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Abstract— In this paper, we propose and compare different
methods for the 3D segmentation of keratin intermediate fila-
ments (KFs) in images acquired using confocal laser scanning
microscopy (CLSM). KFs are elastic cables forming a complex
scaffolding within epithelial cells. They are involved in many
basic cell functions. To understand the mechanisms of filament
formation and network organisation under physiological and
pathological conditions, quantitative measurements of dynamic
network alterations are essential. Segmenting KFs is a key
component for analyzing their dynamic and biomechanical
properties. KFs were labeled with fluorescent keratins to
allow high resolution imaging of network dynamics in native
cells. Our segmentation methods follow the principle of ridge
enhancement filtering and subsequent centerline extraction.
The evaluation of the methods is two-fold: (i) We develop
synthetic data that exhibit the characteristics of real CLSM
data to evaluate the precision of the different methods in
terms of centerline localisation and (ii) we perform a connected
component analysis on the segmentation results of real KF data
to assess whether the connectivity of highly complex networks
is being preserved by the segmentation. Our evaluation shows
that in the presence of strong noise and despite the highly
anisotropic spatial resolution of CLSM images the proposed
method is able to accurately localize the centerlines of the KFs
and to preserve the KF networks’ connectivity. Taken together
this is a strong indicator that also the network topology is being
preserved.

I. INTRODUCTION

4D (3D+time) live cell fluorescence imaging by confocal
laser scanning microscopy (CLSM) has become a widely
used tool in cell biology for the analysis of the dynamics
of subcellular structures. In the work presented here, we
investigate the properties of keratin intermediate filaments
(KFs). They are flexible, filamentous structures of about 10
nm diameter forming a complex scaffolding within epithelial
cells (Fig. 1). As part of the cytoskeleton, they are responsi-
ble for the mechanical stability of epithelial cells and tissues
and are also involved in the regulation of many basic cell
functions [1], [2].

The network topology is a key component for the analysis
of dynamic KF behavior under different conditions. To this
end, we have acquired 3D images of fluorescently-labeled
KF networks by means of CLSM. In CLSM, the three-
dimensional specimen is scanned slice by slice, each slice be-
ing scanned point-wise. The resulting image is a 3D stack of
2D slices. Due to the PSF of a CLSM, the spatial resolution
of such a 3D image is highly limited in the dimension along
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Fig. 1. 2D slice of the 3D scaffolding of fluorescently-labeled keratin
intermediate filaments in a segment of a cultured epithelial cell acquired by
confocal laser scanning microscopy. The keratin filaments appear as green
elongated bended curves in the image.

the optical axis leading to a highly anisotropic spatial image
resolution. Furthermore, the images are strongly corrupted
by Photon-counting noise which is signal-dependent.

To date methods are lacking for the 3D segmentation of
subcellular filamentous structures whose diameter is close to
or below the resolution limit in CLSM images. In the past,
considerable effort has been invested in the 3D segmenta-
tion of structures at the supracellular level, which can be
imaged with a high spatial resolution in all three dimensions.
Concerning bended elongated structures, numerous vessel
segmentation approaches have been proposed. However, it
has not yet been assessed whether these algorithms are
able to cope with data that exhibit a critically low spatial
resolution in the third dimension. Another challenge for
the segmentation of KFs compared to vessel segmentation
is the huge variability of KF network branchings. Preserv-
ing these branchings in the segmentation result is crucial
to preserving the network topology. To the best of our
knowledge, approaches to the segmentation of subcellular
filamentous structures have only been developed in 2D, thus
ignoring the fact that the structures’ dynamics are inherently
3-dimensional: e.g. in [3] a method for the 2D segmentation
of wide-field fluorescence image data of microtubules and
actin filaments relying on rotated matched filtering has been
proposed. In [4], microtubules in wide-field fluorescence
microscopic images are segmented using a more precise
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and efficient steerable ridge enhancement and centerline
extraction approach.

Our contribution is organized as follows: Towards the 3D
segmentation of KF networks in CLSM images, we propose
to follow the principle of line enhancement filtering and
centerline extraction. Three line enhancement filtering ap-
proaches [5], [6], [7] together with one centerline extraction
algorithm [8] yield three different segmentation approaches.
The methods are briefly summarized in Section II. In Section
III, we conduct a thorough comparison of the three different
segmentation methods using synthetic data that reflect the
characteristic properties of CLSM image data: intensity-
dependent noise and highly anisotropic spatial resolution.
Furthermore, we validate the proposed method on real CLSM
images by means of a connected component analysis to
assess whether the KF network connectivity is preserved.

II. METHODS

A. Ridge enhancement filtering

For ridge enhancement we compare [5], [6] and [7].
1) Steerable curve detection [5]: The steerable 3D curve

detector [5], [9] is built from derivatives of Gaussians and
therefore separable. It is designed to optimize on the one
hand signal-to-noise ratio and on the other hand ridge lo-
calization by maximizing the second derivative of the filter
response orthogonal to the feature boundary. The detector
satisfiying these optimality criteria for a bright line on dark
background oriented along the x-axis is

hcurve =
1
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gxx−gyy−gzz) (1)

with gxx, gyy and gzz being the partial second derivatives
of a 3D Gaussian in x, y and z respectively. Reformulating
this detector as a steerable filter to detect arbitrarily oriented
ridges (see [5] sec. 2.3), we can determine the ridge strength -
i.e. the filter response - at a given image position as a function
of orientation. Maximizing this expression with respect to
the orientation angle simultaneously yields an estimation
of the optimal ridge orientation which can be determined
analytically.

2) Ridge enhancement filter by Frangi et al. [6]: This
filter relies on an eigensystem analysis of the Hessian
matrix of the image which we briefly summarize in the
following. Let the eigenvalues of the Hessian matrix be
ordered according to |λ1| ≤ |λ2| ≤ |λ3|. Then, at locations of
tubular structures the following conditions will hold: |λ1| ≈ 0,
|λ1| � |λ2| and λ2 ≈ λ3. In particular, for bright tubular
structures surrounded by dark background as is the case
for fluorescently-labeled filaments, λ2 < 0 and λ3 < 0. The
vesselness measure proposed by Frangi et al. is defined as
follows

VF =
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0 if λ2 > 0 or λ3 > 0
(2)

with α , β and c being parameters that control the sensitivity
of the filter to the measures RA = |λ2|

|λ3|
, RB = |λ1|√

|λ2λ3|
and

S =
√

∑ j λ 2
j . RB becomes maximal for blob-like structures

and zero for |λ1| ≈ 0. As it cannot differentiate between line-
like and plate-like structures, RA is introduced. Finally, S
shall avoid filter responses from noise by accounting for the
norm of the Hessian matrix, i.e., for the magnitude of the
derivatives which is low for noise and large for structures.

3) Ridge enhancement filter by Sato et al. [7]: This filter
also relies on an eigensystem analysis of the Hessian:
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0 otherwise
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Here, γ23 ≥ 0 controls cross-section isotropy in order to dis-
tinguish between line-like and plate-like structures. Deviation
from the condition |λ1| ≈ 0 is penalized by means of γ12 ≥ 0
and 0 < α ≤ 1 such that blob-like structures are suppressed.

B. Centerline extraction

To obtain a binary segmentation, our goal is to extract a
one-pixel wide centerline from the enhanced ridges while
preserving the connectivity of the network. To this end, we
threshold the ridge strength image to obtain a binary volume
segmentation and use the thinning algorithm proposed in [8],
[10] for centerline extraction.

The threshold is an adaptive threshold computed from the
Otsu threshold [11]. Note that the only requirement for this
thresholding step is the preservation of connectivity. The
Otsu threshold itself, however, does not achieve this for
the response of all three filters. Therefore, we automatically
compute a suitable threshold that satisfies this requirement
by increasing or decreasing the Otsu threshold by a certain
percentage that is fixed for each filter.

The subsequent centerline extraction algorithm iteratively
thins the binary volume segmentation by performing several
tests for each voxel to test if it can be deleted from the
object without leading to a shortening of the centerline or a
destruction of connectivity [8], [10].

III. EVALUATION
A. Evaluation based on synthetic data

To assess the precision of the different methods with
respect to centerline localisation, we have developed syn-
thetic image data. The basis for the synthetic image data
is a 3D network of 7 tubular structures of radius 3 with
different kinds of branchings (Fig. 2). The network exhibits
a total length of 667 centerline points. From this 3D network,
different image data are generated.

1) Generation of synthetic images: The generation of
the synthetic image data consists of the simulation of the
following three aspects:
• CLSM PSF modeled by an anisotropic 3D Gaussian
• anisotropic spatial sampling of the 3D object
• photon-counting noise modeled by a Poisson distribu-

tion
The anisotropic spatial sampling - i.e. the resulting voxel size
- chosen for the image acquisition is directly related to the
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Fig. 2. Maximum-Intensity-Projection of the synthetic 3D network.

CLSM PSF as the PSF limits the resolution. The CLSM PSF
can be modeled by a 3D-Gaussian [12]. The image data we
have acquired with our Zeiss confocal microscope (LSM710)
exhibit in the worst case voxels of VoxelSizeXY = 66nm
in the dimensions of the image plane and VoxelSizeZ =
396nm in the dimension along the optical axis which is
a sampling anisotropy of SA = VoxelSizeZ

VoxelSizeXY = 6 between the
third dimension and the other two dimensions. To assess the
influence of the anisotropic spatial resolution on the precision
of the segmentation result, we generate 6 data sets with
sampling anisotropy from SA= 1 (isotropic spatial sampling)
to SA = 6. Simultaneously, we change the support of the
Gaussian PSF model in the third dimension from isotropic
(equal standard deviation in all dimensions σx = σy = σz)
to anisotropic (σz = 6 ·σx) while the standard deviations in
the dimensions of the image plane remain constant. Finally,
Poisson noise is added to the data.

2) Error measures: For the above data sets, we evaluate
voxel-wise centerline overlap (Fig. 3) and mean Euclidean
distance between reference centerline and segmentation re-
sult (Fig. 4). Note that the mean Euclidean distance is
dimensionless here because the voxel size of our synthetic
data sets is dimensionless. The fact that the mean Euclidean
distance is small also for highly anisotropic voxels clearly
shows that the deviation of the segmented centerline from
the true centerline position is very small and that allowing
a small tolerance region around the reference centerline in
the overlap measure would lead to a significantly increased
overlap compared to the hard voxel-wise overlap measure
in Fig. 3. In addition, we verified that for all data sets, the
connectivity is preserved. Furthermore, we visually assessed
the segmentation results with respect to artefacts such as
knobs or loops. The segmentations relying on the Frangi
filter and the segmentations relying on the steerable curve
detector are mostly free of artefacts. The segmentations
relying on the Sato filter tend to contain little knobs, where
the segmentation result is not a one-pixel-wide line.

B. Evaluation on real data

To assess the performance of the segmentation methods
on real KF networks that exhibit a higher complexity than
the synthetic data, we (i) perform a connected component
analysis on the segmentation results and (ii) assess the
results visually. Sorting the connected components in order
of decreasing size shows that the network connectivity has
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Fig. 3. Voxel-wise overlap of reference centerline and segmentation result
for the three segmentation methods indicated in percent.
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Fig. 4. Mean Euclidean distance of reference centerline and segmentation
result for the three segmentation methods. Note that the mean Euclidean
distance is dimensionless as the voxel size of the synthetic data is dimen-
sionless.

been preserved for all three methods. As an example, Fig. 5
shows in the upper left image the KF network of an entire
cell in the middle and a part of KF networks of two other
cells, one in the upper left corner and the other one at the top
of the image. The segmentation result using the Frangi filter
is shown in the upper right image. In the lower row, the two
largest connected components are shown. As expected, the
largest component is the segmentation of the KF network of
the cell in the center and the second largest component is
the segmentation of the KF network of the cell in the upper
left corner. A visual assessment of the segmentation results
of the three methods shows that also for KF images, the
Sato method tends to form knobs and other artefacts. The
steerable curve detector method produces significantly less
artefacts while the results from the Frangi method clearly
outperform the latter.

IV. CONCLUSIONS

In this contribution, we have proposed line enhancement
filtering, adaptive thresholding and centerline extraction for
the 3D segmentation of KFs in CLSM images. We have com-
pared the performance of three different line enhancement
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Fig. 5. Upper row: Maximum-Intensity-Projection (MIP) of a 3D image showing the KF network of a cell in the center and a part of KF networks of
two other cells in the upper left corner and at the top of the image (left). MIP of the segmentation result using the Frangi filter (right). Lower row: MIP of
the largest connected component of the segmentation result (left) and MIP of the second largest connected component of the segmentation result (right).

filters in combination with a centerline extraction method
using synthetic data that reflects the critical properties of
real CLSM data. The results show that all three methods
are able to accurately localize the sought centerlines despite
highly anisotropic image resolution and in the presence of
strong noise. In images of real KF networks, the network
connectivity is preserved by all three methods. A visual
assessment reveals that the segmentation results relying on
the Frangi filter produce the best centerlines while the results
relying on the Sato filter or the steerable curve detector
exhibit a few knobs or loops.
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