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ABSTRACT: In the paper a method for force control of redundant robots in unstructured
environment is proposed. We assume that the obstacles are not known in advance. Hence,
the robot arm has to be compliant with the environment while tracking the desired position
and force at the end effector. First, the dynamic properties of the internal motion of redundant
manipulators are considered. The motion is decoupled into the end-effector motion and the
internal motion. Next, the dynamic model of a redundant manipulator is derived. Special
attention is given to the inertial properties of the system in the space where internal motion is
taking place; we define anull space effective inertiaand itsinverse. Finally, acontrol method is
proposed which compl etely decouples the motion of the manipulator into the task space motion
and the internal motion, and enables the selection of dynamic characteristics in both subspaces
separately. The proposed method is verified with the simulation and with the experimental
results of 4.D.0.F planar redundant robot
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1. INTRODUCTION

One of the important issues of the new generation of robotic manipulatorsis kinematic redun-
dancy. Kinematic redundancy is characterized by extra degrees of freedom with respect to the
given motion posed by the assigned primary task. A redundant manipulator has the ability to
move the end-effector along the same task state using different configurations of the mechan-
ical structure. This provides a means for solving sophisticated motion tasks such as avoiding
obstacles, avoiding singularities, optimizing manipulability, minimizing joint torques, etc.. The
result is a significant increase in the dexterity of the system, which is essential to accomplish
complex tasks. On the other hand, redundancy also has an important influence on the dynamic
behaviour of the robotic system. An appropriate control of dynamic propertiesis essential for
higher performance in robotic manipulation. Most of the research in the field of the dynamics
of robotic manipulators has been devoted to the dynamics in the joint space. To control the
dynamic properties of the system in the joint space different control methodologies have been
proposed [12, 1]. Asthe next step, methods have been proposed where the control takes placein
the task space [13]. These methods include the transformations between joint space trajectories
and task space trgjectories. However, in the case of redundant manipulators these transforma-
tions are not unique. Different methodologies have been proposed to resolve the redundancy

like optimization of a given performance criteriawhile satisfying a primary task [16].

To overcome the limitations of control methods based on the joint space dynamics methods
Khatib [8] proposed a method for dealing with dynamics and control in the task space. This
method enables the description, analysis and control of the robot behaviour in the task space,
and can also be used for redundant manipulators when the dynamic behaviour of the end-
effector is of interest. However, for the redundant manipulators the end-effector dynamicsis
only one part of the dynamics of the whole manipulator. The “rest” dynamics represents the
dynamics of the internal motion of the manipulator. Recently, Park [17] proposed a decompo-
sition of dynamics of kinematically redundant manipulators into the task space dynamics and

null space dynamics based on aminimally reparametrized homogenous vel ocity.

The majority of the task posed to the robots requires interaction with the environment. There-
fore, ability to control the interaction forces is essential for a modern robot. In [15] we have

proposed an approach to the force control of redundant robots. However, the proposed approach



requires structured environment, where the position of the obstacles is known into advance or
complex sensory system is used to detect the environment obstacles. But there are many situa-
tions where the obstacles are not known into advance or are changing position. An example of
such task could be working into atube or working in acompletely dark environment, where the
vision sensors can not be used. Humans solves such a situation by adapting the compliance of
thearm. Our approach triesto imitate the human behaviour in such asituation. Thisrequiresthe
study of the dynamic properties of the internal motion of redundant manipulators. We analyze
what are the causes for the internal motion and how to use the internal motion to improve the
performances of the overall system. Next, the influence of the selection of pseudo or general-
ized inverse on the internal motion is discussed and a method to derive the model describing
the dynamics of the internal motion is presented. We define a null space effective inertia and its
inverse. Finally, impedance control method is presented which completely decouple the motion
of the manipulator into the task space motion and the internal motion, and enable the selection

of dynamic characteristics in both subspaces separately.

2. KINEMATICS

The robotic systems under study are n degrees of freedom (DOF) serial manipulators. We
consider only the redundant systems which have more DOF than needed to accomplish the
task, i.e. the dimension of the joint space n exceeds the dimension of the task space m, n > m.
Let the configuration of the manipulator be represented by the vector q of n joint positions,
and the end-effector position (and orientation) by m-dimensional vector x of task positions (and

orientations). The joint and task velocities are related by the following expression
x=Jq 1)

where J is the mxn manipulator Jacobian matrix. Mapping of joint velocitiesto the task veloc-
ities is unique, while mapping of the task velocities to the joint velocities is not. The general
solution of Eg. (1) can be given as

q=J*x+Ngq 2)
where J# is the generalized inverse of J and N is nxn matrix representing the projection of q
into the null space of J, N = (I —J*J). The first term on the right side of Eq. (2) represents

the part of the joint space velocity necessary to perform the task and is denoted as @, g, = J*.



The second term denoted as q,,, g, = NQ, represents the joint space velocity due to the internal
motion. Actually, qinthe second term of Eq. 2 can be an arbitrary velocity vector and isusually
used to perform an additional subtask like optimization of different cost functions, obstacle

avoidance, etc.

Differentiating Eq. (1), we obtain the relation between joint space accelerations and task space
accelerations
X =Jg+Jq ©)
Considering also the accelerations in the null space of J the genera solution of Eq. (3) is
typically givenin the form
4= J"(x—Ja) +Ng @
To be able to decompose the joint accelerations q into accelerations subjected to the task space

motion and to the internal motion Eq. (4) has to be rewritten into the form
= J"%+ "%+ Ng+ Nq (5)

The above equation can also be obtained by differentiating (2). The first two terms on the right
side of Eqg. (5) represent the joint space acceleration due to the task space motion, and last
two terms represent the joint space acceleration due to the internal motion. The terms J*X and
Nq describe the accel erations due to the change in the configuration of the manipulator and are

required to maintain the task space and null space velocity, respectively [14].

Similar decomposition exists also for the forces. For redundant manipulators the relationship
between the m-dimensional generalized forceintask space F including linear forces and torques

and the corresponding n-dimensional generalized joint space force T is described by
1=J'F+N'1 (6)
where NT is nxn matrix representing the projection into the null space of JT.

3. SELECTION OF THE GENERALIZED INVERSE

There is an infinite number of the generalised inverses J#, which satisfy the equation

3= 7)



In the past the Moore-Penrose pseudoinverse [10] has been widely used to resolve the redun-
dancy. It isdefined as
Jr=J3Taa") 1t

wheren > m. Its“weighted” counterpart [6] is defined as
Jo=wTaw 7)1

where W is an nxn weighting matrix. A special form of JJ, iswhen W = H, where H is the

inertiamatrix of the manipulator. Khatib [9] has proven that
J=HRTGHYT)? (8)

is the only pseudoinverse which is dynamically consistent, i.e. the task space acceleration X
is not affected by any arbitrary torques T, applied through the associated null space, NTT,,
NT = (I —JTJ"). N denotes the projection of the T into the null space of JT using the inertia
weighted pseudoinverse J. Additionally, the dynamically consistent generalized inverse Jis
the only generalized inverse which assures that an external force does not produce a null space

acceleration [5].

4. MANIPULATOR DYNAMICS

Assuming the manipulator consists of rigid bodies the joint space equations of motion can be

written in aform
T=H(q)4+C(q,9)q+9(q) — T (9)

where 1 isthe n-dimensional vector of control torques, H isthe n x n symmetric positive-definite
inertia matrix, C(q,q) is the n x n matrix due to the Coriolis and centrifugal forces, and g is
the n-dimensional vector of gravity forces. Vector T summarizes effects of all external forces

acting on the manipulator.
Using the relation | = JTJ#T + NT and substituting Egs. (4) and (6) into Eq. (9), the model (9)
can be rewritten into the form
JTF+NTt =3T3 (HI*(x— @) + Ca+g—1e) +
NT (HN&+(Cq+9) —1e) + (10)
(ITITHNG+NTHI*(% - Jq))



Note that the terms on the right side of the above equation are arranged into three groups. The
first group includesthe forces acting in the task space. The second group includestorques acting
in the null space of JT. Thethird group represents the coupling forces and torques. To make the
motion of the end-effector and the internal motion independent, it is necessary that the termsin

the third group are always equal to zero
JTHN=NTHJ*=0 (11)
The only value of J* which satisfies the condition (11) is J as defined in Eq. (8)[9, 9].

The equation of the end-effector motion subjected to generalized task forces F is givenin the
form [8]

F =M(q)X+H(q.q)+v(a) - Fe

where M, \, ¥ and Fg are, respectively, the mx m symmetric positive-definite matrix describing
theinertial properties of the manipulator in the task space, the m-dimensional vector of Coriolis
and centrifugal forces, the m-dimensional vector of gravity forces, and the m-dimensional vector

of external forces, al acting in the task space

M=J"HI=JH L")

pu=J'cq-MJlg, y=J'g, Fe=J"1e
The internal motion of the manipulator subjected to the torque applied through the null space
of JT can be obtained inserting the J in Eq. 10.
NTt=NTHN§+N'"(Cg+g) —N"1e

The matrix, which premultiplies § and is defined as

Hh=NTHN=H—-J"MJ (12)

will be denoted as the null space effective inertia matrix. The matrix H,, describes the inertial
properties of the system in the null space. AsHp has not afull rank, rank(Hp) < n, we define

the generalized inverse of the null space effective inertia matrix H,, as
Hi=NHINT

Note that HiHaHE = HE, HoHEHR = Hp, and HE = (HE)T,



5. CONTROL ALGORITHMS

Most of the tasks performed by a redundant manipulator can be broken down into several sub-
tasks with different priorities. In the following it is assumed that the subtask with the highest
priority, referred to as the main task, is associated with the positioning of the end-effector and
the force acting on the end-effector and the secondary task is to track a prescribed null space

velocity.
Utilizing aformulation of the generalised forces a control law is givenin the form
T1=J3"M (% —J@) + NTH (¢ +JX) + Cq+g— JTFe (13)

where X; and ¢ represent the control law for the task motion and internal motion, respectively
and Fg isthe task space force measured at the robot’s tool centre point (TCP) using the force-
torque sensor. The closed loop dynamics is obtained by inserting the above equation into Eq.
9.

Hg—1e = J"M (% — Jg) + NTH (¢ + %) — JTFe (14)

Next, we will analyse the behaviour of the proposed controller in the task space and null space

independently. Premultiplying Eq. 14 by JH 1 and considering X = J§+ J@ we yields

Xc—% = JH JITFg—1g)
= —JH N1 (15)
=0

sinceJH 1JTM =1 and JH INT =0.
Similarly, null space dynamics can be obtained by premultiplying Eq. 14 with NH-1

Ng— NH INTte = NH XTM (% — Jq) -+ NHINTH (¢ + J*%) (16)
Considering that NH™*NTH = N and NH~1JT = 0 we obtain

N(—g+ ¢+ %) = —H¥te (17)

5.1. Task space controller

Let X; be selected as
X =X4+Ke+Kpe+Ki(Fg—Fg) (18)



where e, e = X — X, isthe tracking error, X4 isthe desired task space acceleration, and Ky, K
and K ¢ are nxn constant gain matrices. The selection of K, K, and K¢ can be based on the
desired task space impedance. Fy4 denotes the desired external force. It is supposed that the
external force Fg can be measured by an appropriate force/torque sensor. Substituting Eq. (18)
for X; in Eq. (15), yields

é+Kve+Kpe=—K;i(Fg—FEg)

As we can see the task space impedance can be chosen freely. By selecting Ky = MalDd,
Kp=Mg'KqandK; = Mz1K thefollowing task space impedance can be achieved

Mqe—+ Ddé+ Kge= —K’; (Fd - FE)
My, Dg and K4 are the desired task space inertia, damping and stiffness matrices, respectively.

5.2.  Null space controller

Besides the main task, a redundant system can perform an additional subtask by selecting an
appropriate vector ¢ in the control law (13) which moves the manipulator toward the desired
configuration. Let ¢, be the desired null space velocity, ¢, = N@. To obtain good tracking of
¢ in the null space, the following ¢ is proposed [15]

0 = @+ knn + H 1Cén = N+ N@ + knén + H*Cey (19)
where @, = N(('p — Q) and k,, is positive scalar describing feedback gain.
Substituting (19) into (17) yields
N(§ — §) = N(—H Cén— knén — N — JX) — HEte (20)
Differentiating €, resultsin
& =N$-8)+N@-9) (22)
Using Eqg. (20) in the above equation yields
&, = —NH 1Cén — Nknén — Ng— NJX— Hite (22)
Note that ¢ belongs to the null space of J and NJX = —Nﬁq. This can be verified by

NNG = —N(3J+JJ)g = —NJx



since NJ = 0. Hence, Eq. (22) can be rewritten into the form
& = —Nkyen — NH'Ce, — (1 - N)Ng— Hite (23)

Next, we show that for NTtg = 0 the proposed control method (19) assures asymptotic stability
of the system in the null space and that the @ convergesto zero. Inthiscasethelast term Hi e in
Eq. 23 isequal to zero. Let the Lyapunov function be defined asv = 1/2 &1 Hé,. Differentiating
v and substituting Eq. (23) for éyields
v=elH&, + J&THe,
——@] HNkn&n — 8T HNHCén — eTH (I - N)Ng+ 3e] He,

——&lHknén — &TH (1 —JJ)H~'Ce, — el H(JI)Ng + 1eTHe, (24)
=—ke&lHé, — 28] (H —2C)&,
=—kn&] Hen

since éIsz 0, Né, = &, and (H —2C) is skew symmetric [11]. Since v is positive definite
and v is negative definite providing that k, is positive scalar, €, tendsto zero and the proposed
controller stabilizes the null-space motion as long as the Jacobian is non-singular. Note that the
matrix (H — 2C) is skew symmetric only if C(q, ) is formed using Christoffel terms [11]. A

similar result has been independently derived in [3]

Null space dynamics can be obtained from Eq. 23. First, we premultiply it with Hj, and then
usethe Eq. 12

Hnén :—N:THIEI\_Ikn'ei —__NTH _NN_H:1Cén -

~NTHN(I — N)Ng— NTHNH}te

Since N isidempotent, NN = N, it follows N(I — N) = 0, HN = NTH. Using the definition of

H, the equation 25 can be expressed in the form
Hnén + (Hnkn+NTC)&, = —NT1e (26)

The above equation describes the null space dynamicswith the proposed control. Summarizing,

the control method (19) enables to change the null-space damping by selecting k.

6. NULL SPACE MOTION OPTIMIZATION

The force and the position tracking are usualy of the highest priority for a force controlled

robot. The selection of the sub-tasks with lower priority depends on the specific application [4].



However, collision avoidance is of great importance, since the force controlled robot interacts
with the environment. In our previous work we implemented obstacle avoidance algorithm
using potential field. This approach requires the distance between the obstacle and any part
of the robot. Beside being time consuming, this approach requires the at least approximate
position of the environment obstacle. Here, we assume that this information is not known and
can not be obtained. Therefore, we allow to the robot to bump into obstacles, but we try to

minimize the resulting forces by adopting the null space dynamics.

An important sub-task for the force controlled robot might be to benefit the mechanical advan-
tage of the manipulator in order to minimize joint torques when applying a certain force to the
end effector. The local joint torque minimization as a performance objective was intensively
investigated by many authors [6, 7, 2]. As the joint torque depends on the system dynamics it
isdifficult to expressthe gradient of the cost function related to joint torques. We simplified the
problem by minimizing only joint torques related to the force applied to the robot end effector.
We define the cost function in the form p = t" 1, where T = J" Fg isthejoint torque due to the
end effector force. Then, the cost function gradient required to minimize the given function can
be expressed in the form

0
P _oFTyve, 27)
aq
rdW e I 1
aq; F a0, F 9,
2 2 2
e
Vi=| ™ A (28)
93 9J(m) 2J(m
55 F %5 F - g Fd

where J() denotes the i-th column of the Jacobian J. This approach can be justified by the fact
that velocities and acceleration during the force tracking are usually low. Another advantage
using this approach is that the minimization can be related to the desired end-effector force and
the manipulator can be brought to the optimal pose before the contact with the environment is
established.

The desired null space velocities can be obtained utilizing modified gradient optimization pro-
cedure

¢ = IX+ NkoH "y, (29)

which assures the best optimization step in the case of inertia weighted pseudo-inverse. kg



defines the optimization step. Vector y is a gradient optimization vector defined as

Jp Ip op T
= (2, = eeeens — 30
v = ( 30 9 ) (30)
Unfortunately, the local joint torque minimization often brings the robot into the singular con-
figuration. Therefore, the singularity avoidance algorithm aso has to be implemented. We have

accomplished this task by maximizing manipulator manipulability proposed by [18].

7. EXPERIMETS

In this section, we show the performance of the proposed control strategy on simulation and

experimental result on 4 d.o.f planar redundant manipulator.

7.1. System Description

The experimental setup consists of 4-DOF planar redundant robot with all segments of equal
length 0.25m, presented in Fig. 1. The robot had no limitsin joint angles. All AC brushless
motors were located in the robot base in order to obtain lightweight links. The robot gear
ratio was 6, thus the coupled dynamics of the robot was not negligible. We used two JR3
force sensors, capable of measuring three forces and three torques. One sensor was used for
force tracking and the other for measuring contact force with an obstacle. The sensor used for
force tracking was too heavy to be carried by the experimenta robot, therefore we mounted
the sensor under the environment plane. The obstacle was a vertical bar mounted on the force
sensor. Forces from this sensor were used to measure the contact forces between the robot and
the obstacle. The robot controller consists of a Pentium I 360 MHz industrial computer. The
proposed control algorithm was realized on SIMULINK and compiled using Simulink Real
Time Workshop and Planar Manipulator Toolbox.

[Figure 1 about here.]

7.2. Experimental results

The primary task of the manipulator was to track the desired force while moving aong the
wall in horizontal (x) direction. The desired speed was 0.45m/s and the desired force was

10N. There was an obstacle in the robot work-space, as shown in Fig. 5. The position of the



obstacle and the contact forces were not known in the control law. The secondary subtasks were
minimization of contact forces, minimization of the joint torques due to the end-effector force
and maximization of the manipulability index. Because the impact was not the issue, we started

the experiment with the robot in contact with the wall.

First, we have tested the proposed control law using the simulation. The simulation results of
position tracking, force tracking and obstacle force are presented in Fig. 2, 3 and 4 respectively.
Fig 5 shows poses of the robot in subsequent time intervals. From the results we can see that
the obstacle contact forces had virtualy no influence on the primary task, which was force
and trgjectory tracking. By selecting the appropriate null space dynamics, contact forces were

minimized.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

We repeated the same task on the real robot. We obtained control rate of 500 Hz. Theresultsare
presented in Figs. 6, 7 and 8. In this case we can notice the influence of the contact force with
the obstacle to the TCP tracking error and TCP force. The performance degradation is manly
due to the elasticity of the gear belts and gear friction. Although we included nonlinear friction

compensator into the control 1oop, it was not possible to cancel the friction effect.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]



8. CONCLUSION

The paper considers the force control of redundant robots in presence of unknown obstacles.
Instead of an obstacle avoidance agorithm we have changed the dynamics properties of the
redundant manipulator in order to minimize the impact forces. Therefore, special attention is
given to the dynamic decoupling and the inertial properties of the system in the space where
internal motion is taking place; we define a null space effective inertia and itsinverse. Finaly,
we propose a control algorithm (13) which decouples the motion of the manipulator into the
end-effector motion and the internal motion. The controller enables the selection of dynamic
characteristics in both subspaces separately. The proposed algorithm was tested using the sim-
ulation and on the real robot. With the simulation results we show that we have successfully
decoupled null space and task space dynamics. Disturbance, caused by the obstacle, has vir-
tually no effect on the primary task. Experiments on the real robot show similar results, but
the performance is degraded by the elasticity and the friction in the robot joints. On the other
hand, compliant dynamics requires low null space gains, which limits the performance of the

null space tracking algorithm.
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Figure 1: 4-D.O.F experimental robot
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Figure 9: 4-D.O.F experimental robot
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