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ABSTRACT: In the paper a method for force control of redundant robots in unstructured

environment is proposed. We assume that the obstacles are not known in advance. Hence,

the robot arm has to be compliant with the environment while tracking the desired position

and force at the end effector. First, the dynamic properties of the internal motion of redundant

manipulators are considered. The motion is decoupled into the end-effector motion and the

internal motion. Next, the dynamic model of a redundant manipulator is derived. Special

attention is given to the inertial properties of the system in the space where internal motion is

taking place; we define a null space effective inertia and its inverse. Finally, a control method is

proposed which completely decouples the motion of the manipulator into the task space motion

and the internal motion, and enables the selection of dynamic characteristics in both subspaces

separately. The proposed method is verified with the simulation and with the experimental

results of 4.D.O.F planar redundant robot
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1. INTRODUCTION

One of the important issues of the new generation of robotic manipulators is kinematic redun-

dancy. Kinematic redundancy is characterized by extra degrees of freedom with respect to the

given motion posed by the assigned primary task. A redundant manipulator has the ability to

move the end-effector along the same task state using different configurations of the mechan-

ical structure. This provides a means for solving sophisticated motion tasks such as avoiding

obstacles, avoiding singularities, optimizing manipulability, minimizing joint torques, etc.. The

result is a significant increase in the dexterity of the system, which is essential to accomplish

complex tasks. On the other hand, redundancy also has an important influence on the dynamic

behaviour of the robotic system. An appropriate control of dynamic properties is essential for

higher performance in robotic manipulation. Most of the research in the field of the dynamics

of robotic manipulators has been devoted to the dynamics in the joint space. To control the

dynamic properties of the system in the joint space different control methodologies have been

proposed [12, 1]. As the next step, methods have been proposed where the control takes place in

the task space [13]. These methods include the transformations between joint space trajectories

and task space trajectories. However, in the case of redundant manipulators these transforma-

tions are not unique. Different methodologies have been proposed to resolve the redundancy

like optimization of a given performance criteria while satisfying a primary task [16].

To overcome the limitations of control methods based on the joint space dynamics methods

Khatib [8] proposed a method for dealing with dynamics and control in the task space. This

method enables the description, analysis and control of the robot behaviour in the task space,

and can also be used for redundant manipulators when the dynamic behaviour of the end-

effector is of interest. However, for the redundant manipulators the end-effector dynamics is

only one part of the dynamics of the whole manipulator. The “rest” dynamics represents the

dynamics of the internal motion of the manipulator. Recently, Park [17] proposed a decompo-

sition of dynamics of kinematically redundant manipulators into the task space dynamics and

null space dynamics based on a minimally reparametrized homogenous velocity.

The majority of the task posed to the robots requires interaction with the environment. There-

fore, ability to control the interaction forces is essential for a modern robot. In [15] we have

proposed an approach to the force control of redundant robots. However, the proposed approach



requires structured environment, where the position of the obstacles is known into advance or

complex sensory system is used to detect the environment obstacles. But there are many situa-

tions where the obstacles are not known into advance or are changing position. An example of

such task could be working into a tube or working in a completely dark environment, where the

vision sensors can not be used. Humans solves such a situation by adapting the compliance of

the arm. Our approach tries to imitate the human behaviour in such a situation. This requires the

study of the dynamic properties of the internal motion of redundant manipulators. We analyze

what are the causes for the internal motion and how to use the internal motion to improve the

performances of the overall system. Next, the influence of the selection of pseudo or general-

ized inverse on the internal motion is discussed and a method to derive the model describing

the dynamics of the internal motion is presented. We define a null space effective inertia and its

inverse. Finally, impedance control method is presented which completely decouple the motion

of the manipulator into the task space motion and the internal motion, and enable the selection

of dynamic characteristics in both subspaces separately.

2. KINEMATICS

The robotic systems under study are n degrees of freedom (DOF) serial manipulators. We

consider only the redundant systems which have more DOF than needed to accomplish the

task, i.e. the dimension of the joint space n exceeds the dimension of the task space m, n � m.

Let the configuration of the manipulator be represented by the vector qqq of n joint positions,

and the end-effector position (and orientation) by m-dimensional vector xxx of task positions (and

orientations). The joint and task velocities are related by the following expression

ẋxx � Jq̇qq (1)

where J is the m�n manipulator Jacobian matrix. Mapping of joint velocities to the task veloc-

ities is unique, while mapping of the task velocities to the joint velocities is not. The general

solution of Eq. (1) can be given as

q̇qq � J#ẋxx�Nq̇qq (2)

where J# is the generalized inverse of J and N is n�n matrix representing the projection of q̇qq

into the null space of J, N � �I� J#J�. The first term on the right side of Eq. (2) represents

the part of the joint space velocity necessary to perform the task and is denoted as q̇qqx, q̇qqx � J#ẋxx.



The second term denoted as q̇qqn, q̇qqn � Nq̇qq, represents the joint space velocity due to the internal

motion. Actually, q̇qq in the second term of Eq. 2 can be an arbitrary velocity vector and is usually

used to perform an additional subtask like optimization of different cost functions, obstacle

avoidance, etc.

Differentiating Eq. (1), we obtain the relation between joint space accelerations and task space

accelerations

ẍxx � Jq̈qq� J̇q̇qq (3)

Considering also the accelerations in the null space of J the general solution of Eq. (3) is

typically given in the form

q̈qq � J#�ẍxx� J̇q̇qq��Nq̈qq (4)

To be able to decompose the joint accelerations q̈qq into accelerations subjected to the task space

motion and to the internal motion Eq. (4) has to be rewritten into the form

q̈qq � J#ẍxx� J̇#ẋxx�Nq̈qq� Ṅq̇qq (5)

The above equation can also be obtained by differentiating (2). The first two terms on the right

side of Eq. (5) represent the joint space acceleration due to the task space motion, and last

two terms represent the joint space acceleration due to the internal motion. The terms J̇#ẋxx and

Ṅq̇qq describe the accelerations due to the change in the configuration of the manipulator and are

required to maintain the task space and null space velocity, respectively [14].

Similar decomposition exists also for the forces. For redundant manipulators the relationship

between the m-dimensional generalized force in task space FFF including linear forces and torques

and the corresponding n-dimensional generalized joint space force τττ is described by

τττ � JT FFF �NT τττ (6)

where NT is n�n matrix representing the projection into the null space of JT .

3. SELECTION OF THE GENERALIZED INVERSE

There is an infinite number of the generalised inverses J#, which satisfy the equation

JJ#J � J (7)



In the past the Moore-Penrose pseudoinverse [10] has been widely used to resolve the redun-

dancy. It is defined as

J� � JT �JJT ��1

where n � m. Its “weighted” counterpart [6] is defined as

J�w � W�1JT �JW�1JT ��1

where W is an n�n weighting matrix. A special form of J�w is when W � H, where H is the

inertia matrix of the manipulator. Khatib [9] has proven that

J̄ � H�1JT �JH�1JT ��1 (8)

is the only pseudoinverse which is dynamically consistent, i.e. the task space acceleration ẍxx

is not affected by any arbitrary torques τττn applied through the associated null space, N̄T τττn,

N̄T � �I� JT J̄T �. N̄ denotes the projection of the τττ into the null space of JT using the inertia

weighted pseudoinverse J̄. Additionally, the dynamically consistent generalized inverse J̄ is

the only generalized inverse which assures that an external force does not produce a null space

acceleration [5].

4. MANIPULATOR DYNAMICS

Assuming the manipulator consists of rigid bodies the joint space equations of motion can be

written in a form

τττ � H�qqq�q̈qq�C�qqq� q̇qq�q̇qq�g�qqq�� τττE (9)

where τττ is the n-dimensional vector of control torques, H is the n�n symmetric positive-definite

inertia matrix, C�qqq� q̇qq� is the n� n matrix due to the Coriolis and centrifugal forces, and g is

the n-dimensional vector of gravity forces. Vector τττE summarizes effects of all external forces

acting on the manipulator.

Using the relation I � JT J#T �NT and substituting Eqs. (4) and (6) into Eq. (9), the model (9)

can be rewritten into the form

JT FFF �NT τττ �JT J#T
�
HJ#�ẍxx� J̇q̇qq��Cq̇qq�ggg� τττE

�
�

NT �HNq̈qq��Cq̇qq�ggg�� τττE���
JT J#T HNq̈qq�NT HJ#�ẍxx� J̇q̇qq�

�
(10)



Note that the terms on the right side of the above equation are arranged into three groups. The

first group includes the forces acting in the task space. The second group includes torques acting

in the null space of JT . The third group represents the coupling forces and torques. To make the

motion of the end-effector and the internal motion independent, it is necessary that the terms in

the third group are always equal to zero

J#T HN� NT HJ# � 0 (11)

The only value of J# which satisfies the condition (11) is J̄ as defined in Eq. (8) [9, 5].

The equation of the end-effector motion subjected to generalized task forces FFF is given in the

form [8]

FFF � M�qqq�ẍxx�µµµ�qqq� q̇qq�� γγγ�qqq��FFFE

where M, µµµ, γγγ and FFFE are, respectively, the m�m symmetric positive-definite matrix describing

the inertial properties of the manipulator in the task space, the m-dimensional vector of Coriolis

and centrifugal forces, the m-dimensional vector of gravity forces, and the m-dimensional vector

of external forces, all acting in the task space

M � J̄T HJ̄ � �JH�1JT ��1

µµµ � J̄T Cq̇qq�MJ̇q̇qq� γγγ � J̄T ggg� FFFE � J̄T τττE

The internal motion of the manipulator subjected to the torque applied through the null space

of JT can be obtained inserting the J̄ in Eq. 10.

N̄T τττ � N̄T HN̄q̈qq� N̄T �Cq̇qq�ggg�� N̄T τττE

The matrix, which premultiplies q̈qq and is defined as

Hn � N̄T HN̄ � H�JT MJ (12)

will be denoted as the null space effective inertia matrix. The matrix Hn describes the inertial

properties of the system in the null space. As Hn has not a full rank, rank�Hn� � n, we define

the generalized inverse of the null space effective inertia matrix Hn as

H‡
n � N̄H�1N̄T

Note that H‡
nHnH‡

n � H‡
n, HnH‡

nHn � Hn, and H‡
n � �H‡

n�
T .



5. CONTROL ALGORITHMS

Most of the tasks performed by a redundant manipulator can be broken down into several sub-

tasks with different priorities. In the following it is assumed that the subtask with the highest

priority, referred to as the main task, is associated with the positioning of the end-effector and

the force acting on the end-effector and the secondary task is to track a prescribed null space

velocity.

Utilizing a formulation of the generalised forces a control law is given in the form

τττ � JT M�ẍxxc� J̇q̇qq�� N̄T H�φφφ� ˙̄Jẋxx��Cq̇qq�ggg�JT FFFE (13)

where ẍxxc and φφφ represent the control law for the task motion and internal motion, respectively

and FFFE is the task space force measured at the robot’s tool centre point (TCP) using the force-

torque sensor. The closed loop dynamics is obtained by inserting the above equation into Eq.

9.

Hq̈qq� τττE � JT M�ẍxxc� J̇q̇qq�� N̄T H�φφφ� ˙̄Jẋxx��JT FFFE (14)

Next, we will analyse the behaviour of the proposed controller in the task space and null space

independently. Premultiplying Eq. 14 by JH�1 and considering ẍxx � Jq̈qq� J̇q̇qq we yields

ẍxxc� ẍxx � JH�1�JT FFFE � τττE�

� �JH�1N̄T τττE (15)

� 0

since JH�1JT M � I and JH�1N̄T � 0.

Similarly, null space dynamics can be obtained by premultiplying Eq. 14 with N̄H�1

N̄q̈qq� N̄H�1N̄T τττE � N̄H�1JT M�ẍxxc� J̇qqq�� N̄H�1N̄T H�φφφ� J̇#ẋxx� (16)

Considering that N̄H�1N̄T H � N̄ and N̄H�1JT � 0 we obtain

N̄��q̈qq�φφφ� ˙̄Jẋxx� ��H‡
nτττE (17)

5.1. Task space controller

Let ẍxxc be selected as

ẍxxc � ẍxxd �Kvėee�Kpeee�K f �FFFd�FFFE� (18)



where eee, eee � xxxd� xxx, is the tracking error, ẍxxd is the desired task space acceleration, and Kv, Kp

and K f are n�n constant gain matrices. The selection of Kv, Kp and K f can be based on the

desired task space impedance. FFFd denotes the desired external force. It is supposed that the

external force FFFE can be measured by an appropriate force/torque sensor. Substituting Eq. (18)

for ẍxxc in Eq. (15), yields

ëee�Kvėee�Kpeee ��K f �FFFd�FFFE�

As we can see the task space impedance can be chosen freely. By selecting Kv � M�1
d Dd ,

Kp � M�1
d Kd and K”

f � M�1
d K f the following task space impedance can be achieved

Mdëee�Ddėee�Kdeee ��K”
f �FFFd�FFFE�

Md , Dd and Kd are the desired task space inertia, damping and stiffness matrices, respectively.

5.2. Null space controller

Besides the main task, a redundant system can perform an additional subtask by selecting an

appropriate vector φφφ in the control law (13) which moves the manipulator toward the desired

configuration. Let ϕ̇ϕϕn be the desired null space velocity, ϕ̇ϕϕn � N̄ϕ̇ϕϕ. To obtain good tracking of

ϕ̇ϕϕ in the null space, the following φφφ is proposed [15]

φφφ � ϕ̈ϕϕn� knėeen�H�1Cėeen � N̄ϕ̈ϕϕ� ˙̄Nϕ̇ϕϕ� knėeen�H�1Cėeen (19)

where ėeen � N̄�ϕ̇ϕϕ� q̇qq� and kn is positive scalar describing feedback gain.

Substituting (19) into (17) yields

N̄�ϕ̈ϕϕ� q̈qq� � N̄��H�1Cėeen� knėeen�
˙̄Nϕ̇ϕϕ� ˙̄Jẋxx��H‡

nτττE (20)

Differentiating ėeen results in

ëeen � N̄�ϕ̈ϕϕ� q̈qq�� ˙̄N�ϕ̇ϕϕ� q̇qq� (21)

Using Eq. (20) in the above equation yields

ëeen ��N̄H�1Cėeen� N̄knėeen�
˙̄Nq̇qq� N̄ ˙̄Jẋxx�H‡

nτττE (22)

Note that ϕ̇ϕϕ belongs to the null space of J and N̄ ˙̄Jẋxx ��N̄ ˙̄Nq̇qq. This can be verified by

N̄ ˙̄Nq̇qq ��N̄�J̄J̇� ˙̄JJ�q̇qq ��N̄ ˙̄Jẋxx



since N̄J̄ � 0. Hence, Eq. (22) can be rewritten into the form

ëeen ��N̄knėeen� N̄H�1Cėeen� �I� N̄� ˙̄Nq̇qq�H‡
nτττE (23)

Next, we show that for NT τττE � 0 the proposed control method (19) assures asymptotic stability

of the system in the null space and that the ėee converges to zero. In this case the last term H‡
nτττE in

Eq. 23 is equal to zero. Let the Lyapunov function be defined as v� 1�2 ėeeT
n Hėeen. Differentiating

v and substituting Eq. (23) for ëee yields

v̇ �ėeeT
n Hëeen�

1
2 ėeeT

n Ḣėeen

��ėeeT
n HN̄knėeen� ėeeT

n HN̄H�1Cėeen� ėeeT
n H�I� N̄� ˙̄Nq̇qq� 1

2 ėeeT
n Ḣėeen

��ėeeT
n Hknėeen� ėeeT

n H�I� J̄J�H�1Cėeen� ėeeT
n H�J̄J� ˙̄Nq̇qq� 1

2 ėeeT
n Ḣėeen

��knėeeT
n Hėeen�

1
2 ėeeT

n �Ḣ�2C�ėeen

��knėeeT
n Hėeen

(24)

since ėeeT
n HJ̄ � 0, N̄ėeen � ėeen and �Ḣ� 2C� is skew symmetric [11]. Since v is positive definite

and v̇ is negative definite providing that kn is positive scalar, ėeen tends to zero and the proposed

controller stabilizes the null-space motion as long as the Jacobian is non-singular. Note that the

matrix �Ḣ� 2C� is skew symmetric only if C�qqq� q̇qq� is formed using Christoffel terms [11]. A

similar result has been independently derived in [3]

Null space dynamics can be obtained from Eq. 23. First, we premultiply it with Hn and then

use the Eq. 12

Hnëeen ��N̄T HN̄N̄knėeen� N̄T HN̄N̄H�1Cėeen

�N̄T HN̄�I� N̄� ˙̄Nq̇qq� N̄T HN̄H‡
nτττE

(25)

Since N̄ is idempotent, N̄N̄ � N̄, it follows N̄�I� N̄� � 0, HN̄ � N̄T H. Using the definition of

H‡
n, the equation 25 can be expressed in the form

Hnëeen��Hnkn� N̄T C�ėeen ��N̄T τττE (26)

The above equation describes the null space dynamics with the proposed control. Summarizing,

the control method (19) enables to change the null-space damping by selecting kn.

6. NULL SPACE MOTION OPTIMIZATION

The force and the position tracking are usually of the highest priority for a force controlled

robot. The selection of the sub-tasks with lower priority depends on the specific application [4].



However, collision avoidance is of great importance, since the force controlled robot interacts

with the environment. In our previous work we implemented obstacle avoidance algorithm

using potential field. This approach requires the distance between the obstacle and any part

of the robot. Beside being time consuming, this approach requires the at least approximate

position of the environment obstacle. Here, we assume that this information is not known and

can not be obtained. Therefore, we allow to the robot to bump into obstacles, but we try to

minimize the resulting forces by adopting the null space dynamics.

An important sub-task for the force controlled robot might be to benefit the mechanical advan-

tage of the manipulator in order to minimize joint torques when applying a certain force to the

end effector. The local joint torque minimization as a performance objective was intensively

investigated by many authors [6, 7, 2]. As the joint torque depends on the system dynamics it

is difficult to express the gradient of the cost function related to joint torques. We simplified the

problem by minimizing only joint torques related to the force applied to the robot end effector.

We define the cost function in the form ppp � τττT τττ, where τττ � JT FFFE is the joint torque due to the

end effector force. Then, the cost function gradient required to minimize the given function can

be expressed in the form
∂ppp
∂qqq

� 2FFFT J∇τττ� (27)

∇τττ �

�
������

∂J�1�

∂qqq1
FFF ∂J�1�

∂qqq2
FFF � � � ∂J�1�

∂qqqn
FFF

∂J�2�

∂qqq1
FFF ∂J�2�

∂qqq2
FFF � � � ∂J�2�

∂qqqn
FFF

...
...

...
...

∂J�n�

∂qqq1
FFF ∂J�n�

∂qqq2
FFF � � � ∂J�n�

∂qqqn
FFF

�
������
� (28)

where J�i� denotes the i-th column of the Jacobian J. This approach can be justified by the fact

that velocities and acceleration during the force tracking are usually low. Another advantage

using this approach is that the minimization can be related to the desired end-effector force and

the manipulator can be brought to the optimal pose before the contact with the environment is

established.

The desired null space velocities can be obtained utilizing modified gradient optimization pro-

cedure

ϕ̇ � J̄ẋxx� N̄koH�1ψ� (29)

which assures the best optimization step in the case of inertia weighted pseudo-inverse. ko



defines the optimization step. Vector ψ is a gradient optimization vector defined as

ψ � �
∂ppp
∂q1

�
∂ppp
∂q2

� ��������
∂ppp
∂qN

�T (30)

Unfortunately, the local joint torque minimization often brings the robot into the singular con-

figuration. Therefore, the singularity avoidance algorithm also has to be implemented. We have

accomplished this task by maximizing manipulator manipulability proposed by [18].

7. EXPERIMETS

In this section, we show the performance of the proposed control strategy on simulation and

experimental result on 4 d.o.f planar redundant manipulator.

7.1. System Description

The experimental setup consists of 4-DOF planar redundant robot with all segments of equal

length 0�25m, presented in Fig. 1. The robot had no limits in joint angles. All AC brushless

motors were located in the robot base in order to obtain lightweight links. The robot gear

ratio was 6, thus the coupled dynamics of the robot was not negligible. We used two JR3

force sensors, capable of measuring three forces and three torques. One sensor was used for

force tracking and the other for measuring contact force with an obstacle. The sensor used for

force tracking was too heavy to be carried by the experimental robot, therefore we mounted

the sensor under the environment plane. The obstacle was a vertical bar mounted on the force

sensor. Forces from this sensor were used to measure the contact forces between the robot and

the obstacle. The robot controller consists of a Pentium II 360 MHz industrial computer. The

proposed control algorithm was realized on SIMULINK and compiled using Simulink Real

Time Workshop and Planar Manipulator Toolbox.

[Figure 1 about here.]

7.2. Experimental results

The primary task of the manipulator was to track the desired force while moving along the

wall in horizontal (x) direction. The desired speed was 0�45m�s and the desired force was

10N. There was an obstacle in the robot work-space, as shown in Fig. 5. The position of the



obstacle and the contact forces were not known in the control law. The secondary subtasks were

minimization of contact forces, minimization of the joint torques due to the end-effector force

and maximization of the manipulability index. Because the impact was not the issue, we started

the experiment with the robot in contact with the wall.

First, we have tested the proposed control law using the simulation. The simulation results of

position tracking, force tracking and obstacle force are presented in Fig. 2, 3 and 4 respectively.

Fig 5 shows poses of the robot in subsequent time intervals. From the results we can see that

the obstacle contact forces had virtually no influence on the primary task, which was force

and trajectory tracking. By selecting the appropriate null space dynamics, contact forces were

minimized.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

We repeated the same task on the real robot. We obtained control rate of 500 Hz. The results are

presented in Figs. 6, 7 and 8. In this case we can notice the influence of the contact force with

the obstacle to the TCP tracking error and TCP force. The performance degradation is manly

due to the elasticity of the gear belts and gear friction. Although we included nonlinear friction

compensator into the control loop, it was not possible to cancel the friction effect.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]



8. CONCLUSION

The paper considers the force control of redundant robots in presence of unknown obstacles.

Instead of an obstacle avoidance algorithm we have changed the dynamics properties of the

redundant manipulator in order to minimize the impact forces. Therefore, special attention is

given to the dynamic decoupling and the inertial properties of the system in the space where

internal motion is taking place; we define a null space effective inertia and its inverse. Finally,

we propose a control algorithm (13) which decouples the motion of the manipulator into the

end-effector motion and the internal motion. The controller enables the selection of dynamic

characteristics in both subspaces separately. The proposed algorithm was tested using the sim-

ulation and on the real robot. With the simulation results we show that we have successfully

decoupled null space and task space dynamics. Disturbance, caused by the obstacle, has vir-

tually no effect on the primary task. Experiments on the real robot show similar results, but

the performance is degraded by the elasticity and the friction in the robot joints. On the other

hand, compliant dynamics requires low null space gains, which limits the performance of the

null space tracking algorithm.
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[15] B. Nemec and L. Žlajpah. Experiments on impedance control of redundant manipulators. In Proc.

IEEE Int. Symp. on Industrial Electronics ISIE’99, pages 134–138, Bled, 1999.

[16] D. N. Nenchev. Redundancy resolution through local optimization: A review. J. of Robotic Systems,

6(6):769 – 798, 1989.

[17] J. Park, W. Chung, and Y. Youm. Weighted Decomposition of Kinematics and Dynamics of Kine-

matically Redundant Manipulators. In Proc. IEEE Conf. Robotics and Automation, pages 480 –

486, 1996.

[18] T. Yoshikawa. Foundations of robotics: analysis and control. MIT Press, 1990.



List of Figures



[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]



List of Figures



Figure 1: 4-D.O.F experimental robot
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Figure 2: Simulated TCP tracking error
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Figure 3: Simulated TCP force
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Figure 4: Simulated obstacle force
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Figure 5: Poses of the robot during the simulation of the task
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Figure 6: TCP tracking error
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Figure 7: TCP force
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Figure 8: Obstacle force



Figure 9: 4-D.O.F experimental robot
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Figure 10: Simulated TCP tracking error
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Figure 11: Simulated TCP force
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Figure 12: Simulated obstacle force
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Figure 13: Poses of the robot during the simulation of the task
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Figure 14: TCP tracking error
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Figure 15: TCP force
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Figure 16: Obstacle force


