for each production N → Yβ of each nonterminal N such that
X

∗
−→

rm
N . . . . The lookahead v of one item of this form is given, according to lemma 3.1

of [14], by v = ctx(X,N) ⊕ (γu).

4. E C  ctx

Our algorithm for the efficient computation of ctx(A, B) is based on the following ob-
servations:

Lemma 1.
∀(A→ Cα) ∈ P,∀B ∈ N : ctx(C, B) ⊕ (α) ⊆ ctx(A, B).

Proof. Suppose initially that C
∗
−→

rm
Bz, where z ∈ Σ+ so that (z) ⊆ ctx(C, b).

But A −→
rm

Cα
∗
−→

rm
Cw

∗
−→

rm
Bzw, hence (z) ⊆ ctx(A, B). Therefore, ctx(C, B) =⋃

C
∗
−→
rm

Bz (z) ⊆ ctx(A, B).

Now suppose that C
∗
−→

rm
B. In this case, A −→

rm
Cα

∗
−→

rm
Cw

∗
−→

rm
Bw, where α

∗
−→

rm
w

e w ∈ Σ∗. Thus, (α) = (w) ⊆ ctx(A, B). Therefore, ctx(C, B) ⊕ (α) ⊆
ctx(A, B). �

Lemma 2.
ctx(A, B) =

⋃
(A→Cα)∈P

C
∗
−→
rm

B...

ctx(C, B) ⊕ (α).

Proof. It suffices to show that

ctx(A, B) ⊆
⋃

(A→Cα)∈P

C
∗
−→
rm

B...

ctx(C, B) ⊕ (α),
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since the reverse inclusion is a corollary of the previous lemma. We have:

ctx(C, B) ⊕ (α) =

 ctx(C, B) ∪ (α), if C
∗
−→

rm
B

ctx(C, B), otherwise.

Therefore,⋃
(A→Cα)∈P

C
∗
−→
rm

B...

ctx(C, B) ⊕ (α) =

⋃
(A→Cα)∈P

C
∗
−→
rm

B...

C,A

ctx(C, B) ∪ ctx(A, B)︸    ︷︷    ︸
if(A→Aα)∈P

∪
⋃

(A→Cα)∈P

C
∗
−→
rm

B

(α).

�

For the main theorem, we need the following definitions:

Definition 1. (A, B) inherits ctx (C, B) if, and only if, (A → Cα) ∈ P, C , A, and B is a
nonterminal such that C

∗
−→

rm
B . . . .

Definition 2. ctx0(A, B) =
⋃
{(α) | (A→ Cα) ∈ P, C

∗
−→

rm
B}.

Theorem 1. In a grammar without useless productions or inaccessible symbols,
ctx(A, B) = ctx0(A, B) ∪

⋃
{ctx(C, B) | (A, B) inherits ctx (C, B)}.

Proof. We first prove the reverse inclusion:

∀(A→ Cα) ∈ P s. t. C
∗
−→

rm
B,∀w ∈ Σ∗ s. t. α

∗
−→

rm
w :

A→ Cα
∗
−→

rm
Cw

∗
−→

rm
Bw

⇒ (w) ⊆ ctx(A, B)

⇒ (α) =
⋃
{(w) | α

∗
−→

rm
w} ⊆ ctx(A, B)

⇒ ctx0(A, B) =
⋃
{(α) | (A→ Cα) ∈ P, C

∗
−→

rm
B} ⊆ ctx(A, B).

Furthermore, we have:

∀(A→ Cα) ∈ P,∀t ∈ ctx(C, B),∀w ∈ Σ∗ s. t. α
∗
−→

rm
w,

∃v ∈ Σ∗ :
C

∗
−→

rm
Btv

⇒ A→ Cα
∗
−→

rm
Cw

∗
−→

rm
Btvw

⇒ t ∈ ctx(A, B)
⇒ ctx(C, B) ⊆ ctx(A, B)

⇒
⋃
{ctx(C, B) | (A→ Cα) ∈ P, C

∗
−→

rm
B . . . } ⊆ ctx(A, B)

⇒
⋃
{ctx(C, B) | (A, B) inherits ctx (C, B)} ⊆ ctx(A, B).
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The forward inclusion is a consequence of the following reasoning. If ctx(A, B) = ∅ the
inclusion is trivial. Suppose then that ctx(A, B) , ∅, and let t ∈ ctx(A, B). By the definition
of ctx, ∃w ∈ Σ∗ : A

∗
−→

rm
Btw. The first production applied in this derivation must begin

with a nonterminal, given the presence of B as head of the sentential form. Let A → Cα
be this first applied production, so that ∃z ∈ Σ∗ : A → Cα

∗
−→

rm
Cz

∗
−→

rm
Btw. There are two

possibilities:

(1) z = tw ⇒ C
∗
−→

rm
B ∧ α

∗
−→

rm
tw. Thus, ∃(A → Cα) ∈ (P) : C

∗
−→

rm
B ∧ t ∈ (α),

hence t ∈ ctx0(A, B).
(2) z , tw ⇒ ∃v ∈ Σ∗ : w = vz (because z is a suffix of tw). Thus, Cz

∗
−→

rm
Btvz,

that is, ∃(A → Cα) ∈ P : C
∗
−→

rm
B . . . ∧ t ∈ ctx(C, B), hence t ∈

⋃
{ctx(C, B) |

(A, B) inherits ctx (C, B)}.
Remark: there must exist (except possibly if A = B) some production A → Cα, C , A;
otherwise, A 6

∗
−→

rm
B . . . . In this case, even if the first production applied in the derivation

A
∗
−→

rm
Btw is of form A → Aβ, it is necessary that A → Aβ

∗
−→

rm
Au → Cαu

∗
−→

rm
Cyu,

which reduces to the above case with z = yu. If A = B ∧ @C : (A→ Cα) ∈ P, C , A,
then all productions of the derivation A

∗
−→

rm
Atw are of form A → Aβ. In this case,

∀t ∈ ctx(A, A),∃(A → Aβ) ∈ P : t ∈ (β), and thus t ∈ ctx0(A, B) since A
∗
−→

rm
A

trivially. �

This theorem makes it possible to apply, without any modification, any transitive closure
algorithm (but particularly that of [5]) to the relation inherits ctx, so as to compute the
values of ctx(A, B). These ideas are captured in Algorithm 1, which computes lookahead
sets u ⊆ Σ for LR(1) items of form [A → α · β, u], where A ∈ N and (A → αβ) ∈ P.
Alternatively, one can use the computed ctx(A, B) values in an LALR(1) parser generator
to achieve the efficiency gains reported in [14] and [8] over the results in [4].

5. E 

We have implemented a full LR(1) parser generator in Java using our lookahead set
algorithm. The generated parsers are table-driven and use a suitable interpreter also written
in Java. The parser tables are optimized using comb vector techniques to handle LR(0)
reduce states and default reductions in LR(1) states. No attempt was made to accommodate
ambiguous grammars (like the artificial precedence and associativity rules implemented in
YACC).

The parser of the generator itself was initially handwritten and then bootstrapped from
its own grammar. The generated bytecode is about the same size (11 KiB) as the handwrit-
ten recursive-descent parser, but the source code was reduced from 23 KiB to 13 KiB due
to the use of tables. On a 2.3 GHz AMD TurionTM 64 X2 platform where the clock gran-
ularity is about 16 ms, the bootstrap generation time is 96 ms, with 32 ms corresponding
to the construction of parser automaton. Applying the generator to a Java grammar on the
same platform, the generation time becomes roughly 480 ms with 176 ms devoted to the
parser automaton. Similar experiments with an Oberon grammar result in generation times
around 208 ms with 64 ms devoted to the parser automaton. Small grammars (including
arithmetic expressions and some designed to illustrate special features like those in [2])
usually take the minimum measurable time of 16 ms for parser automation generation.
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Algorithm 1 Computation of LR(1) lookahead sets

1: for every nonterminal C do
2: Compute all nonterminals A satisfying C

∗
−→

rm
A . . .

3: Compute all nonterminals B satisfying C
∗
−→

rm
B

4: end for
5: . Build relation inherits ctx between pairs of nonterminals:
6: for every production (A→ Cα) ∈ P such that C , A do
7: for every nonterminal B such that C

∗
−→

rm
B . . . do

8: Set the relation (A, B) inherits ctx (C, B)
9: end for

10: end for
11: . Compute ctx0(A, B):
12: Set ctx0(A, B)← ∅
13: for all pairs (A, B) present in the inherits ctx relation do
14: for all α such that (A→ Cα) ∈ P and C

∗
−→

rm
B do

15: Union (α) into ctx0(A, B)
16: end for
17: end for
18: Compute ctx(A, B) from ctx0(A, B) by taking the transitive closure of inherits ctx
19: . Compute the lookahead sets on demand during parser generation:
20: for each item [A→ α · Xγ, u] in the state being generated where X is a nonterminal do
21: for each production N → Yβ of each nonterminal N such that X

∗
−→

rm
N . . . do

22: Let v← ctx(X,N) ⊕ (γu)
23: Merge into the successor state all items of form [N → Y · β, v]
24: end for
25: end for

6. C

We have presented an efficient algorithm for LALR(1) and LR(1) lookahead computa-
tion, conceptually simpler than other existing algorithms and not requiring any alteration
in conventional transitive closure algorithms. We have exhibited a formal proof of validity
of our method and observed its effectiveness in practice.

Although the basic LR(1) algorithm may be modified to eliminate unit reductions [7],
it is still unclear how our proposed algorithm could be used in such a modified parser
construction. It is also an open problem how to extend our algorithm to construct LR(k)
automata for k > 1. We conjecture that this is possible but non-trivial, in a similar fashion
to the extension of the state merging algorithm itself [16]. A further line of follow-up
research involves error recovery issues as pointed out by [3] and [9], and their interaction
with LR(1) lookahead set computation.
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