
AUTHOR C
OPY

Towards collaborative component-based
modelling
HS Sarjoughian1*, JJ Nutaro2 and G Joshi1

1Arizona State University, Tempe, AZ, USA; and 2Oak Ridge National Lab, Oak Ridge, TN, USA

Collaborative modelling enables dispersed users to develop component-based system models in group settings.
A realization of such an approach requires coordinating and maintaining the causality of the users’ activities. We
propose the Collaborative DEVS Modelling (CDM) approach and its realization based on the Computer Supported
Collaborative Work (CSCW) and the Discrete Event System Specification (DEVS) concepts and technologies. The
CSCW concepts are introduced into the DEVS modelling framework in order to support model development in virtual
team settings. A set of modelling rules and tasks enabling collaborative, visual, and persistent model construction and
synthesis is developed. To support separate groups of modellers to independently develop models, the realization of
CDM supports independent modelling sessions. An illustrative example is developed to demonstrate collaborative and
incremental model development. The design of the CDM realization and future research are briefly described.
Journal of Simulation (2011) 5, 77–88. doi:10.1057/jos.2010.5; published online 14 May 2010

Keywords: collaborative modelling; computer supported collaborative work; discrete event system specification

1. Introduction

Modelling is instrumental to analysis, design, deployment,

and evolution of systems that have complex structures

and behaviours. Visual and persistent modelling support is

considered useful as they significantly simplify common

model development activities such as defining a system’s

parts and their relationships (Rhee, 1999; Sarjoughian et al,

1999a; Burmester et al, 2005). An important limitation of

many of today’s modelling approaches and tools is that they

are historically developed primarily for single users. To

support a team of modellers, it is important to account

for space and time constraints on geographically dispersed

collaborators. Thus, a collaborative modelling environment

should intrinsically support a group of analysts, designers,

and system engineers to collectively develop models of sys-

tems (Bidarra et al, 2002; Delinchant et al, 2004; Filho et al,

2004). As a team, the modellers can develop, for example,

a system-level model of a vehicle that includes engine,

controller, and sensor components using the Discrete Event

System Specification (DEVS) modelling framework (Zeigler

et al, 2000). Based on groupware concepts, a collaborative

modelling environment can support creating, modifying,

viewing, and sharing of the vehicle system model and its

components.

Collaboration among modellers can be fostered using

Computer Supported Collaborative Work (CSCW) princi-

ples and concepts such as sessions, awareness, privacy, and

control of individual and group activities (Grudin, 1994;

Usability, 2004). CSCW-based environments have been

developed to enable multiple users to work as a team under

different time and space constraints. A team, for example, can

be a group of individuals who are located in different but

predictable (or discoverable) places while collaborating in

different but predictable time periods. The knowledge and

information exchanges can also range from being unstruc-

tured (eg unscripted text messaging) to structured (eg orderly

creation of a hierarchical model design). Given such alter-

native collaboration settings, users can manipulate text and

documents through blackboard or other web technologies,

and further improve their productivity through voice and

video-conferencing (Subramanian et al, 1999). CSCW is

necessary but insufficient to support developing simulation

models in collaborative settings (Taylor, 2001). For example,

the concepts and methods that have been developed for

supporting group activities do not account for the rules under

which hierarchical DEVS simulation models can be specified.

In this article, the Collaborative DEVS Modelling (CDM)

approach is proposed. The concept of the CDM is realized

through extending the component-based DEVS system

modelling with groupware support. Therefore, the resulting

CDM environment can be viewed to be a combination of the

DEVS modelling engine and the Collaborative Distributed

Network System (CDNS) engine (Sarjoughian et al, 1999b).

The modelling engine provides modelling constructs (ie

creating components, ports, and couplings according to the

DEVS formalism). It also supports visual model develop-

ment and persistence. These capabilities are very useful not

only for single-user modelling tools, but even more so in

*Correspondence: HS Sarjoughian, Computer Science and Engineering,
Arizona Center for Integrative M&S, Arizona State University, Tempe,
AZ 85258-8809, USA.

Journal of Simulation (2011) 5, 77–88 r 2011 Operational Research Society Ltd. All rights reserved. 1747-7778/11

www.palgrave-journals.com/jos/



AUTHOR C
OPY

collaborative settings. The collaborative engine supports

team-oriented capabilities such as modellers creating or

joining collaborative model sessions. Capabilities such as

concurrent control, data exchange, and data persistence are

used for creating one or more collaborative modelling

sessions. This requires maintaining logical ordering among

the activities of multiple users since it is impractical for any

two users to simultaneously modify or create a model.

Collaborative modelling activities must be processed in some

well-defined order. For example, a model component can

be removed only after it is created. Similarly, concurrent

activities of modellers may not be inhibited if they are

independent (eg one modeller is viewing a hierarchical model

while another modeller is creating a component which is to

be added later to the hierarchical model).

The remainder of this article is organized as follows. In

Section 2, we review the essentials of CSCW, a selection of

related research, and the DEVS modelling approach. In

Section 3, we introduce the modelling concepts in the context

of a collaborative model development process and devise our

approach for DEVS modelling approach. In Section 4, we

describe the details of the CDM, an example model, and a

sketch of the design of the CDM environment. Finally, in

Section 5, we present a summary and discuss open problems

and future research directions.

2. Background

It is common to develop models iteratively, especially for

systems that are large and complex. System development

activities, including model conceptualization and specifica-

tion, increasingly depend on multiple analysts, designers,

and coders collaborating with one another (Filho et al, 2004;

AnyLogic, 2008). In this section, we briefly review some

collaborative environments and their capabilities that have

been developed to support better use of information systems

and modelling tools. We then turn to the combined role of

the system-theoretic and collaborative model development

concepts that are used in devising the CDM approach.

2.1. Computer supported collaborative work

CSCW capabilities are universal in that they are intended for

a variety of application domains including scientific research

in astronomy, bioinformatics, software engineering, and

medicine. Based on the key benefits promised by CSCW

and pre-packaged software tools, a variety of collaborative

environments have emerged in recent years to support team-

oriented business and engineering needs (Hill et al, 1994; Sun

et al, 1998; Subramanian et al, 1999; Xia et al, 2001; Yang

et al, 2001; Zhang et al, 2002). To enable use of single-user

software applications in collaborative settings, products such

as CodeBeamer (CodeBeamer, 2004) are also developed to

support or otherwise augment information sharing and

communications. These environments offer collaborative

features such as the exchange and creation of information,

access to global and local data, and joint use of software

applications. For example, AnyLogic (AnyLogic, 2008) uses

a version control system and thus can support partitioning a

project into parts. Subsequently different users can develop

models and carry on related development activities in a

collaborative workspace.

Research in the development of collaborative tools has

focused on general concepts and communication and control

approaches as well as their extensions to specific domains

such as process engineering, scientific investigations, and

remote health-care diagnosis and planning (Rhee, 1999;

Sarjoughian et al, 1999b; Subramanian et al, 1999; Yang

et al, 2001). Each of these approaches supports some of the

collaboratory concepts (eg shared workspace) and principles

(eg causality preservation of collaborators’ actions). How-

ever, since CSCW capabilities and features are generic, they

need to be extended and complemented given the specific

needs of the collaborative applications. A recent survey

shows that CSCW applications are, for example, in decision

support, sharing information, and conferencing with little

effort in direct support of constructing and synthesizing

simulation models (Jacovi et al, 2006). To understand the

use of the CSCW concepts and technology, we reviewed

some approaches and tools that are developed for specific

application domains (Grundy et al, 1998; Subramanian et al,

1999; Kim et al, 2001; Bidarra et al, 2002; Filho et al, 2004;

CanyonBlue, 2005). A detailed review of these can be found

in Joshi (2004). The following brief discussion for three of

these collaborative environments is intended to highlight the

use and adaptation of CSCW concepts and technologies.

Co-Surgeon (Kim et al, 2001) is a collaboratory support-

ing surgical simulation for 3-D anatomical models using a

client-server architecture style. The server maintains the

database consisting of medical images, patient records,

treatment procedures, and surgical plans. To maintain

model consistency, activities of participants, the server uses

a token-control mechanism in order to allow only one user

at a time to control the global view of the model. To obtain

control of the session, a participant must first obtain a token.

This request is placed in a FIFO queue, which is maintained

by the session supervisor. The participants can collaborate

synchronously or asynchronously. In synchronous colla-

boration the session initiator prepares and uploads a model

to the server for a prescheduled meeting. Collaborators then

obtain a local copy of the model from the server. When a

client changes the current view of the model, the server

broadcasts those changes to all other clients. There are three

basic types of model manipulation: selection, translation,

and rotation. To support surgical simulation, operations

such as marking, measuring, and cutting are supported.

Collaborative Computer Aided Design (CCAD) systems

enable specialists to work collaboratively on the design and

development of mechanical and electrical systems (Bidarra

78 Journal of Simulation Vol. 5, No. 2



AUTHOR C
OPY

et al, 2002). Because of the computational intensity of CAD,

the architecture of CCAD may use thin- or thick-client/

server design. A thin-client has a local view of the model

located on the server while a thick-client has its own local

copy of the model with the original model on the server.

CCAD also allows various techniques, such as token control

or locking, to manage concurrency. A token control mecha-

nism grants model ownership to only a single client who can

modify the model while others are only allowed to view the

model. In addition, locking may also be used to provide

greater user-control. Depending on the granularity (eg deep

versus shallow) of the lock, different levels of collaboration

are possible. For example, locking can be used to restrict the

manipulation of the entire or part of a model to a single client.

GroupSim is a collaborative environment for modelling

discrete event simulation systems (Filho et al, 2004). It uses

the Activity Cycle Diagram notation for non-hierarchical

visual modelling activities and their relationships. This

environment uses the GroupPlaces groupware architecture

which offers the CSCW workspaces that are used in CDM

(Sarjoughian et al, 1999a). Unlike CDM, requirements such

as access control among multiple concurrent modellers and

performance are left as future work. Users can synthesize

Java classes of the models via their visual object representa-

tions. This environment is proposed to be extended to

automatically combine the models that are in the form of

Java classes and support a user to start a simulation which

can be stopped or resumed by a collaborating user.

The CDM approach described in this article uses the basic

CSCW concepts and technologies described above to create

a collaborative environment for building DEVS models. The

above approaches and tools primarily support collaborative

model development similar as in collaborative software

development. Furthermore, although models constructed

with such approaches can be characterized as discrete-event,

there is no direct support for constructing models that

conform to systems theory and DEVS in particular. The

structural specifications including component ports, cou-

plings, and hierarchical construction are not supported.

CDM supports public and independent private workspaces

and it is possible for any user to simultaneously participate

in multiple private sessions. The client view of a model’s

block diagram is automatically updated as the model

changes by multiple users. The model layout is important

for collaborative sessions since it allows all modellers share a

common view of the system. The updates to the models are

generated and sent in a well-defined order to the clients.

Since only updates to the models are necessary, there is a

reduced need for network resources which in turn improves

the performance of the CDM environment.

2.2. Component-based simulation modelling

Systems theory offers a formal foundation for conceptualiz-

ing and specifying modular, hierarchical models (Wymore,

1993; Zeigler et al, 2000). It supports characterizing state-

based hierarchical structure and behaviour of a system.

The structure of a system refers to its parts (atomic or

composite), input/output interfaces, and how parts may be

composed to form the system. The behaviour of a system

refers to how inputs are processed and how the state of a

system changes both internally and due to the interactions

among system components. Object-orientation concepts and

constructs such as abstraction, encapsulation, inheritance,

and polymorphism offer capabilities for realizing system-

theoretic modelling formalisms and extending their model-

ling capabilities.

The DEVS is a system-theoretic approach to modelling

discrete event systems (Zeigler et al, 2000). Its atomic and

coupled models are defined to have input and output ports

which are the only means by which inputs can be received

and outputs can be sent. An atomic model specifies the

dynamic behaviour of a system’s component in terms of

states, inputs, outputs, transition functions, an output

function, and a time advance function. All leaf nodes of a

hierarchical model are atomic models and these cannot be

further decomposed. Hierarchical models are defined in

terms of atomic and coupled models. A coupled model is

defined to have a finite set of atomic or coupled models and

every coupled model conforms to strict hierarchy—that is, a

model cannot contain itself anywhere in its hierarchy. All

model interactions occur through sending and receiving

messages through couplings. A coupled model can have

internal and external couplings which are used to send and

receive outputs and inputs from its parts. Internal couplings

from output ports to input ports capture how the coupled

model’s components influence one another. External input

couplings send messages originating from the parent model

to its components. External output couplings send messages

originating from within the model components to the parent

model. These models adhere to causality and timing

constraints—inputs sent to atomic (and coupled) models

will take some period of time to be processed and when two

models are combined into a coupled model, the inputs sent

and outputs received to and from the components must be

through the input and output ports of their coupled model.

Environments such as DEVS-Suite (DEVS-Suite, 2008)

and MATLABs/Simulinks (Mathworks, 2002) support

model development and execution, viewing the structure

of models, and animation of their behaviour. Modelling

environments also exist to support visual specification of

models for single users (Delinchant et al, 2004; Burmester

et al, 2005; Sarjoughian, 2005; CoSMos, 2010). These are

called object-oriented systems-theoretic modelling environ-

ments. A key benefit of object-oriented systems-theoretic

M&S approaches such as DEVS is support for incremental

model development which is crucial for synthesizing larger

models from smaller models while allowing specializing

model components.

HS Sarjoughian et al—Towards collaborative component-based modelling 79



AUTHOR C
OPY

3. Collaborative modelling concepts

Development of simulation models can take place in

conventional, synchronous, or asynchronous modes.

Multiple users could be allowed to create and view models.

Conventional Collaboration (CC) involves immediate,

face-to-face communications and requires all participants

to be in the same physical space at the same time.

Synchronous Collaboration (SC), however, can occur when

the participants have agreed on a time to collaborate, but are

not necessarily in the same physical place (eg video-

conferencing). Unlike the other two modes of collaboration,

Asynchronous Collaboration (AC) does not require any prior

agreements on time or space (eg computer bulletin board).

These collaboration modes categorize time and place as

(a) same, (b) different but predictable, and (c) different and

unpredictable (Grudin, 1994; Filho et al, 2004). This smaller

category of collaboration modes emphasizes teamwork

with respect to collaborators joining and leaving in both

predictable and unpredictable time instances. In particular,

the collaboration modes are not distinguished with respect to

the locations of the collaborators, but instead emphasize the

concept of simultaneity. This smaller set of collaboration

modes is appropriate given the aim of collaborative model

development considered in this article.

Many research and commercial environments have been

developed to support different kinds of modelling activities

across different domains. Examined from the perspective of

enabling formal model specification, environments such as

DEVS-Suite and MATLABs/Simulinks do not have the

concepts and support for model development in a colla-

borative setting; instead these tools and their underlying

formulations support single users. They offer support for

dispersed modellers in the form of sharing data, models,

and internet-based communication. They, however, do not

provide the necessary logic that can ensure single-user

modelling activities can be carried out in a collaborative

setting. For example AnyLogic supports multiple users

developing models in a group setting, but there is a lack of

built-in modelling rules for constructing models. Since the

general-purpose nature of collaborative concepts and

technologies, CSCW must be complemented with the needs

of specific modelling approaches. Before proceeding further,

we first develop a mapping of the CSCW collaboration

modes to the phases of a common model development

process.

3.1. Model construction and synthesis processes

Modelling and simulation is well known to be inherently an

iterative process. A comprehensive process called Federation

Development Process (FEDEP) has been developed for

large-scale, distributed simulation models (IEEE, 2003).

The steps for developing new models are requirements

gathering, development planning, conceptual modelling,

design, and implementation and testing. A simplified

process model based on the Grab-and-Glue framework

is also considered (Pidd, 2002; Eldabi et al, 2004). This

process focuses on web-based model construction and

model reuse. The key steps in this framework are Grab-

and-Glue processes with the purpose to overcome

the limitations of traditional modelling and simulation

approaches. The approach considers the time and effort

for collecting data, constructing models, and executing

simulations. It identifies a variety of limitations and

challenges including finding models from repositories, model

compatibility and adaptation, and visual modelling. Neither

the FEDEP model nor Grab-and-Glue approach takes

into account collaborative model development modes as

described next. Collaborative process development frame-

works have also been proposed for software development.

For example, SPEARMINT/XCHIP (Fernández et al, 2004)

supports a graphical, hypermedia structure approach for

model development and documentation. In comparison

with this approach, the process proposed below is targeted

for simulation model development and in particular

accounts for system-theoretic modelling with different

collaboration modes.

In view of collaborative model development, a process

model shown in Figure 1 is proposed. This process consists

of the six phases. The bi-directional arrows show the

iterative nature of the model and simulation development

process. For all but simple and trivial systems, model deve-

lopment demands a mixture of useful modelling concepts

with the ability to map domain knowledge to general-

purpose modelling constructs provided by modelling form-

alisms. The process starts with the obtain requirements phase

which involves clarifying the concepts and the purpose for

which the model is to be developed. For non-trivial

modelling efforts, the objectives and the formulation of

requirements are carried out in CC mode, and sometimes

augmented with other modes such as video-teleconferencing

to review and share model description or conceptual

drawings. After the requirements have been established,

data specific to the problem domain is usually collected in an

AC mode by the individual team members. During the

collect data and search for models phase, information nece-

ssary to specify models is gathered from expert consultation

to searching for models that are developed by others.

Models are typically specified in two ways: (i) model

construction and (ii) model synthesis. The former is con-

cerned with creating new model components and, the later

with creating models from pre-built model components

(Sarjoughian et al, 1997; Lee et al, 1998). Model construc-

tion includes specify and verify models phases (see Figure 1).

These phases can take place in SC mode and the other two

collaboration modes (CC and AC). Model synthesis includes

simulate and validate models phases (see Figure 1). The

model construction and synthesis are not exclusive; rather

they are complementary to one another since both model

80 Journal of Simulation Vol. 5, No. 2



AUTHOR C
OPYverification and simulation validation are dependent on

domain knowledge and simulation experiments. The

obtain requirements and the collect data and search models

phases are appropriately tailored to model construction and

synthesis.

Model construction and synthesis are iterative since, when

specifying or simulating models, it is often necessary to

clarify objectives, collect new data and customize or change

models that meet the objectives of the simulation study.

Since developing large-scale, complex models requires

describing many distinct parts of a system and their inter-

actions, not only do modellers need to know how to specify

models in a given modelling formalism, but they also must

have knowledge of the application domain. Each step in

the model construction and model synthesis processes need

to be assigned one or more suitable collaboration modes.

In Figure 1 the collaboration modes that are considered

appropriate for developing simulation models are shown.

Although all collaboration modes may be used for any of

these steps, some modes are more appropriate than others.

For example, a modeller may construct and verify a model

for a part of an aircraft and at a later time join a

synchronous collaboration session where the aircraft model

is synthesized from parts. A user may then simulate the

aircraft model and thereafter a group of dispersed users will

evaluate the simulation results and validate the model.

3.2. Modelling formalism and collaboration modes

Previously it was noted that existing component-based

modelling approaches do not provide concepts and capabil-

ities that can support collaborative model develop-

ment. A collaborative modelling environment must account

for model construction and synthesis which take place

over several modelling sessions and in different places.

Concurrent model creations and modifications (eg adding a

model component or deleting a coupling relation between

two model components) among multiple modellers require

capabilities that can ensure logical correctness beyond what

is assumed for DEVS and other modelling approaches. This

requires developing appropriate relationships between the

constructs of a modelling formalism and their use in a group

setting. The DEVS modelling formalism supports model

construction and synthesis activities such as creating a

model, adding input ports, and changing coupling between

model components.

The ordering of model synthesis steps between two

modellers must be well-structured. For example, both

modifying a model and viewing the changes to the model

must be controlled. The result of removing a model

component must be presented consistently to all modellers

that are collaborating in synchronous collaboration mode.

Likewise, when a component is added to a coupled DEVS

model and then coupled to another component, the order of

modelling steps must be preserved (ie coupling occurs

only after the component is added and the user cannot view

the coupling without also viewing the component added to

the coupled model). Thus, the CDM collaborative modelling

approach must support the DEVS legitimacy property which

prohibits any atomic or coupled model to have direct

feedback.

Next, the logical DEVS model specification is extended

with visual, and persistent models (Sarjoughian, 2005). A

logical model refers to the specification of a model’s syntax

and semantics for a given modelling formalism. A visual

model refers to the visual representation of a logical model

given the constraints of displaying complete component-

based view of models as tree structures or block diagrams.

The persistent model refers to storage of logical models. The

inclusion of visual and persistent modelling concepts and

capabilities with logical modelling are key for collaborative

model development.

obtain
requirements

specify
models

verify
models

model
database

validate
models

collect data 
and search for

models 

simulate
models

CC

SC, AC, CC

AC

Model Construction

Model Synthesis

Figure 1 Model construction and synthesis with assigned collaboration modes.

HS Sarjoughian et al—Towards collaborative component-based modelling 81



AUTHOR C
OPY

Modelling formalism:

� The DEVS logical specifications of atomic and coupled

model structures must be preserved when used in a

collaborative setting. For atomic models, inputs, outputs,

states, and functions can be specified once a model

component is created. Each modelling step is ‘atomic’ and

no ordering is required among these steps. A coupled

model can be created and other models added or removed

from it. Flat and hierarchical coupling of models conform

to the DEVS modelling formalism.

� Modelling constructs must remain invariant under alter-

native collaboration modes—that is, collaborative model

development may neither weaken nor restrict the DEVS

model specifications. If a modeller adds a component to

another model component and at some later point the

added model is removed by another modeller, both

modelling steps are visible to both modellers in the order

in which they occurred. Furthermore, there is no

guarantee that any modelling step is carried out or viewed

at the same wall clock time. All logical modelling steps

and their visual representation for atomic and coupled

model development must be guaranteed to conform to the

DEVS modelling formalism.

Collaboration modes:

� One or more logical model components may be accessed

by multiple dispersed users only if the model specifications

are consistent with the modelling formalism within which

they are described. The creation and modification of

model components in synchronous and asynchronous

group collaboration must be guaranteed to be consistent

with the chosen modelling formalism.

� Every atomic and coupled visual model is a graphical

representation of its corresponding logical model. The

visual models must remain invariant to time and space.

Every dispersed modeller must be assured a correct view

of every model as it evolves. That is, the order of logical

modelling steps must also be preserved for visual

modelling. The order preservation of the modelling steps

is independent of network delay and every modeller must

view all of the modelling steps whether or not a modelling

step is retracted at a later time.

� Logical models, possibly with versioning, must persist

across time and space. Models may be stored in alter-

native media such as flat files or databases. The visual

representations of the models are rendered to each

modeller separately given one or more repositories of

logical models.

The DEVS modelling and CSCW concepts are needed for

developing the CDM. A proper mapping of the modelling

steps and collaboration modes is required. As noted earlier,

model construction and synthesis are complex and iterative

which prohibits having more than a handful of modellers to

collaboratively develop models. Indeed, at the present time

collaborative model construction and synthesis remains

challenging to support beyond a handful of people.

4. CDM approach

The development of models among a group of modellers can

be realized by enabling system-theoretic modelling capabil-

ities within CSCW workspaces. To support collaborative

model development it is important to begin with the acti-

vities of a single modeller. His modelling activities need to be

formulated in terms of the collaborative session concept

and principles. It is also important for concrete realization of

the collaborative modelling framework to be simple and

efficient.

A collaborative session is a loosely bounded workspace

within which a group of clients develop a model jointly.

Compared to a session in a classical client/server environ-

ment in which clients carry out independent tasks, a colla-

borative session’s content is based on interdependent acti-

vities of clients. Within a collaborative session, user actions

that operate on shared data are synchronized so as to

enforce the rules of the modelling constructs. A collaborative

session has a finite duration with a start-time and an end-

time with the implication that initialization, operation, and

termination steps must be supported separately for every

modelling session. For example, given a group of modellers,

one user first creates a session so that all users can join the

session. Then the users, which may not include the person

who created the session, can collaboratively develop models.

The session remains active until the modelling activity

comes to a conclusion (eg the model is frozen to establish a

baseline).

A collaborative system-theoretic modelling framework

consists of a well-defined modelling approach and a colla-

borative scheme. For the modelling formalism, the DEVS

approach is selected. For collaboration support (eg dispersed

users sending and receiving modelling queries/actions), the

CDNS (Park, 1998; Sarjoughian et al, 1999b), a lightweight

distributed computing environment, is selected. The combi-

nation of the DEVS and CDNS with collaborative session

is the proposed CDM (Collaborative DEVS Modeller)

approach. In the remainder of this section, we describe the

details of how the DEVS and CDNS are integrated.

4.1. Modelling activities

The modelling activities for the specify model phase are given

in Table 1. The activities 1 through 3 differ for the single and

group modellers in that these activities are inherently

sequential for a single modeller and concurrent for a group

of modellers. A common aspect of the activities is to support

relatively large-scale model development, especially from the

82 Journal of Simulation Vol. 5, No. 2



AUTHOR C
OPY

visualization perspective. This is important for supporting a

single modeller and more importantly a group of modellers.

Model organization is integral not only in the context of

collaborative model development but also for models that

have tens to several hundred parts and links (or couplings).

As will be described in section ‘Visual model representation’,

special care is needed to support logical and visual modelling

among the members of a group.

The CDM environment needs to offer basic capabilities

such as loading logical models and manipulating visual

models. From the collaborative perspective, it needs to

provide the capabilities given in Table 2.

Furthermore, the CDM environment needs to be simple

for deployment. The logical and visual representations of the

models must be separated, but kept consistent with one

another. This separation is important both in terms of users’

ability to develop models and to design an efficient environ-

ment. For example, logical models can be stored on servers

and visual models can be rendered locally on each modeller’s

computer which significantly reduces data and transfer

frequency.

Logical model specification. The logical representation of

the models is defined according to the DEVS formalism.

The coupled models have hierarchical tree structure

representations. In this article, rather than giving the

formal specification of the DEVS, we focus on its structural

modelling artefacts and their use. The root of the tree

provides the most compact view of the system. Subsequent

levels (tree branches) reveal greater detail via decomposi-

tion, input/output interfaces, and couplings. The leaf nodes

of the tree are atomic components that are not further

decomposed. The DEVS logical model specification should

enable users to construct hierarchical models under the

rules listed in Table 3.

The above rules are extended to concretize the collabora-

tive session concept in terms of the DEVS model develop-

ment activities. The rules below underscore the importance

of modelling activities (eg adding a component or a

legitimate link between two model components) in a

collaborative session. A modeller can define a coupled

model without its parts and another modeller may define one

or more parts of the coupled model. Similarly, a model may

be defined without ports and only later specified to have

ports. The key concept is that collaborative model construc-

tion and synthesis imposes requirements that may be

unnecessary from the perspective of a single modeller.

Modellers in a collaborative session develop models with the

understanding that a collaborator can specify a partial

atomic or coupled model that may be completed by any

modeller. The synthesis of CSCW and DEVS, therefore,

provides the basis to account for modelling activities among

groups of modellers that span some finite period of time and

thus assuring all activities are synchronized to ensure

syntactically correct structural logical specification of

models. To achieve this, the additional rules provided in

Table 4 are defined and supported in CDM.

Given the above, we define the collaborative modelling

constructs add, delete, cut, remove, link, copy, and edit. It is

important to note that these logical modelling constructs

Table 1 Model construction and synthesis activities

1. Logical models can be specified and revised
2. Visual models represent tree structure and block diagram

views
3. Logical models persist in time and space and can be revised

and retrieved

Table 2 Collaborative activities

1. Enter and exit modelling sessions
2. Joint and leave modelling sessions
3. Create, delete, and visualize models

Table 3 Logical model specification rules

1. The root node of the tree must be a coupled model.
2. An atomic model does not have any other model

component contained within it.
3. A coupled model can have a finite number of atomic or

coupled components; a coupled model cannot contain itself
at any level in the model hierarchy.

4. Atomic and coupled models can have a finite number of
input and output ports. At most one link can exist between
any two ports that are eligible to be coupled.

5. A coupled model may have a finite number of links with its
components; its components can have a finite number of
links with each other. A link is unidirectional and is
specified in terms of (source model, output port) and
(destination model, input port). The input port of a coupled
model can be connected to the input of any of its
components. Any output port of any component of the
coupled model can be linked to any output port of the
coupled model. Any output port of any component of the
coupled model can be linked to the input port of any
component of the coupled model. A model’s output and
input ports cannot be coupled to one another.

6. Each model has a unique identity and its input and output
port names are unique among themselves.

Table 4 Additional logical model specification rules for a
collaborative session

1. A coupled model may have no components at a given time
during a modelling session. Atomic and coupled models
may not have any input and output ports.

2. A coupled model may have no links at a given time during
the modelling session.

3. A model that is not the root may belong to a coupled
model; an atomic model may be defined, but not be part of
any coupled model.

HS Sarjoughian et al—Towards collaborative component-based modelling 83



AUTHOR C
OPY

satisfy the syntax and semantics of the DEVS models, but in

addition, are defined as operations that take place among

dispersed modellers and may be carried out at different

time instances of a collaborative modelling session. Further

details of these modelling actions are defined in the next

section.

Visual model representation. Modellers located in dis-

persed locations can collaborate to build a model of a

system; for example, the cabin, navigation, and control

components of the aircraft model depicted in Figure 2. To

graphically represent such a model, CDM environment

provides graphical views for the logical elements (ie atomic,

coupled, input/output ports, links) of a model described

above. The Graphical User Interface supports two com-

plementary views of the same logical model—tree structure

and block diagram. The tree structure shows the entire

model as a labelled tree and the block diagram shows block

representation of one coupled or one atomic model. The

block diagram shows ports and couplings of a selected

model. By interacting with the tree structure, the user can

traverse the model hierarchy and cut or delete any part of a

model. The part can be an atomic component or any

branch of the tree structure. In the block diagram, a user

can add or cut atomic and composite model components,

add or cut coupling relationships, add or cut ports, and

rename components. Consistency between the alternative

views is maintained automatically.

Of these two visual models, it is important to examine the

representation of the block diagram. The diagonal block

diagram layout is important for individual and collaborative

sessions. First, it simplifies visualizing unidirectional links

among components when both feedforward and feedback

couplings are used in a coupled model. It reduces crossing of

the links and simplifies visual complexity of models. The

disadvantage is that for large-scale models with sparse

couplings, it can be difficult to visualize and work with the

models since a relatively large space becomes necessary.

Second, the pre-determined block diagram layout is

important for collaborative sessions since it is otherwise

difficult to guarantee that the modellers have an identical

view of the model. The automatic layout is important

especially in a collaborative environment where unantici-

pated changes to the diagram may occur as a result of

actions performed by multiple modellers. Moreover, a uni-

form representation of the block diagram view is important

when modellers’ interactions are complemented with voice.

Figure 2 shows a simplified hierarchical model of an

Aircraft composed of a Cabin and Navigation and

Control components. The visual modelling environment is

made of left and right panels and bottom and top tool bars.

The left panel shows the tree structure of the System (see

Figure 2). While each model component is unique, it can

appear in multiple places if it is part of a larger model. For

example, the coupled Environment component appears in

two places subject to the rules defined in section ‘Logical

model specification’—as a standalone coupled model it

appears on the far left side of the tree, and as a component of

the System it appears as part of the first branch of the tree

structure. The tree structure view does not show port names

and couplings. The right panel displays the composite

Aircraft model, its parts, input and output ports, and

couplings. The models are represented by blocks and are

associated with the model component highlighted in the left

panel (ie Aircraft shown in Figure 2). The input and output

ports for every (atomic and coupled) model is shown in

the left-hand and right-hand side of each block, respectively.

For example, the Aircraft model has input ports temp and

flight and output ports trajectory and cabinPressure.
It is useful to analyse Figure 2 from a collaborative session

point of view. Let us suppose the Controls model is being

developed in San Francisco, the Navigation model in

Atlanta, and the Cabin model in Phoenix and Boston.

Assuming that each member of the modelling group is

developing a subset of the models for the System, the

collaborative environment provides an anyplace/anytime

workspace local to each modeller, but also supporting

a shared workspace for all the modellers. The ability to

develop, view, and subsequently modify hierarchical models

is essential since all modellers need to work both indepen-

dently (to specify their models of the system parts) and

collaboratively (to ensure their models are synthesized in

accordance to a common set of requirements and abstrac-

tion of the system).

Figure 2 also shows the three types of coupling that can

be specified: (i) external input coupling from the Aircraft
model component to the Cabin model component,

(ii) internal coupling from the Cabin model component to

the Controls model component, and (iii) external output

coupling from the Controls model component to the

Aircraft model component. The modularity afforded by

the modelling approach enables modellers to develop their

own models independent of how their collaborators develop

theirs. The consequence is that a modeller would be able

to devise the components of the Aircraft and how they

influence one another through output/input couplings while

making the interface (ie input and output ports) of the

Aircraft model available to his/her collaborators.

4.2. CDM software architecture

The CDM environment shown in Figure 3 is built based on

the CDNS (Park, 1998; Sarjoughian et al, 1999b). CDNS

provides collaborative session management and basic object

exchange capability via Client and Server CDNS modules. It

separates Individual Tasks and Group Tasks consistent with

the collaborative system-theoretic modelling concepts and

the rules defined in Section 4. The Server Modelling Engine

is responsible for the Group Tasks: maintaining the master

copy of the model, coordinating client access to the model,

84 Journal of Simulation Vol. 5, No. 2



AUTHOR C
OPY

and informing clients whenever the master model is changed.

The Client Modelling Engine is responsible for Individual

Tasks; it maintains a local copy of the model that is

synchronized with the master copy and is used only for local

tasks (eg generating views and performing local consistency

checks before sending change requests to the server).

network

C
lie

n
t

Client Modeling Engine

Server
CDNS

Client
CDNS

Individual Tasks:
• add component
• add link

Networking Tasks:
• connect client to server
• send model to server

Group Tasks:
• create model
• update model

Networking Tasks:
• grant/deny client access
• broadcast model updates

se
rv

er

logical
modeling

component

visual
modeling

component

logical
modeling

component

master
model

local
model

Server Modeling Engine

Figure 3 Software architecture for the Collaborative DEVS Modeller.

Figure 2 Component representation of the Aircraft model.

HS Sarjoughian et al—Towards collaborative component-based modelling 85



AUTHOR C
OPY

Collaborative distributed network system. The CDNS is

a middleware supporting initiation, termination, and inter-

actions among a set of distributed software applications.

This application-neutral middleware, implemented in the

Java programming language, provides a flexible foundation

for software components (ie Client Modelling Engine and

Server Modelling Engine) to send and receive messages

transparently. The CDNS architecture is defined in terms of

two layers: the system layer and the application layer. The

system layer can support multiple concurrent servers and

each server can manage multiple collaborative modelling

sessions. Within this environment, a client can be engaged

concurrently in two or more different modelling sessions

that are hosted by one or more servers. The application

layer provides general session-client and session-server

services that can be specialized and used for tools such

as CDM.

The system and application layers support transparent

complex object transmissions (such as trees and lists)

through automatic object encoding and decoding that is

necessary for distribution across the collaborative work-

space. Specifically, it provides a set of primitive operations

including send and receive methods between a client and a

server. Examples of such operations would be sending a

model from the server to the client. It also provides

commands such as connection request and indication object,

where the former can be used to create a modelling session

and the latter to confirm its creation.

CDNS provides its own user interface for managing

collaborative sessions. Every modeller initially is provided

with two windows: Session Manager and System Information.

Before any modeller (client) can request create/delete or join/

leave operations, the modeller needs to first enter a colla-

borative workspace hosted by a server. Correspondingly,

a modeller can exit the collaborative workspace at any

time during a collaboration session. These operations are

supported by Enter and Exit commands from the Session

Manager window (see Figure 4). Additionally, CDNS also

supports Create, Delete, Join, and Leave operations.

The Create and Delete operations allow creation of

a collaborative session and its deletion. The Join and

Leave operations enable a modeller to join or leave an

existing collaborative session. For example, in Figure 4,

ais1 is a host server offering two collaborative modelling

sessions: Demo1-HostA and Demo3-HostA. Each

host session on ais1—Demo1-HostA@ais1 and Demo3-
HoatA@ais1—has its own model. A prospective modeller

may enter ais1 and upon successful entry, for example, join

the Demo3-HostA collaborative modelling session. Another

modeller can initiate his own collaborative modelling session

Figure 4 Collaborative modeller workspace for two separate hosts Collaborative Distributed Network System.

86 Journal of Simulation Vol. 5, No. 2



AUTHOR C
OPY

(ie Demo2-HostB) on the ais4 host server and join the

Demo1-HostA collaborative modelling session on ais1.
Thus, a modeller, who may be hosted by one server can join

multiple modelling sessions hosted by another server or

multiple other servers. Multiple modellers hosted by

different servers may collaboratively develop a model using

a standalone modelling session (ie a server owns the model

and handles the modellers’ development activities).

Client and server modelling engines. The client and

server both have modelling engines that communicate

using the services provided by CDNS. This architecture is

based on the principle of a layered software architecture

comprised of generic network services (eg broadcasting

a legitimate model change to all members of a collaborative

modelling session) and application-specific capabilities

(eg adding a port to a model).

The Modelling Engine for the client consists of logical and

visual modelling components. The visual modelling compo-

nent accepts user commands and which are then send to

the server. As describe above, the server must verify the

user commands are legitimate (eg a model can be added

to a coupled model without violating the strict hierarchy

constraint). For every legitimate modelling action, as defined

in Tables 3 and 4, the local copy of the model is modified

and the visual model is updated accordingly. The local

model supports visual model manipulation and identifying

operations that are legitimate given the local model, but still

have to be verified by the server.

A client may change the master model by sending a

change request to the server. The server verifies the change

against the master model by checking that the modelling

rules (see Tables 3 and 4) are not violated. The server then

notifies the client as to whether the change was successfully

applied to the master copy and, if it was successful, also

notifies other clients of the change. The clients, in turn,

update their local models as directed by the server. Clients

only change their local model when directed to do so.

The Modelling Engine for the server consists of a logical

modelling component and a master model. The logical

modelling component extends the capability of the client-

side logical modelling component by guaranteeing model-

lers’ actions are processed in a well-defined order. The

server-side logical modelling component orders modellers’

requested actions in a FIFO queue. The requests in every

queue are processed one at a time, and those that are

legitimate are applied to the master model and pushed to all

of clients including the one who requested the operation.

Messages from the server to a client use the TCP/IP protocol

to ensure reliable, in order delivery. Clients apply change

notifications to their local model in the order that they are

received from the server.

The only exception to this model update procedure is for

clients that are joining a session. A join request is queued by

the server in the same way as model change requests. When

the join request is processed, the server sends a complete

copy of the master model to the joining client. This ensures

that new clients begin with a model that is consistent with

the master model and the current view of all other clients.

This arrangement allows for synchronous collaboration;

each user observes the changes as they occur. If server push

updates are removed from this design, only asynchronous

collaboration is possible. Whether synchronous or asyn-

chronous, in order for every client to maintain a consistent

model, all clients must process operations in the order in

which they were received from the server, and message

delivery must be reliable. The CDM server guarantees a

global ordering of all model actions; this is important

to ensure consistent logical and visual views of model

modifications among all modellers. The master model has an

important role since it supports maintaining consistency

among all local models of those modellers who are

participating in a modelling session. The server and clients

collectively are responsible for maintaining the consistency

of all local models with the master model during a

collaborative modelling session.

5. Conclusions

We have presented a collaborative system-theoretic model-

ling environment called CDM, which extends the DEVS

modelling concepts and methods for use in group settings.

This approach to collaborative modelling introduces a novel

alliance between the systems-theoretic modelling paradigm

and CSCW for constructing and synthesizing hierarchical

component-based simulation models. The realization of the

CDM enables developing structural DEVS models in a

collaborative setting. It offers modellers the ability to deve-

lop structural atomic and coupled DEVS model compo-

nents. The underlying approach can be extended to support

continuous and discrete-time modelling formalisms. The

CDM tool may also be used more generally for hierarchical

component-based modelling that uses component, ports,

and couplings. The modelling environment facilitates multi-

ple, independent modelling sessions, management of model-

ling actions, and model persistent with complementary tree

structure and block diagram model views.

The collaborative modelling approach and its realization

provide a basis to handle basic modelling activities that

are required in developing simulation models. The under-

lying collaborative framework supports model creation,

management, persistence, and visualization. Since the

systems-theoretic approach to modelling dynamical systems

is modular and hierarchical, its collaborative realization

extends these traits in group settings. The separation of

logical and visual models is supported by use of databases

which also can simplify creation and use of model libraries.

In terms of future research, this environment offers a basis

for automatic mapping of the models to their counterpart

HS Sarjoughian et al—Towards collaborative component-based modelling 87



AUTHOR C
OPY

simulations that are amenable for simulation. The under-

lying infrastructure of the CDM can support adding the

capability to model behaviours of atomic model com-

ponents. Such a capability can support specification of state

transitions, inputs and outputs, and output functions of

atomic models and thus can pave the way to automatically

generate executable simulation models.

Acknowledgements—The authors are grateful to the anonymous
referees for providing constructive reviews of an earlier version of
this article.

References

AnyLogic (2008). XJ Technologies. http://www.xjtek.com/anylogic/,
accessed May 2009.

Bidarra R et al (2002). A collaborative framework for integrated
part and assembly modeling. J Comput Inform Sci Eng 2(4):
256–264.

Burmester S et al (2005). Visual model-driven development of
software intensive systems: A survey of available techniques and
tools. In: Proceedings of the Workshop on Visual Modeling for
Software Intensive Systems (VMSIS) at the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/
HCC005) Dallas, TX, USA. IEEE Computer Society: Los
Alamitos, CA.

CanyonBlue (2005). Enterprise Konesa. http://www.canyonblue
.com/products.htm, accessed 30 March 2007.

CodeBeamer (2004). Collaborative software development solutions.
http://www.intland.com, accessed 23 April 2007.

CoSMoS (2009). Component-based System Modeler and
Simulator. http://sourceforge.net/projects/cosmosim, accessed
15 March 2010.

Delinchant B et al (2004). A component-based framework for the
composition of simulation software modeling electrical systems.
Simul Trans 80(7–8): 347–356.

DEVS-Suite (2008). DEVS-suite simulator. http://devs-suitesim
.sourceforge.net/, accessed 30 April 2009.

Eldabi T et al (2004). Examining the feasibility of constructing
simulation models using the web-based ‘grab-and-glue’ Frame-
work. In: Winter Simulation Conference, Washington DC,
ACM, NY.

Fernández A et al (2004). Guided support for collaborative
modeling, enactment and simulation of software development
processes. Software Process Improve Pract 9: 95–106.

Filho WA et al (2004). GroupSim: A collaborative environment for
discrete event simulation software development for the World
Wide Web. Simul Trans 80(6): 257–272.

Grudin J (1994). Computer-supported cooperative work: History
and focus. IEEE Comp 27(5): 19–26.

Grundy J et al (1998). Serendipity II: A decentralized architecture
for software process modeling and enactment. IEEE Internet
Comp 2(3): 53–62.

Hill R et al (1994). The rendezvous architecture and language for
constructing multiuser applications. ACM Trans Computer-
Human Interact 1(2): 81–125.

IEEE (2003). HLA federation development and execution process
Version IEEE 1516.3. IEEE: New York.

Jacovi M et al (2006). The chasms of CSCW: A citation graph
analysis of the CSCW conference. Computer Supported
Cooperative Work: Alberta, Canada.

Joshi G (2004). Collaborative component-based modeling using
relational databases: Software design and implementation.

Computer Science and Engineering. Master Thesis, Arizona
State University, Tempe, AZ, p 111.

Kim Y et al (2001). Collaborative surgical simulation over the
Internet. IEEE Internet Comp 5(3): 65–73.

Lee J et al (1998). A group-based approach for distributed model
construction. In: 31st Hawaii International Conference on System
Sciences, Big Island, HI, USA. IEEE Computer Society: Los
Alamitos, CA.

Mathworks (2002). MATLAB. http://www.mathworks.com/,
accessed 18 June 2008.

Park S (1998). Collaborative distributed network system architecture:
Design and implementation. Electrical & Computer Engineering
Department, University of Arizona: Tucson, AZ, p 120.

Pidd M (2002). Simulation software and model reuse: A polemic.
In: Winter Simulation Conference, San Diego, CA: ACM Press,
NY.

Rhee I (ed.) (1999). Support for global teams, Guest Editor’s
Introduction. IEEE Internet Comput 3(2): 30–32.

Sarjoughian HS (2005). A scaleable component-based modeling
environment supporting model validation. In: 39th Interservice/
Industry Training, Simulation, and Education Conference,
Orlando, FL, USA, IEEE Computer Society: Los Alamitos,
CA.

Sarjoughian HS et al (1997). Group-enabled DEVS model con-
struction methodology for distributed organizations. In: 11th
SPIE, Orlando, FL. The Society for Modeling and Simulation
International, CA.

Sarjoughian HS et al (1999a). Collaborative DEVS modeler. In:
Western Simulation Multiconference, San Francisco, SCS. The
Society for Modeling and Simulation International: Alamitos CA.

Sarjoughian HS et al (1999b). Collaborative distributed network
system: A lightweight middleware supporting collaborative
DEVS modeling. Future Generat Comp Syst 17: 89–105.

Subramanian S et al (1999). Software architecture for the
UARC web-based collaboratory. IEEE Internet Comput 3(2):
46–54.

Sun C et al (1998). Achieving convergence, causality, preservation,
and intention preservation in real-time cooperative editing
systems. ACM Trans Computer-Human Interacts 5(1): 63–108.

Taylor SJ (2001). Netmeeting: A tool for collaborative simulation
modeling. Int J Simul Syst, Sci Technol 1(1–2): 59–68.

Usability (2004). First Groupware. http://www.usabilityfirst.com/
groupware/, accessed 21 April 2007.

Wymore AW (1993). Model-based Systems Engineering: An Intro-
duction to the Mathematical Theory of Discrete Systems
and to the Tricotyledon Theory of System Design. CRC: Boca
Raton.

Xia J et al (2001). Three-dimensional virtual-reality surgical
planning and soft-tissue prediction for orthognathic surgery.
IEEE Trans Inform Technol Biomed 5(2): 97–107.

Yang Y et al (2001). Real-time cooperative editing on the internet.
IEEE Internet Comput 4(3): 18–25.

Zeigler BP et al (2000). Theory of Modeling and Simulation: Integra-
ting Discrete Event and Continuous Complex Dynamic Systems.
Academic Press: New York.

Zhang L et al (2002). A feature-based collaborative CAD system.
In: The 7th International Conference on Computer Supported
Cooperative Work in Design, pp 193–197, Rio de Janeiro, Brazil.
IEEE Computer Society: Los Alamitos, CA.

Received 29 July 2008;
accepted 9 November 2009

88 Journal of Simulation Vol. 5, No. 2


