
pBMDS: A Behavior-based Malware Detection System
for Cellphone Devices

Liang Xie
The Pennsylvania State University

University Park, PA, USA
lxie@cse.psu.edu

Xinwen Zhang
Samsung Information System America

San Jose, CA, USA
xinwen.z@samsung.com

Jean-Pierre Seifert
Deutsche Telekom Lab and

Technical University of Berlin
jean−pierre.seifert@telekom.de

Sencun Zhu
The Pennsylvania State University

University Park, PA, USA
szhu@cse.psu.edu

ABSTRACT
Computing environments on cellphones, especially smartphones,
are becoming more open and general-purpose, thus they also be-
come attractive targets of malware. Cellphone malware not only
causes privacy leakage, extra charges, and depletion of battery power,
but also generates malicious traffic and drains down mobile net-
work and service capacity. In this work we devise a novel behavior-
based malware detection system named pBMDS, which adopts a
probabilistic approach through correlating user inputs with system
calls to detect anomalous activities in cellphones. pBMDS observes
unique behaviors of the mobile phone applications and the operat-
ing users on input and output constrained devices, and leverages a
Hidden Markov Model (HMM) to learn application and user behav-
iors from two major aspects: process state transitions and user oper-
ational patterns. pBMDS then identifies behavioral differences be-
tween malware and human users. Through extensive experiments
on major smartphone platforms, we show that pBMDS can be eas-
ily deployed to existing smartphone hardware and it achieves high
detection accuracy and low false positive rates in protecting major
applications in smartphones.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous;
C.2.0 [General]: Security and Protections

General Terms
Security, Design, Algorithms, Experimentation, Performance
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1. INTRODUCTION
Mobile communication systems which support both voice and

data services have become ubiquitous and indispensable in peo-
ple’s daily lives. This popularity however comes with a price —
mobile devices (e.g., smartphones and PDAs) become attractive
targets of attackers. Popularity of mobile services (e.g., email, mes-
saging) and their dependence on common software platforms such
as Symbian, Windows Mobile, and Linux, have made mobile de-
vices ever more vulnerable. This situation gets worse as mobile
devices quickly evolve [5]. Today’s smartphones typically have
the same sort of functionalities as a traditional PC; hence, they are
likely to face the same kind of malware that have been surging in
the PC world. According to F-Secure, there were more than 350
mobile malware (including virus, worms, Trojans, and spy tools)
in circulation by the end of 2007, most of which propagate via user
downloading via Bluetooth and MMS [24]. Examples of some no-
torious threats on Symbian-based smartphones include Skull [18],
Cabir [19], and Mabir [17]. McAfee’s 2008 mobile security re-
port [7] revealed that nearly 14% of global mobile users had been
directly infected or had known someone who was infected by a
mobile virus. The number of infected mobile devices had a strong
increases in McAfee’s 2009 report [8].

In this paper, we refer to cellphone malware as malicious codes
that exploit vulnerabilities in cellphone software and propagate in
networks through popular services such as Bluetooth and messag-
ing (SMS/MMS) services. Cellphone malware are devastating to
both users and network infrastructures. Users of compromised cell-
phones could be unconsciously charged for numerous messages
delivered by malware and their phone batteries could be quickly
drained. Other reported damages include loss of user data and pri-
vacy and software crashes. For example, a Trojan spy named Flex-
ispy [4] monitors a victim’s call history and contacts, and delivers
these sensitive data to a remote server. In addition, automated mal-
ware which exploit buffer-overrun vulnerabilities [29] in cellphone
software can generate huge unauthorized traffic and cause misuse
or denial-of-service to network systems. Therefore, cellphone mak-
ers and service providers have strong motivations to employ effec-
tive countermeasures to contain or defeat these attacks [7].

Mobile computing platforms such as smartphones have unique
features which have made the battle against malware even more
challenging than in the desktop systems. Severe limitations on bat-
tery life, computing power, and bandwidth availability reduce the
effectiveness of traditional defenses from PC platforms. A straight-
forward defense for cellphones based on security patches does not
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work well. It is difficult for cellphone users to obtain signature
files from security vendors in a timely manner, and patch down-
loading requires radio resources and often causes service charges.
Some recent work proposes more reliable solutions from the net-
work side. For example, Bose et al. [14] designed an algorithm to
automatically identify compromised phones based on user interac-
tions with the wireless network and proposed a proactive contain-
ment framework to quarantine those suspicious devices. Chen et al.
[15] designed a collaborative virus detection/alerting system named
SmartSiren. These approaches, however, rely on network or exter-
nal agents to throttle malware propagation without providing real-
time and early protections on cellphones. We believe that coun-
termeasures deployed within a cellphone itself have more strength
both in detecting malware timely and in preventing malicious traf-
fic from entering the network. This is consistent to the survey result
in McAfee’s 2009 mobile security report [8].

Considering the uniqueness of the cellphone platform, especially
its input and output methods such as its small keypad and display,
we propose a behavior-based malware detection system named pB-
MDS, which employs a statistical approach to learn within cell-
phones the behavioral difference between user initiated applica-
tions and malware compromised ones. In addition, we show how
to achieve system-level protection against malware by integrating
the proposed mechanism into mainstream smartphones (e.g., Sym-
bian and Linux-based smartphones). To our knowledge, we are
among the first to introduce artificial intelligence (AI) techniques
into smartphones to secure their application software. The major
advantage of our solution is that, its malware detection capabil-
ity converges in the way that it focuses on recognizing non-human
behavior instead of relying on known attack signatures to identify
malware. Therefore, in the training process, it does not require the
number of the negative samples to be equivalent to that of the pos-
itive samples. As a result, pBMDS has the capability of detecting
unknown malware (e.g., zero day worms).

pBMDS provides two-level protection against both existing and
emerging malware. Specifically, it learns not only process state
transitions of the cellphone applications, but also human opera-
tional patterns during the processes of these applications. These
two aspects distinctly reflect major behavioral differences between
the human initiated/operated applications and the malware com-
promised ones. A basic pBMDS system learns only application
states to detect the existing malware. These states can be predicted
by vendors and shared among cellphones. In addition to this, an
enhanced pBMDS system also learns user-application profiles for
cellphone users and these usage patterns acquired help pBMDS
build a more powerful and accurate detection engine against even
elaborated malware.

Different from previous solutions which only showed proof-of-
concept models through PC or phone simulators, we have imple-
mented our defense on major smartphone platforms and performed
very thorough evaluations. Cellphone environment is resource con-
strained, hence any good solution should consider this uniqueness
and fit into it. Our experimental results including benchmark and
performance data demonstrate that our countermeasure is capable
of effective identifying and blocking malware within a wide variety
of smartphones (detection rates could exceed 99% in our experi-
ments). Also, our defense is lightweight and can be conveniently
deployed with the existing smartphone hardware.

Outline: The rest of the paper is organized as follows. In Section 2,
we discuss why behavior-based solution is effective and practical
for cellphone devices. Section 3 provides an overview of our pro-
posed behavior-based countermeasure. We present design and im-
plementation details of the defense in Section 4 and evaluate its

effectiveness and performance through experiments in Section 5.
We introduce related work in Section 7 and conclude in Section 8.

2. ATTACK MODEL
We consider a general attack model in which a malware such

as Commwarrior [27] adopts MMS/SMS and/or Bluetooth as its
major infection vector. Specifically, after compromising a cell-
phone, the malware executes its malicious code to propagate and
cause damages to the cellphone. Typically, a MMS/SMS-based
malware scans the phone address book and/or call history and ran-
domly chooses some contacts inside and sends malicious messages
to these new victims. A Bluetooth-based malware takes control
of the victim phone’s Bluetooth interface and continuously scans
other Bluetooth-enabled cellphones within its range. Once a new
target is detected, the malware inter-connects two devices and trans-
fers a malicious file to the target, which easily gets infected and
becomes a new attack source.

Riding on these propagation vehicles, a malware is able to spread
more damages to other vulnerable cellphones. For example, a user’s
private information such as her friends’ names and contacts could
be stealthily collected by a malware (e.g., a Trojan spy named Flex-
ispy [4]) and delivered to some external servers; unconsciously de-
livering numerous messages will quickly deplete a compromised
cellphone’s battery power; running applications could crash due to
the malware attack and important data could be erased from the
device.

In our discussion, we assume that malware always launch attacks
from the application software. They could compromise phone ap-
plications such as email and MMS/SMS messaging, but they can-
not break the kernel. To out best knowledge and according to F-
Secure [24], kernel level rootkits have not been found on cellphone
devices. Also, we notice that there are a few techniques which
can be adopted in cellphones to prevent kernel-hacking, e.g., us-
ing integrity measurement [34, 31] to identify falsifications on ker-
nel code, and using hypervisor techniques [6, 12] to isolate attacks
from a legal OS on embedded devices. These defenses are not the
focus of this paper.

3. OVERVIEW OF APPROACH

3.1 Basic Principle
A cellphone application (e.g., MMS agent) typically involves a

series of GUI interactions between the user and the device. For
example, to compose an MMS message, a user activates an input
window on the phone screen and enters message content, i.e., she
goes through a series of GUI cycles by touching the keypad and
reacting to the display on the LCD. These GUI interactions can be
recorded by the keyboard and display drivers at kernel level. Es-
sentially, a messaging process invokes a series of key system calls
to access resources (e.g., file, socket) and acquire system services
when delivering the message. For example, to search for the re-
cipient’s email address or phone number, a communication pro-
cess calls open("address_book", O_RDONLY) and reads the con-
tact list in the address book; to send a message through Wi-Fi,
an email process named smtpclient first calls socket(AF_INET,
SOCK_STREAM) to create a stream socket and then communicates
with the SMTP server; to deliver an MMS/SMS message, a pro-
cess named mmsclient calls fd=open(“/dev/ttyS0", O_RDWR) to
open the modem device ttyS0 and delivers the composed message
to its buffer by invoking write(fd, message, length). The modem
then transmits it to the air interface. Figure 1 illustrates a par-
tial behavior-graph of an email/MMS messaging process. We can
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see that between a pair of key system calls (including the starting
point), there exist a series of keyboard-display interactions which
cause process state transitions.

fopen(address_book, ...)

socket(...)

open(/dev/ttyS0, ...)

k1-d1

k2-d2 kn-dn

k1'-d1'

k2'-d2'

email

MMS/

SMS

Figure 1: A partial behavior-graph of the email/messaging process. Each node

represents a process state and each directed edge denotes a transition (through

function calls); a shadowed node represents a state to execute the key system

calls; {k-d} denotes a round of keyboard-display interaction between user and

device.

We notice that these key system calls are important monitoring
points in the kernel, because application-layer malware tend to in-
voke these system calls as normal processes do to gain accesses to
important system resources and use system services to launch at-
tacks. Therefore, to examine the difference between a normal appli-
cation and a malicious process, we first investigate the process be-
haviors between consecutive key system calls, e.g., (.) → open(),
open() → socket(), where (.) denotes the starting point. Once
a process deviates from its expected normal behavior (reflected
through GUI interactions) to a certain degree, it is considered sus-
picious and the access to the system resources should be denied (as
illustrated in Figure 1). Therefore, we can verify key system calls
in the kernel level by authenticating the behavior of the on-going
process.

Malware demonstrate their malicious behaviors in compromis-
ing cellphones and/or in propagating to other victims. The behav-
iors are essentially different from those of normal applications ini-
tiated from human beings in that either malware make use of sys-
tem resources and require system services in an unexpected way
to launch attacks, or malware cannot simulate normal human op-
erations on cellphones which follow some user-specific patterns of
usages and reflect human intelligence. First, from the application’s
point of view, malware attacks always cause anomalies in process
states and state transitions. Such anomalies are reflected through
malware’s function (API) calls, usages of system resources, and
requests for system services. We adopt function call-trace tech-
niques [21, 26] and human intelligence techniques in the context
of cellphones to identify process misbehavior. Second, from the
user operation’s point of view, each cellphone user has his/her own
unique and private operational patterns (e.g., while operating key-
pad or touch-screen), which cannot be easily learned and simulated
by malware. From these two aspects, our behavior-based mal-
ware detection system (pBMDS) provides comprehensive protec-
tion against malware. pBMDS leverages a Hidden Markov Model
(HMM) to learn process behaviors (states and state transitions) and
additionally user operational patterns, such that it can effectively
identify behavior difference between malware and human users for
various cellphone applications.

The above problem space could be huge and complex in the PC
platform (even in a cellphone environment), because we need to
monitor a great many function (system) calls to identify anomalies.
We propose a Hidden Markov Model (HMM) based malware detec-
tion engine which takes only a limited number of observations (user
inputs) as the input and associates process states (hidden states that
cannot be directly observed) and their transitions with these obser-

vations. We note that user operations are more predictable on cell-
phones. Specifically, compared with more complex user behaviors
in PCs, cellphone users’ behaviors have the following unique fea-
tures due to the constrained input and output methods which lead to
the design of pBMDS. First, cellphone GUI has been designed to
be very intuitive and simple to enable comfortable and convenient
operations, hence user input behaviors in this context are relatively
predicable. Second, cellphone keypads have less buttons than PC
keyboards. Nokia Communicator 9300 with a “full keyboard" has
58 character keys, whereas a PC keyboard normally has over 100
keys. Most cellphones today have keypads with less than 25 keys.
Third, many high-end smartphones have touch-screens which sup-
port flexible user input methods such as virtual keyboard and hand-
writing recognition. Fourth, cellphones are more privately owned
than PCs. Therefore, user operation patterns are more meaningful
in cellphones, and this greatly reduces the problem space, which
means pBMDS only needs to monitor some designated system calls
to achieve its effective behavior-based authentication.

3.2 Architecture and Components
Figure 2 shows the architecture of pBMDS, which consists of

a behavior analyzer, a learning engine, a system call monitor and
a malware detection engine. The first two components (shadowed
blocks) belong to the training phase, and the other two belong to
the real-time detection phase.

To perform automated malware detection, we need to analyze
user behaviors in cellphone applications such as messaging. Ini-
tially, the behavior analyzer collects event logs of keyboard opera-
tions and LCD displays and correlates pairs of input/output events
using their time stamps in the logs. These event pairs reflect in-
termediate process states during the service. For example, a user
follows the menu to input a recipient’s number either through re-
trieving recently received calls or through looking up the address
book. Meanwhile, the analyzer collects all the raw input/output
pairs and refers to an adjustable policy file to construct a behavior
graph, which reflects intermediate process states towards a key sys-
tem call; for instance, it uses keypad events to generate a behavior
graph Gopen for system call open(). The policy file (policy 1) helps
perform a first-level sanitization and filtering on the raw events and
controls the granularity of the process states to be reflected in the
graph. In this way, a set of raw GUI events can be converted to a
meaningful data set which characterizes the process’s behavior.

Behavior Analyzer

Learning Engine

Behavior Graphs

User 

Profile

Hash

User

Kernel

Syscall Monitor

Policy 2

Malware 

Detection Engine

Normal Operations
(logs of keyboard, display)

Application

Under Test

open()
socket()

...

Phone Framework
(Qtopia, Andriod, etc.)

Policy 1

Figure 2: Behavior-based malware detection system in cellphones.

In the next step, a learning engine extracts user-behavior fea-
tures from the application. This can be done through observing the
key/display event pairs in the graph and extracting unique features
including both the user’s personal operational patterns (e.g., time
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between keystrokes, keystroke durations, and pressure on touch-
screen) and the sequence of process state transitions. For instance,
when the user uses navigation key to choose entries in the phone-
book menu, we can obtain a rule for the key sequence starting with
Kmenu

Kmenu → Knavi → Knavi → ... → Kenter.

These captured key sequences (observations) potentially reflect
the state transitions of the current cellphone application. To di-
rectly monitor or measure process state transitions, we can mon-
itor and measure all system calls that have been invoked during
the application execution. However, this is quite complex, espe-
cially in the context of cellphone, because it involves many system
calls and hence a lot of process states. In our design, we intro-
duce a Hidden Markov Model (HMM) based malware detection
engine, in which the HMM takes only those limited number of
observations (user inputs) as the input and associates the number
of process states (hidden states that cannot be directly observed)
with the number of observations. As such, the complexity of the
malware learning/detection engine in cellphone environments can
be greatly reduced. In addition, the HMM-based learning engine
records a user’s operational patterns (preferences in providing the
keypad/touch screen inputs) and learns a specific operational pro-
file for the user. This additional profile can be used to increase the
detection accuracy of pBMDS and defeat more elaborated malware
in the future.

After learning the user operational patterns and the state transi-
tion rules, the engine encodes the learning result by hashing it to the
kernel, where it can be safely saved as a user profile. Note that a
phone can have multiple user profiles stored in the kernel, although
in most cases it has only one user. To test whether a running process
is malware or compromised by malware, the run-time detection en-
gine authenticates at key system call points 1 whether the program
behaviors follow the user profile and the detection policy. A policy
(policy 2) defines a set of verifiable properties for each key system
call. For example, the following one says that an application

Permit open as user Alice (1)

Parameter 0 equals /opt/qtopia/phonebook

Parameter 1 equals 85%

can invoke the open() system call only when its behavior pattern
follows (with 85% similarity) Alice’s profile, and its input param-
eter is “/opt/qtopia/phonebook". Thus, the application’s behaviors
(i.e., process states and operations) are examined based on existing
user profiles and its access to important system resources will be
denied if it deviates from the normal process to a certain degree.

4. DESIGN AND IMPLEMENTATION

4.1 User Behavior Analyzer
To track process behaviors and record related user operations to

obtain representative user patterns, we monitor system I/O events
such as a user’s keypad/touch-screen inputs and consequent LCD
displays, and further examine correlations of these events. Cell-
phone platform has its unique I/O features: flexible input methods,
limited number of key codes, and event-driven displays. There-
fore, the first issue here is to decide where to set monitoring points
within the device and what granularity event logging should take, as
it affects the complexity of user behavior analysis. Below we use
Qtopia [2] in Linux-based smartphone as an example to describe
the process.
1We discuss details of system call monitoring in Section 4.3.

Monitoring Input Events Fig.3 shows how user inputs from key-
pad/touchscreen are processed in Qtopia (Qt). When a user presses
a key, the keypad sends corresponding raw scancodes to keyboard
driver (keyboard.c) in the kernel. The handle_scancode() function
in the keypad driver parses the stream of scancodes and converts
it into a series of key press and release events called keycode by
using a translation-table via kbd_translate() function. Each key is
provided with a unique pair of keycodes. For example, pressing
key k produces keycode k (1 ∼ 127), while releasing it produces
keycode k+128. After the above handling, the obtained characters
are periodically put into the standard input device /dev/tty0.

Keyboard 

driver
keboard.c

Scancode Keycode

...
sys_read()

Qtopia driver
kbdhandler.cpp

qtKeycode

Secure kernel application

Qtopia 

Apps
mms, mail...

C

keypad

touchscreen

Touchscreen 

driver
Tslib: input-raw.c

Qtopia driver
mousehandler.cpp

/dev/tty0

/dev/ts

QWSEvent

ts_event
ioctl()

Input Event 

Monitoring

Figure 3: Logging user input events in a cell phone device.

When a window view in user process (e.g., mmsclient) requires
an input, it uses the application-layer driver interface kbdhandler
to read keypad input by calling KbdHandler :: readKbdData(),
which invokes a system call sys_read() to fetch input keycodes
from /dev/tty0. Once a keycode has been read, kbdhandler trans-
lates it into a Qt event and passes it to the user process. For in-
stance, when a user presses MENU/SELECT (keycode 0x1c and
0x9c for push and release), the application is notified of a Qt event
(qtKeycode = Qt :: Key_Select) and invokes a function named
processKeyEvent(qtKeycode, ...) to handle the input.

To monitor user keypad inputs, we choose to place a keystroke
hook in the kernel to intercept and log user keypad events before
they are passed to user processes. Specifically, we insert a hook in
system call sys_read() so that whenever an user application reads
keycodes from the standard input device, the modified system call
first executes the hook function, which records the keystroke on its
keycode pair, duration between the key press and release, and the
time-stamp of this input event. For example, when the user presses
key ‘a’, we collect the following event in the log file.

{time_stamp : code_down(′a′), duration, code_up(′a′)}
For touch-screen inputs, we place a hook in the universal touch-

screen driver tslib (input−raw.c) to monitor raw events (ts_event)
received by user applications, as shown in Fig.3. We collect the fol-
lowing attributes for each ts_event:

{time_stamp : pos.x, pos.y, pressure}
where {pos.x, pos.y} and pressure denote the touch position and
pressure on the screen, respectively. Note that when an application
view reads a touch input, it translates the raw event into QWSEvent
and further explains it. For example in Fig.4, PhoneLaunchV iew
(GUI application) maps the touch position into a meaningful item
code which is then processed in the same way as a keypad input.

An alternative of the above kernel-level monitoring is to trace
input events through driver interfaces in application layer. We may
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PhoneLaunchView::mousePressEvent(QWSEvent *event)
{

itemCode = getItemAt(event→pos());
updateUI(itemCode);
/* processed like a keypad input */
processItem(itemCode);
...}

Figure 4: Mapping a touch-screen event to an application item.

insert hooks to kbdhandler.cpp and mousehandler.cpp for log-
ging qtKeycode and QWSEvent (Fig.3). However, this makes
event traces less reliable because these interfaces themselves could
be compromised by malware. Moreover, in addition to events,
kernel-level monitoring provides details on user-specific input pat-
terns such as one’s keystroke speed, touch-screen pressure, etc.

Sanitizing and Filtering Input Events A user could inadvertently
generate some invalid inputs to an application view. For example,
when she opens address book and uses navigation keys to choose
a contact, only up/down/select key inputs are processed by the cur-
rent active window view named AddressbookWindow; other key
inputs such as left/right navigation keys and ’*’, ’#’ are ignored.
Since our event-logger intercepts raw inputs from kernel, event
records need to be sanitized and filtered before being further an-
alyzed.

Our solution is to correlate keyboard/touch-screen inputs with
LCD displays, such that only when the display frame buffer has
some corresponding data output to the LCD screen within a short
time period, can the input be considered valid; otherwise, it is
aborted. This correlation is based on the time-stamps of a pair
of input/ouput events. We first monitor system calls in the frame
buffer driver to record output events. Specifically, we place a hook
in a driver named Qscreenlinuxfb.cpp (in Qtopia Core) to record
the occurrences of system-call msync(), which is invoked during
each display event. In cellphone platform OS such as Linux, frame
buffer is an abstract device (/dev/fb0) which allows user pro-
cesses to write output directly to the LCD video memory. An active
application view can use system call open(/dev/fb0,...) to open the
frame buffer device and use mmap() to map the device to its log-
ical address space. Whenever this application generates output to
display, it directly writes data to this mapped address space and im-
mediately invokes msync() to flush this new data to LCD screen.
When an application view becomes deactivated, Qtopia Core in-
vokes system call munmap() to cancel this address mapping.

We use a time-stamp to label each address-mapping system call
mentioned above. To verify an input, we search the display event-
log and see if there is a msync() which immediately follows the
input event within a certain time window. Because each valid input
incurs an update of the current application view and the correspond-
ing output will be written to the frame buffer, at least one msync()
should be detected shortly. Due to the difficulty of monitoring the
content of frame-buffer, this time-based correlation is more prac-
tical. One issue here is the length of the time window. For most
cellphones, display response towards an input is fast and we can
use a short time window (≤ 0.5 second). Also, a series of display
events are continuous and closely related with each other. They
should not be broken by next user input event.

Generating Behavior Graphs After sanitizing user input events,
the next step is to generate a behavior graph which reflects inter-
mediate process states towards each key system call. As we have
mentioned earlier, key system calls such as open() and socket() are
invoked by a number of processes for accessing important system
resources (e.g., address book and modem). We aim at examin-
ing the intermediate states of these resource-requesting processes.

However, these process states are hidden from us and what we
can observe is the user’s keypad operations and the GUI displays
on the screen. These observations faithfully reflect the behaviors
of an on-going process. For example, applications such as mes-
saging, voice calls, and contact lookup/edit each could open the
address book file to achieve its goal. Therefore, for system call
open(“addressbook”, ...), we exploit the application’s event log
and construct a directed behavior graph Gopen based on the ob-
servations from keypad/touch-screen inputs and GUI displays. In
this graph, we define observations as graph nodes and evolutions
between observations as directed edges.

Fig.5 illustrates the behavior graph for a simple text-messaging
process. To simplify the example, we show only keypad inputs.
Raw inputs from keypad are categorized into a number of inde-
pendent key observations, each includes one or a number of con-
secutive key operations and represents a node in the graph. For
example, observation O_NUM represents operations on number
keys (0-9) and observation O_MSG stands for an operation on the
messaging key itself. We then examine evolutions (links) between
these observations (nodes). As shown in Fig.5, a user who initi-
ates an SMS process first enters the GUI by pressing a messaging
key and chooses an appropriate service type using navigation keys
(step 1 ∼ 4), then she composes message content using numeric
and alphabetic key combinations and starts the delivery through a
menu selection (step 5 ∼ 7). Finally, she presses navigation keys
(up/down) to select a recipient from the address book and touches
the send key to transmit the message (step 8 ∼ 10). Information
about these observations and related transitions are obtained from
event logs. Of course, there could be other optional branches the
user chooses to complete the messaging. However, these branches
should basically follow this behavior graph if they are generated by
this user. Note that the behavior graph can also reflect the user’s op-
erational pattern in the process. Each observation can be associated
with its key touch duration and each evolution can be associated
with a time duration. These time values reflect a user’s preference
in keypad operations and her familiarity with the messaging pro-
cess.

O_SEND

O_NAVI

O_OK
O_CHAR

O_NUM

O_MENU

O_MSG

1

2, 4, 9

3, 8

5

6

7

10

O_NAVI  : up, down, left, right

O_NUM  : 0~9

O_CHAR: a-z, A-Z, *, #, …

O_MENU: m1, m2, m3

O_OK     : 

O_MSG  :

O_SEND: 

O_CALL :

O_CALL

open(“addressbook”, …)

open(“/dev/ttyS0”, ...)

Figure 5: A simple keypad-based behavior graph for a text messaging process

(SMS). Each key observation is labeled with one/multiple sequence number(s)

during the process state transitions.

4.2 Behavior Learning Engine
Our behavior learning engine takes behavior graphs and optional

user input patterns from these graphs as inputs and learns interme-
diate state transitions of applications.

Profiling Process Behaviors using HMM To profile process be-
haviors in cellphones, we use a Hidden Markov Model (HMM)
[32]. HMMs are often used to model finite-state stochastic pro-
cesses, in which the true state of a system is unknown and thus is
represented with hidden random variables. What is known are ob-
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servations that depend on states, which are represented with known
output variables. One common problem of interest in an HMM is
the parameter estimation problem, where parameters such as the
transition probabilities among states are learned (estimated) from
sequences of observations [32].

Our first step is to decide the number of states N to be used
for malware-targeted applications in cellphones. Traditional meth-
ods [40] suggest choosing process states roughly corresponding to
the number of distinct system calls used by the program. How-
ever, in our case it is neither feasible to assume processes invoke a
fixed set of system calls nor scalable to deal with too many states
( 60 ≤ N ≤ 70) in a resource-constrained cellphone. We choose
the model size N roughly corresponding to the number of unique
key observations, which is limited due to a limited number of keys
on modern cellphone devices. Note that process states are fully
connected and transitions are allowed from any state to any other
state; key observations are essentially captured user reactions to-
wards the application GUI which reflects process states, driven by
appropriate key inputs.
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Figure 6: Transitions among T process states during messaging; T ≤ N

states are involved.

Fig.6 shows the HMM state transitions of a single messaging
process. It is represented as a statistical graphical model. Circles
represent random variables. Shaded circles (yi) are key observa-
tions while unshaded circles (si) are unknown state variables. The
arrows from si to si+1 and from si to yi indicate that the latter is
conditionally dependent on the former; the value on the arrow is
an entry in the probability matrix. So here we have p(si+1|si) =
asi,si+1 , which is the probability of state si+1 appearing after state
si. We also have p(yi|si) = bsi(yi), which is the probability the
user reacts yi to state si in the previous step. Note that for sim-
plicity, here we only illustrate a simple HMM based on the be-
havior graphs of text messaging. In real implementation, an un-
compromised cellphone records the user’s normal operations dur-
ing her phone calls, messaging and contact lookups/changes, etc.
The behavior graphs of these key-resource–accessing processes are
then generated and fed into the HMM as input data (observations),
such that transition probabilities (1) between each pair of process
states (matrix A), and (2) between each pair of process states and
observations (matrix B) can be statistically learned.

HMMs learning can be conducted by the Baum-Welch [36] or
forward-backward algorithm [32]. The latter belongs to a general-
ized Expectation-Maximization (EM) approach.

Profiling User Operational Preference Traditional HMM learn-
ing process [32], however, does not consider a user’s operational
preference during state transitions. Here we use the time feature of
user operations as an example to show how to augment an HMM
in learning a cellphone user’s normal behaviors. As we have men-
tioned earlier, within a behavior graph we also measure the aver-
aged key press/release duration for each key observation and the
time duration for each evolution between key observations. There-
fore, we can exploit this time information to augment a standard
HMM.

In our case, we aim at building an HMM model λ = (A,B, π),
which includes state transition probability distribution A, observa-
tion symbol probability distribution B, and initial state distribution
π. We derive a detailed profiling process in Appendix A.

Two-Level Behavior Learning Initially a cellphone is not compro-
mised by any malware right after being produced from its vendor
and sold to a customer. Event records of normal user activities such
as voice/data calls, messaging, and emailing can be automatically
collected by pBMDS. These records are then used to generate train-
ing data for behavior learning. A user can also add more activity
data later to further improve the learning engine. For example, after
she has done some operations during messaging, the system chal-
lenges her whether her logs are valid when she starts to send the
message [38, 39].

We note that two types of profiles can be generated by the pB-
MDS learning engine, namely the application profile and the user-
application profile. In the former case, only key/touch-screen se-
quences (in behavior graphs) are included in the learning process;
user operational preferences such as transition time and speed are
not considered. Therefore, a standard HMM can be adopted for
training and the result profile, for example, λmms = (A,B, π),
only reflects normal process behaviors of the standard MMS ap-
plication. In the latter case, both key/touch-screen sequences and
user operational patterns are included, hence an extended version
of HMM is required for training/testing, and the result profile, for
example, λ(mms,u) = (A

′
, B

′
, π

′
), reflects normal process be-

havior of MMS which is operated by user u (i.e., follows user u’s
operational preferences). A basic pBMDS system learns only ap-
plication profiles for malware detection and these profiles can be
generated by vendors and shared among cellphones with the same
application framework; an enhanced pBMDS system learns user-
application profiles for different users and applications, and these
profiles are different between cellphones. Because a cellphone only
has a limited number of applications and it is owned by a single
user, the pBMDS learning engine is quite scalable in this context.

Profiles generated by the behavior learning engine are sensitive
and should be securely stored in a cellphone, such that malware
cannot access and falsify their contents. One approach to achieve
secrecy is to encrypt the profiles using the detection engine’s pub-
lic key; a detection process decrypts the profiles before using them
for malware detection. To ensure integrity of the profiles, the be-
havior learning engine can hash the learning result and store the
value in kernel space or in a trusted hardware such as trusted plat-
form module (TPM) [11]. Each time when a detection process
retrieves the profile, it first verifies the correctness of the profile
by re-computing its hash and checking with the stored hash value.
Although this approach ensures both profile confidentiality and in-
tegrity, encryption-decryption overhead and key distribution com-
plexity are involved. An relatively easier approach is to leverage
existing kernel-level security mechanisms (e.g., platform security
in Symbian OS [23] or embedded SELinux [41]) to protect the pro-
files in file systems. For example, through defining a mandatory
access control (MAC) policy, profiles are stored in a specific di-
rectory which can only be accessed by the detection process; any
illegal access is blocked. Enabling such a per-process–based secu-
rity mechanism also incurs overhead to the system.

4.3 Malware Detection Engine
Key System Call Monitoring We first discuss key system resources
in cellphones which could be misused by malware. Malware ex-
ploit these resources through invoking a series of key system calls
to launch attacks on local devices and propagate throughout net-
works. Table 1 shows some possible exploits in an OpenMoko
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Table 1: Possible monitoring points in an OpenMoko smartphone
Key System Resources Devices Accessed Some Key System (or API) Calls Invoked Comments
User address book Address book in phone fd=open(“adr_file", O_RD); read(fd, buf, data_len);

Address book in SIM card see AT commands to modem below, use read() system all
GSM/GPRS Modem /dev/ttyS0 fd=open(“/dev/ttyS0", O_RDWR); write(fd, cmd, len); // AT cmd
used for messaging, email /dev/gprs0 network device fd=open(“/dev/gprs0", O_RDWR);

socket(AF_INET, SOCK_STREAM, 0), // web browser, email, etc
WiFi interface /dev/ar6000 read, write, open, close, ioctl provided by sdio ar6000 wi-fi driver Neo FreeRunner

low-level packet delivery htc_connect()/htc_send()/htc_receive() via HIFReadWrite() interface
wi-fi sockets socket(AF_INET, SOCK_STREAM, 0),...

Bluetooth interface /dev/bluetooth/rfcomm/0 open(“../rfcomm/0", O_RDONLY|O_NOCTTY); based on L2CAP
bluetooth_rfcomm socket socket( AF_BLUETOOTH, SOCK_RAW, BTPROTO_RFCOMM );

m_socket->connect(local, remote, channel),...;

smartphone [10]. Taking a Bluetooth-based malware (e.g., Mabir)
as an example, after it has compromised cellphone software, it
stealthily opens /dev/bluetooth/rfcomm/0 (a virtual serial port
device) and creates a client socket (e.g., RFCOMM ) to establish
a stream-based Bluetooth connection with each external victims
target. These connections are used for transferring malicious data.
Similarly, system calls that must be invoked for various communi-
cation purposes (shown in Table 1) are the most common system-
level entries visited by malware, hence they are the most impor-
tant monitoring points in pBMDS. Another reason for choosing
these system calls is that they are the last automated steps towards
the completion of both a normal and a compromised communica-
tion process, i.e., these are the key points at which we can use
previously-built behavior knowledge to differentiate normal users
and malware.

User Space

Kernel

system call 

interception

system call 

handlers

ext. HMM 

authentication 

MMS app

Bluetooth app

other apps

Profile, 

Policy

loadable 

module

Figure 7: Malware detection engine in cellphone

We place a set of hooks in kernel space so that whenever these
sensitive system calls are invoked by a user process, the corre-
sponding hooks start the authentication (described below) and de-
cide whether to execute the original (intercepted) system calls. We
adopt a similar mechanism as Linux Security Module (LSM) and
build a kernel module for the malware detection engine. When this
module is loaded into the platform OS, the set of hooks are enabled
and security protection is launched on the cellphone, as shown in
Figure 7.

HMM-based Malware Detection To authenticate the initiator of
the key system call, the malware detection engine tests whether the
current trace of the application is intrusive, i.e., whether it deviates
from normal process behavior. Basically, this can be achieved by
computing the likelihood of a given observation sequence based on
a learned HMM model. Specifically, we use profile λ = (A,B, π)
to derive the probability P (O|λ) for a given observation sequence
O = O1, O2, ..., OT traced from an application. If this P (O|λ) is
lower than a threshold τ , the current application under investigation
is intrusive; otherwise, it is normal. Note that in a case when pB-
MDS generates only application profiles, we can directly use the
standard forward algorithm to derive this probability [32]. How-
ever, when the system adopts user-application profiles, for instance,

λmms,u, the forward-backward algorithm needs to be extended for
computing P (O|λ = λmms,u), the probability of the observation
sequence given knowledge on user u’s operational patterns during
MMS applications. We show a detailed detection procedure in Ap-
pendix B.

To determine a default threshold τ , we use the cross validation
approach [1] in statistics. Specifically, some captured events rep-
resenting either normal or abnormal process behaviors are first di-
vided into a training set and a cross validation set. The former is
used to learn the model λ and the latter is used to estimate the de-
tection threshold τ through confirming and validating the learning
result.

As we have mentioned in Section 3, our malware detection en-
gine is policy-based, i.e., a policy file which can be securely passed
to the loadable module (e.g., using a vfs or netlink-like mecha-
nism) specifies a set of malware detection parameters for config-
uring the malware detection engine. As shown in Equation 1, a
policy file typically defines the application to investigate, the key
resources and the system calls to monitor, the user profile, and the
decision criterion – the expected behavior similarity (i.e., P (O|λ))
to identify a normal process, for example, 85% in Equation 1. Note
that in real applications, this criterion should be fine-tuned accord-
ing to τ , the default detection threshold initially learned from train-
ing data.

Detection Errors We know that a user’s operations sometimes do
not exactly follow expected patterns. For example, during mes-
saging, a user could inadvertently push invalid key combinations,
or push several keys and pause for a while, then continue. These
could bring wrong key combinations or biased key-touch durations
to the observations, thus causing false negatives in the detection
engine. We have already mentioned in Section 4.1 that invalid
user events can be effectively filtered by correlating keypad/touch-
screen inputs with the LCD outputs. Moreover, when a user gener-
ates mostly wrong key combinations, the application will not even-
tually reach the designated monitoring points. For example, during
messaging, the system call fd=open(“/dev/ttyS0", O_RDWR) can
only be invoked when a user has passed all the major operational
stages. Biased key-touch durations from the same user also cause
false negatives. However, this can be prevented either by the ap-
plication itself or by the event sanitizer, through defining a normal
time threshold between consecutive key touches. Most cell phones
start a screen-saver or turn off LCD screen after a long wait for
an expected user’s keypad/touchscreen input. In pBMDS, we em-
ploy the following mechanism to mitigate this detection error. Ba-
sically, each time when the detection engine authenticates an on-
going process and gets P (O|λ) < τ , it does not immediately con-
clude the program as illegitimate. Instead, it challenges the user
through a trusted application, such as a Turing test [38, 39], and
verifies whether the current detection result is merely a false posi-
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tive, which should of course be ignored. Meanwhile, the detection
engine also fine-tunes its decision criterion in the policy to reduce
such false positives based on challenge results.

We note that a cross validation process also helps reduce false
positives. Generally, when more training samples (positive and
negative) are provided, the classifier (detector) becomes more ac-
curate. However, pBMDS only requires a small number of nega-
tive samples to achieve high accuracy, i.e., the learning process is
heavily biased on positive samples. Its performance does not rely
on known malware signatures. Instead, it mostly depends on the
convergence of cellphone users’ normal behavior and it aims at de-
tecting those outliers. We evaluate the performance of pBMDS in
Section 5.

5. EVALUATIONS
In this section, we evaluate the feasibility and effectiveness of

our countermeasure. We first test the case when pBMDS is de-
ployed to secure typical cellphone applications without consider-
ing user profiles. We then combine process state transitions and
user operational preferences to evaluate the effectiveness of an en-
hanced pBMDS engine. Time performance of the defense is also
measured.

5.1 Experimental Settings
Linux-based Smartphone Linux-based smartphones have had sub-
stantial growth in recent years. In our tests, we chose OpenMoko [10]–
a Linux-based smartphone, and OMAP-5912 OSK [3]–a generic
platform for developing both Windows CE and Linux-based smart-
phones. The OMAP board includes TI processor ARM926-TEJ
operating at 192MHZ, 32 MB RAM, Mistral’s Q-VGA and touch-
screen, ethernet/USB/serial port. Original OMAP board ships with
MontaVisa Linux OS for OSK (kernel 2.4). We customized it to use
kernel version 2.6.20.4 for deploying our kernel-resident defense
mechanism. To develop phone applications based on the hardware,
we chose Trolltech [2] Qtopia Phone Edition 4.2 as the application
platform. Qtopia is currently running on a wide variety of Linux-
based phones (e.g., Motorola A1200 and OpenMoko), and it pro-
vides a complete set of C++ SDKs, user-friendly tools and APIs to
application developers. Our source codes of malware and defenses
were first built into PC executables and tested in a Linux-based
emulator. Finally, these programs were cross-compiled into target
executables for the ARM-9 processor and deployed to the OMAP
board.

Figure 8: Configuration of experiments (OMAP-5912OSK platform).

Experiment Configuration Figure 8 shows the configuration of
our smartphone experiments. An administrator can control an OMAP
board and log its events through an external Minicom terminal (se-
rial port). Each OMAP board connects to a standard modem de-
vice through which it communicates with other smartphones within
2G/3G cellular networks. In addition, each board can access the
Internet through its on-board network interface. We also imple-
mented an external malicious server, which establishes connections

(SSL) with the on-board malware and receives private user contact
information stealthily gathered from the OMAP board. Therefore,
besides the malware attacks inside the board, the malicious server
itself can exploit disclosed user information and launch automated
messaging attacks to vulnerable phones by executing its own mes-
saging service such as sendmail.

We implemented three major malware: Cabir [19], Comm-Warrior
[27], and Lasco [16] in both the OpenMoko smartphone and the
OMAP board. Although these malware were only reported from
Symbian smartphones [24], we extended these cases to Linux en-
vironment. In our implementation, when a cellphone user unwit-
tingly opens an attachment in a message titled “Breaking News",
a CommWarrior process is started and it randomly retrieves re-
cipients from address book and secretly delivers (in background)
malicious messages with similar attractive titles to these victims.
In each of these messages, malware specifies the MIME type as a
valid installation/application file and attaches a malicious file which
contains a complete installation of CommWarrior.

In addition, we implemented another attacking strategy of au-
tomated malware on our evaluation platforms. Using email ser-
vice in OMAP-5912OSK as an example, when a user just clicks on
(or highlights) a newly arrived message entitled “Breaking News",
a running process named qtmail which belongs to Qtopia’s email
framework invokes the function EmailHandler::mailRead(Email*
mail) to process the message and interpret it to the screen. How-
ever, there is a buffer-overrun vulnerability inside this function (e.g.,
no boundary check for temporary storage of the message content).
Malware exploits this vulnerability and hijacks the program flow
by replacing the return address of this function. Now that the ex-
ecution of qtmail has been redirected to the injected code2, which
starts a malware timer by executing QTimer::start() and associates
the timer event to an attack function named attackLoop(). This
attackLoop() incurs similar attacks as we have mentioned above.
Similarly, for MMS messaging, malware seeks buffer-overrun vul-
nerability in a function named MMSHandler::MMSRead(), which
is invoked by the MMS messaging process qtmms. We note that in
these cases, malware do not add any message attachments and do
not wait for user reactions to install themselves.

To implement more elaborated malware, we used the above au-
tomated attack strategy and let the malware code also simulate the
program behavior of the ‘hijacked’ messaging process. Specifi-
cally, a malware which has gained control of the messaging pro-
cess not only executes the malicious code to launch its attack, but
also tries to simulate the entire or some part of the messaging pro-
cess. Note that such attacks can bypass a malware detection en-
gine which works based on verifying system states at certain check-
points.

5.2 Experimental Results

pBMDS without User Operational Preferences We chose Short
Message Service (SMS) as an example to demonstrate behavior
difference between normal processes and malware compromised
ones. For normal SMS applications, we monitored 10 different
users’ keypad and touch-screen input events on both OMAP board
and OpenMoko. For compromised SMS applications, we tested
two different cases when malware adopt different attack strategies
as we mentioned above. Furthermore, we let malware randomly
invoke keypad input events to simulate normal process behavior in
the second strategy. Fig.9 illustrates the test result. From Fig.9(a)
we can see that, although users (here we only show 3 of them) have

2This malicious code could either exist in the message content or be pre-injected into
some library files such as libqtmail.so and libqtmms.so by the malware.
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Figure 9: Behavior difference between normal/compromised SMS applications; each number in
y-axis represents one type of keypad observations (as defined in Figure 5)
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Figure 10: pBMDS in SMS messaging

different operational patterns and their ways of starting and operat-
ing in cellphone applications (here SMS) may slightly vary, normal
process behaviors tend to converge and follow a normal path of ap-
plication states, reflecting through a normal set of program state
transitions. Fig.9(b) shows that, even for some intelligent mal-
ware (in current stage they are not) which can simulate random
input events, their behaviors (hence program state transitions) dis-
tinctively deviate from those of the normal cases, not mentioning
their simulations of human behaviors incur incorrect displays on
the cellphone screen which could remind users of on-going attacks.
Because all existing cellphone malware do not even simulate users’
input events [24], their abnormal behaviors which cause abnormal
process state transitions can be easily detected by our pBMDS sys-
tem.

To evaluate the effectiveness of pBMDS in securing SMS pro-
cesses, we collected 10 users’ keypad and touch-screen inputs to
generate normal observations and used randomly generated inputs
from malware (with both attack strategies) as negative samples.
Specifically, we provided 317 complete SMS sequences and 29 in-
complete (or failed) SMS sequences of observations from these 10
users, and provided 27 abnormal SMS sequences of observations
randomly generated by malware. Observations used for training
pBMDS are heavily biased on known user behaviors instead of
malware signatures. Fig.10 shows the test result when we used
a trained pBMDS engine to detect major cellphone malware, in-
cluding Cabir [19], CommWarrior [27], and Lasco [16] and their
variants. Among the test cases, 59 belong to SMS compromised
applications and 41 test sequences are selected from normal human
operations. The figure shows that the pBMDS engine has an over-
all good performance (accuracy above 95%) in detecting these cell-
phone malware. As the number of process states defined for HMM
in pBMDS increases, detection accuracy also gets improved. Also,
the performance of each pBMDS engine is closely related with a
detection threshold τ . By adjusting τ , pBMDS achieves an opti-
mal detection accuracy, while keeping false positives low. We note
that here false negatives have been reduced to a relatively low level
using approaches we described in Section 4.3.

Table 2 shows a trade-off between detection accuracy and detec-
tion time. Using SMS messaging as an example, when the number
of process states defined for HMM in pBMDS increases, detection
accuracy of pBMDS is improved. However, this incurs a longer
training and detection process. In our test, we used OMAP board
(operating at 192MHZ, 32 MByte RAM) as the test platform to rep-

Table 2: Time performance (in microsecond) of pBMDS engine on OMAP

board; SMS application

#HMM states Learning time Detection time
80 41,731,674 651,967
60 10,144,915 382,182
35 3,263,524 130,559
25 1,242,360 71,700
15 324,845 33,679

resent existing hardware configuration of smartphones in the mar-
ket. We found out that 3-second training time and 130-millisecond
detection time are acceptable to users. Hence, we believe choos-
ing 35 as the number of process states for SMS applications nicely
deals with the trade-off between detection time and detection accu-
racy.

Table 3: pBMDS on different cellphone applications (training size = 125)
SMS MMS Email Bluetooth

#HMM states 25 40 35 35
Detection rate 92.1% 96.4% 95.2% 94.9%
False Positive 6.3% 2.8% 3.7% 4.5%
False Negative 1.6% 0.8% 1.1% 0.6%

Table 3 shows the result when applying pBMDS to different cell-
phone applications. An HMM model is built for each application
that is the possible target of malware attacks. We can see that the
more complex a cellphone application is, the more process states
are needed for configuring the HMM model. For example, MMS
requires the largest number of process states because it involves
more user-machine interactions and more internal program pro-
cessing than other applications in the table. Note that here we only
use plain-text email service (without attachment) as the example.
Again, the time-and-accuracy tradeoff needs to be considered. Our
result shows that pBMDS works well in securing various cellphone
applications.

pBMDS with User Operational Preferences The above results
have shown that pBMDS is effective in detecting malicious process
behaviors. However, considering the fact that malware are becom-
ing more and more intelligent, in some extreme cases, they could
even successfully simulate all normal keypad and touch-screen in-
put events on certain applications, such that a detection engine
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Table 4: Profiling user operational pattern (16 features)
Training Testing Model Accu False pos
44 (A) 37 (A) A-B,C,M 97.3% 2.7%
35 (B) 20 (B) B-A,C,M 95.8% 4.2%
12 (C) 8 (C) C-A,B,M 83.1% 16.9%
15 (M) 13 (M) M-A,B,C 94.5% 5.5%

trained only on known process state transitions is not enough to
defeat them. To address this challenge, we add users’ operational
patterns to further secure cellphone applications. In our experi-
ments, we chose 3 different users and collected their operational
patterns on SMS usages. These patterns include 16 different user-
specific features which can be extracted from the logging data.

• Keypad input: number of keypad touches (kt), speed of key-
pad touches (pk), and key stroke holding time (kh).

• Touch-screen input: number of touches on the screen (st),
touch pressure (pt), time duration per touch (dt), and move-
ment per touch (mx, my).

These features are computed based on the mean value m and the
standard deviation sd. We get 8 ∗ 2 = 16 features in total:

(kt + pk + kh + st + pt + dt + mX + mY ) ∗ (m + sd)

Also, we improved the attack capability of CommWarrior [27]
and let it simulate all required human keypad and touch-screen
inputs during the messaging process. However, it does not have
the knowledge of private users’ operational patterns. We tested
whether the operational features of malware distinctively deviate
from that of human operations on the same application. In addition,
we tested whether specific users follow their own operational pat-
terns, i.e., whether user profiles are useful in characterizing certain
users. Table 4 shows the test result. We can see that, given enough
training samples (e.g., user A and B each provides 44 and 35, re-
spectively), a one-class SVM [13] successfully identifies (with high
accuracy above 95%) specific users from others. However, because
user C does not provide enough training samples, identifying C be-
comes relatively more difficult (accuracy around 83%) than identi-
fying A or B. Another important result is that, even without many
training samples from cellphone malware M , it is still very easy
(accuracy around 94%) to differentiate it from human users because
of their behavior difference in cellphone operations.

Table 5: Combining process behavior with operational patterns (time-based)
App Mode Accu Fp Mode Accu Fp
SMS-25 P 92.1% 7.9% P+U 97.6% 2.4%
SMS-35 P 94.5% 5.5% P+U 99.3% 0.6%
MMS-30 P 93.1% 6.9% P+U 94.8% 5.2%
MMS-40 P 96.4% 3.6% P+U 98.9% 1.1%
Email-20 P 90.6% 9.4% P+U 91.7% 8.3%
Email-35 P 95.2% 4.8% P+U 98.2% 1.8%

Table 5 shows the result when we combined process transitions
and user operational patterns in pBMDS to detect malware attack-
ing different cellphone applications. We used Cabir [19], CommWar-
rior [27], and Lasco [16] to generate attacks on the OMAP board.
We also introduced the strategy of more elaborated malware we
have mentioned in Section 5.1 to test the effectiveness of our coun-
termeasure. To reduce overhead, we did not install an additional
classifier (SVM) in the resource-constraint smartphone to learn user
operational patterns. Instead, we chose the time feature associated
with the user operations and incorporated it into the HMM model

(see Section 4.2). In this way, the pBMDS detection engine is more
light-weighted and fits the resource-constraint cellphone environ-
ment. Our result demonstrates that a combination of both process
state transitions (P ) and user operational patterns (U ) helps im-
prove detection accuracy (∼ 99%) of pBMDS and reduce detec-
tion errors. In addition, it provides two-level protection against
malware. In the case when a malware simulates process states to
surpass a detection engine, user operational patterns can be used by
pBMDS to effectively identify the attack. Also note that the num-
ber of process states in the HMM model remains to be an important
factor in improving detection accuracy.

6. DISCUSSION
In this paper, we use the SMS, MMS, and email applications

as the examples to illustrate the mechanism and the effectiveness
of pBMDS. These services have been reported [7, 8] as the most
popular and vulnerable applications that are under severe malware
attacks in the current stage of smartphones. We have also given de-
tails on key system calls and possible monitoring points in Table 1
for WiFi, Bluetooth, phone book, and web browser in smartphone
frameworks such as OpenMoko and Qtopia. The most important
thing here is that our examples represent typical application behav-
iors to access critical system resources on smartphones to achieve
their functional goals such as communications or entertainments.

Certainly, pBMDS is not going to solve all problems. Indeed,
given the great variety of cellphone platforms and the sophistica-
tion of attacks, we do not think any single or a few defense tech-
niques will be sufficient. As more functions are integrated into
smartphones, the complexity of applications on smartphones also
increases. However, we believe that even though increasing com-
plexity of mobile applications can appear, their user interfaces are
still much simpler than those of desktop applications [9]. Based on
our development experience on Android, iPhone, and Qtopia plat-
forms, application menus usually have fixed items and layout (e.g.,
for Android), and each window has much fewer UI components
(e.g., buttons and select list) than that in Windows and Linux desk-
top applications. This is partially because many smartphones use
touch screen, so UI design has to consider good user experience
such as single-hand operation without stylus [25]. On the other
side, according to our pBMDS approach, new application profiles
are relatively easy to get because mobile phone vendors already
know deterministic application behaviors and they can easily gen-
erate the profiles before releasing the product to the market. User
operational profile has to rely on capturing enough user behavior
data to build an accurate detecting engine. However, it does not
rely much on new applications. One limitation of pBMDS is that
user behavior data have to be completely collected after some time,
which means pBMDS needs time to build a user’s “signature”. pB-
MDS can generate false alarms for some designated automated pro-
grams in the phone, e.g., sending messages or videos by itself. We
believe that it can be explicitly specified by the user to allow such
dedicated automated programs, i.e., we just allow exceptions in this
case.

Other challenges come from the fact that mobile handsets are
getting more and more flexible and diversified in their input meth-
ods. For example, nowadays QWERTY keyboard is becoming pop-
ular in smartphones. This will require that more transition states be
defined. Furthermore, malware are becoming more and more intel-
ligent. Our on-going research is trying to capture more attacks and
devise a more effective version of our pBMDS malware detection
engine to defend against them.
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7. RELATED WORK
Computer viruses have been plaguing the Internet for years, and

a number of detection and defense mechanisms have been pro-
posed. However, only recently have cellphone malware attracted
considerable attentions in research community. The initial stud-
ies on cellphone malware [22, 33, 30, 29] mainly focused on un-
derstanding the threats and behaviors of emerging malware. For
example, Guo et al. [22] examined various types of attacks that
can be launched to a compromised cellphone, and suggested po-
tential defenses. Radmilo et al. [33] revealed the vulnerability of
MMS/SMS, which can be exploited to launch attacks on battery
exhaustion. Mulliner et al. [30] demonstrated a proof-of-concept
malware which crosses service boundaries in Windows CE phones.
They also revealed buffer overflow vulnerabilities in MMS [29].

To solve the problem of quarantining cellphone malware out-
breaks, Bose et al. [14] proposed an algorithm to automatically
identify vulnerable users based on interactions and a proactive con-
tainment framework to quarantine suspected users. Cheng et al. [15]
designed a collaborative virus detection system named SmartSiren
to secure smartphones. Smartsiren collects communication data
from phones and performs joint analysis to detect abnormal phone
behaviors and alert users. These solutions are network-based (i.e.,
they detect anomalies through analyzing user messaging logs on
centralized servers to detect anomalies). Our work differs from
these solutions in that we place our defense at the frontier towards
the malware - system level to identify malware and block unautho-
rized communications at an earliest stage. Therefore, our defense
is more real-time than network-based schemes.

At the device level, Mulliner et al. [30] adopted a labelling tech-
nique to protect the phone interface against malware attacks com-
ing through the phone’s PDA interface. Specifically, resources and
codes are labeled based on the interfaces that they come from. A
process can access a resource or invoke a code only when it has
been labeled with the same label as the resource or code; or, if it
is not labeled, it is labeled with the same label of the resource or
code and then gets the access. Any process or resource created by
a process is labeled with the same label as the creating process.
However, their approach is access-control based and it cannot de-
feat more intelligent malware as we mentioned in Section 5.

System call trace has long been adopted to detect malware in PC
platforms [21, 26]. Forrest et al. [20] introduced a simple anomaly
detection method based on monitoring the system calls issued by
active, privileged processes. Lee et al. [28] established a more
concise and effective anomaly detection model by using Ripper to
mine normal and abnormal patterns from the system call sequences.
Wespi et al. [37] further developed Forrest’s idea and proposed a
variable-length approach. Warrender et al. [35] proposed a Hidden
Markov Models (HMM) based method for modeling and evaluating
invisible events. These methods, however, have never been applied
to the battlefield of mobile phones where they can show their better
strength (see Section 3) against malware. Moreover, our correlation
of user inputs with system call trace further reinforce its applicabil-
ity and effectiveness in the mobile platform.

8. CONCLUSION
We foresee security attacks in cellphones will become smarter

and devastating as more people are switching to smartphones which
resemble years-old PCs. Existing signature-based approaches in-
cluding security updates are neither realtime nor independent on
users’ awareness. Designing human intelligence-based defenses to
differentiate malware from human beings hence becomes one of the
most promising solutions for smartphones. In this work, we study

malware behavior and focus on the behavior differences between
them and propose a system-level countermeasure. We have showed
through extensive smartphone experiments that our defense is ef-
fective, light-weight, and easy to deploy. In spite of some remain-
ing issues such as diversity of platform OS and potential kernel-
level attacks, our solution provides a practical way for containing
existing or even future malware which could be more elaborated
and intelligent. These remaining issues are our future work.
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APPENDIX

A. PROFILING USER OPERATIONAL
PREFERENCE

We have the following notation.

T = length of the sequence of observations (behavior graph)

N = number of process states in the model

M = number of possible key observations

S = {s1, s2, ..., sN} : finite set of possible process states

V = {v1, v2, ..., vM} : finite set of possible key observations

A = {ai,j} : N × N matrix, aij = P (qt+1 = sj |qt = si) is the

probability of making a transition from state si to sj

B = {bt
j(k)} : N ×T ×M matrix, bt

j(k) = P (Ot = vk|qt = sj , t)

is the probability of emiting vk at time index t at state sj

Note that here we encode temporal information which reflects user
operational preferences into key observations. Now we have the
output probability of a sequence of key observations:

P (O1, O2, O3, ..., OT |qj = sj) =

T∏

t=1

P (Ot|qj = sj , t) (2)

Let ξt(i, j) denote the probability being in state si at time t and the
state sj at time t+1, we derive an extended version of Baum-Welch
algorithm [36]:

ξt(i, j) = P (qt = si, qt+1 = sj |O, λ)

=
αt(i)aijb

t+1
j (Ot+1)βt+1(j)

∑N
i=1

∑N
j=1αt(i)aijb

t+1
j (Ot+1)βt+1(j)

(3)

Forward variable αt(i) = P (O1...Ot, qt = si|λ) is defined as the
probability that the model is in state si at time t and has generated
observations up to step t. Backward variable βt(j) is analogously
defined to be the probability that the model is in state si at time
t and will generate the remainder of the given target observations.
Using the EM approach, a new model λ̄ = (Ā, B̄, π̄) can be re-
estimated using the following equations

π̄i =
N∑

j=1

ξ1(i, j), āij =

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑N
j=1 ξt(i, j)

, (4)

and

b̄t
j(k) =

∑T
t=1(δ(Ot, vk)

∑N
j=1 ξt(i, j))

∑T
t=1

∑N
j=1 ξt(i, j)

, (5)

where δ(Ot, vk) = 1, if Ot = vk, and 0 otherwise.
In each round of behavior learning, we replace λ with the esti-

mated λ̄ based on the training set of behavior graphs. Clearly, we
have P (O|λ̄) > P (O|λ) [32], which means λ converges to the ac-
tual model. We obtain a final λ when some convergence criterion
is met (e.g., sufficiently small change in the estimated values of the
parameters on subsequent iterations).

B. HMM-BASED MALWARE DETECTION
For simplicity, we still use time duration as the user operational

feature. The forward variable αt(i) is defined as

αt(i) = P (O1...Ot, qt = si|λ), λ = (A,B, π), (6)

i.e., the probability of the partial observation sequence until time t
(denoted as O1, O2, ...Ot) and the process state si at time t, given
the model λ. We solve for αt(i) inductively, as follows:

1) Initialization:

α1(i) = πib
1

i(O1), 1 ≤ i ≤ N (7)

2) Induction:

αt+1(j) = [

N∑

i=1

αt(i)aij ]b
t+1
j (Ot+1), 1 ≤ j ≤ N

1 ≤ t ≤ T − 1 (8)

3) Termination:

P (O|λ) =

N∑

i=1

αT (i) (9)
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