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Introduction

This is a revised and slightly expanded set of notes based on a course of 4 lectures
given at the postgraduate summer school ‘Groups and Applications’ at the Univer-
sity of the Aegean in July 1999. I am very grateful to the University of the Aegean
- in particular to Vasileios Metaftsis - for the opportunity to give the lectures and
to publish the notes, and for their warm hospitality during the summer school.

The subject matter is hyperbolic groups - one of the main objects of study in
geometric group theory. Geometric group theory began in the 1980’s with work
of Cannon, Gromov and others, applying geometric techniques to prove algebraic
properties for large classes of groups. In this, the subject follows on from its ancestor,
‘Combinatorial Group Theory’, which has roots going back to the 19th century
(Fricke, Klein, Poincaré). It adds yet another layer of geometric insight through the
idea of treating groups as metric spaces, which can be a very powerful tool.

In a short lecture course I could not hope to do justice to this large and im-
portant subject. Instead, I aimed to give a gentle introduction which would give
some idea of the flavour. I have tried to prepare these notes in the same spirit.
One difficulty one faces when approaching this subject is the fact that there are
several (equivalent) definitions. To give them all would be time-consuming, to prove
equivalence more so. I have settled for giving just two definitions, each motivated
by the corresponding geometric properties of the hyperbolic plane, and ignoring the
question of equivalence.

The first lecture deals in general with groups seen as metric spaces, introduces
the idea of quasi-isometry, and illustrates the ideas using the study of growth of
groups. The second lecture gives the ‘thin-triangles’ definition of hyperbolic group,



and uses it to give a simple proof that hyperbolic groups are finitely presented.
(This is a consequence of a more far-reaching result of Rips, to which we return
later.) The third lecture introduced Dehn diagrams and isoperimetric inequalities,
gives the ‘linear isoperimetric inequality’ definition of hyperbolic groups, and indi-
cates how to use this to obtain solutions of the word and conjugacy problems for
hyperbolic groups. The final lecture was designed to give a glimpse of two slightly
more advanced aspects of the subject, namely the Rips complex and the boundary
of a hyperbolic group. In practice, I ran out of time and settled for discussing only
the Rips complex. However, I have included a section on the hyperbolic boundary
in these notes for completeness.

I hope that these notes will encourage readers to learn more about the subject.
The principal references in this area are the original texts of Gromov [7, 8, 9], but
several authors have worked on producing more accessible versions. I found [1, 2, 4]
useful sources.
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Lecture 1: Groups as metric spaces

Geometric group theory is the study of algebraic objects (groups) by regarding them
as geometric objects (metric spaces). This idea seems unusual at first, but in fact
is very powerful, and enables us to prove many theorems about groups that satisfy
given geometric conditions.

How can we make a group G into a metric space? Choose a set S of generators
for G. Then every element of G can be expressed as a word in the generators:
g = xε11 x

ε2
2 . . . x

εn
n , where x1, x2, . . . , xn ∈ S and ε1, ε2, . . . , εn = ±1. The natural

number n is called the length of this word. If g, h ∈ G then we define dS(g, h) to be
the length of the shortest word representing g−1h.

Lemma 1 dS is a metric on the set G.

Proof. By definition, dS(g, h) ∈ N. In particular, dS(g, h) ≥ 0. Moreover, dS(g, h) =
0 if and only if g−1h is represented by the empty word (of length 0). But the empty
word represents the identity element of G, so dS(g, h) = 0⇔ g = h.

If xε11 x
ε2
2 . . . x

εn
n is a word of minimum length representing g−1h, then h−1g =

x−εnn . . . x−ε22 x−ε11 , so dS(h, g) ≤ dS(g, h). Similarly, dS(g, h) ≤ dS(h, g), so dS(h, g) =
dS(g, h).

Let xε11 x
ε2
2 . . . x

εn
n and yδ11 y

δ2
2 . . . yδmm be words of minimum length representing

g−1h and h−1k respectively. Then

xε11 x
ε2
2 . . . x

εn
n y

δ1
1 y

δ2
2 . . . yδmm

is a word (not necessarily of minimum length) representing g−1h · h−1k = g−1k.
Hence

dS(g, k) ≤ dS(g, h) + dS(h, k)

(the triangle inequality). �

Remarks

1. The metric dS on G is called the word metric on G with respect to S. It takes
values in N. This distinguishes it from the metrics associated to more standard
geometric objects (euclidean or hyperbolic space, surfaces, manifolds), which
take values in R+. However, if the units of measurement are very small, or
equivalently if we look at G ‘from a great distance’, then we cannot distinguish
between the discrete-valued metric dS and some continuous-valued approxima-
tion to it. This can all be made precise and used to compare G with more
familiar and continuous metric spaces such as euclidean or hyperbolic space.
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2. The metric dS is related to the Cayley graph Γ(G,S) in a natural way: we can
identify G with the set of vertices of Γ(G,S), and two vertices g, h (g 6= h)
are adjacent in Γ if and only if g−1h ∈ S or h−1g ∈ S, in other words if and
only if dS(g, h) = 1. More generally, if g, h are joined by a path of length n in
Γ(G,S), then we can express g−1h as a word of length n in S, so dS(g, h) ≤ n.
The converse is also true: if g−1h can be expressed as a word of length n in
S, then g, h can be joined by a path of length n in Γ(G,S). Hence dS(g, h) is
precisely the length of a shortest path (a geodesic) in Γ(G,S) from g to h.

3. The metric dS depends in an essential way on the choice of generating set S.
For example, if we take S = G then dS is just the discrete metric: dS(g, h) = 1
whenever g 6= h. This is not an interesting metric, and can not be expected to
give interesting algebraic information about G. To avoid this kind of problem,
we restrict attention to finite generating sets S. In particular, all groups from
now on will be finitely generated.

4. Even with the restriction to finite generating sets, the metric depends on the
choice of S. In particular, for any g, h ∈ G, we can choose a generating set
S that contains g−1h, so that dS(g, h) ≤ 1. However, despite such obvious
problems, the dependence can be shown to be limited in a very real sense, so
that if we look at G ‘from a distance’ then the effects of changing generating
set become less apparent. In other words, there are many properties of the
metric space (G, dS) that are independent of the choice of S. These properties
are the objects of study in geometric group theory.

Quasi-isometry

An isometry from one metric space (X, d) to another metric space (X ′, d′) is a map
f : X → X ′ such that

d′(f(x), f(y)) = d(x, y) ∀x, y ∈ X.

It follows that f is continuous and injective. If f is also surjective, then f−1 :
X ′ → X is also an isometry, and in this case we say that the metric spaces (X, d)
and (X ′, d′) are isometric. This is an equivalence relation between metric spaces.
Isometric metric spaces are regarded as being ‘the same’, just as isomorphic groups
or rings, or homeomorphic topological spaces, are ‘the same’.

Quasi-isometry is a weaker equivalence relation between metric spaces that meets
the requirements of geometric group theory by neglecting fine detail and concentrat-
ing on the large picture ‘seen from a distance’ as mentioned in the remarks above. It
is defined in an analogous way. Let λ, k be positive real numbers. A map f : X → X ′
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is a (λ, k)-quasi-isometry if

1

λ
d(x, y)− k ≤ d′(f(x), f(y)) ≤ λd(x, y) + k ∀x, y ∈ X.

Now f is not in general continuous or injective. If f is almost surjective, in the sense
that every point of X ′ is a bounded distance from the image of f , then there is a
(λ′, k′)-quasi-isometry f ′ : X ′ → X for some λ′, k′, that is almost an inverse to f .
In this case we say that the metric spaces (X, d) and (X ′, d′) are quasi-isometric.

Examples

1. (Z, d) and (R, d) are quasi-isometric, where d is the usual metric: d(x, y) =
|x − y|. The natural embedding Z → R is an isometry, so a (1, 0)-quasi-
isometry. It is not surjective, but each point of R is at most 1

2
away from Z.

We can define a (1, 1
2
)-quasi-isometry f : R→ Z by f(x) = x ‘rounded to the

nearest integer’.

2. We can generalise the above example. Let G be a group with a finite generating
set S, and let Γ = Γ(G,S) be the corresponding Cayley graph. We can regard
Γ as a topological space in the usual way, and indeed we can make it into
a metric space by identifying each edge with a unit interval [0, 1] ⊂ R and
defining d(x, y) to be the length of the shortest path joining x to y. This
coincides with the path-length metric dS when x and y are vertices. Since
every point of Γ is in the 1

2
-neighbourhood of some vertex,we see that (G, dS)

and (Γ(G,S), d) are quasi-isometric for this choice of d.

3. Every bounded metric space is quasi-isometric to a point.

4. Z× Z is quasi-isometric to the euclidean plane E2.

5. If S and T are finite generating sets for a group G, then (G, dS) and (G, dT )
are quasi-isometric. Indeed, let λ be the maximum length of any element of
S expressed as a word in T or vice versa. Then the identity map G→ G is a
(λ, 0)-quasi-isometry form (G, dS) to (G, dT ) and vice versa. Hence, when we
are discussing quasi-isometry in the context of finitely generated groups, we
can omit mention of the particular generating set, and make statements like
‘G is quasi-isometric to H’ without ambiguity.

Growth

Suppose that G is a finitely generated group, and that S is a finite generating set
for G. We define the growth function γ = γS : N→ N for G with respect to S by

γ(n) = |{ g ∈ G | dS(g, 1) ≤ n }|.
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In other words, γ(n) is the number of points contained in a ball of radius n in
(G, dS). The growth function of a finitely generated group clearly depends on the
choice of generating set, but only in a limited way. Suppose that S and T are two
finite generating sets for a group G. Let k be an integer such that every element
of S can be expressed as a word of length k or less in T . Then for each integer n,
the n-neighbourhood of 1 in G (with respect to the metric dS) is contained in the
kn-neighbourhood of 1 (with respect to dT ). Hence

γS(n) ≤ γT (kn) ∀n ∈ N.

Similarly, there is an integer k′ such that

γT (n) ≤ γS(k′n) ∀n ∈ N.

Thus the asymptotic behaviour of γS(n) as n → ∞ is independent of S. This
asymptotic behaviour is what is known as the growth of G

Similar arguments show the following.

Lemma 2 Let G be a finitely generated group, H a subgroup of finite index, and γ, δ
the growth functions of G,H respectively, with respect to suitable choices of finite
generating set. Then there exists a constant C > 0 such that

γ(n) ≤ δ(Cn), δ(n) ≤ γ(Cn) ∀n ∈ N.

Thus the asymptotic behaviour of the growth function is the same for a subgroup
of finite index.

More generally, if G and H are quasi-isometric finitely generated groups, then the
asymptotic growth rates of G and H (with respect to any choice of finite generating
sets) are the same. In other words, the asymptotic growth rate is a quasi-isometry
invariant.

Examples

1. If G contains an infinite cyclic subgroup of finite index, then G has linear
growth. It is enough to consider the growth function of G = Z with respect
to the standard generating set S = {1}. But clearly γS(n) = 2n + 1, a linear
function of n.

2. If G contains a free abelian group of rank r as a subgroup of finite index, then
the growth of G is polynomial of degree r. Again, it is enough to consider
G = Zr, with S a basis. A simple calculation shows that γS(n) is a polynomial
of degree r in n.
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3. If G contains a free subgroup of rank greater than or equal to 2, then G has
exponential growth. To see this, first note that, when S is a basis for a free
group F of rank r, then the number of elements of F of length m in S is
2r(2r − 1)m−1 (for all m ≥ 1). Summing over m = 1, . . . , n, we see that
γS is exponential in n. Since every finitely generated group is a homomorphic
image of a free group of finite rank, no group can grow faster than a free group.
Thus no group grows faster than exponentially. Conversely, if G contains a
free group F of rank r ≥ 2, then we can choose a finite generating set T for
G such that T contains a subset S that is a basis for F . Then γT (n) ≥ γS(n)
grows exponentially.

The definitive result on growth of groups is the following, due to M Gromov [6].
(See also [10] for a survey on groups of polynomial growth, and [3] for an alternative
proof of Gromov’s Theorem.)

Theorem 1 Let G be a finitely generated group. Then G has polynomial growth if
and only if G has a subgroup of finite index that is nilpotent.

There exist groups whose growth functions are intermediate (faster than any
polynomial, but slower than any exponential). The first examples of these were due
to R I Grigorchuk [5].

On the other hand, it is known that any group with growth bounded above by a
polynomial function actually has polynomial growth. The degree of the polynomial
can be computed from the lower central series of the nilpotent group.

Here is the simplest nonabelian example.

Example The Heisenberg group is the group H of 3×3 matrices with integer entries
of the form  1 x y

0 1 z
0 0 1


It is nilpotent of class 2 with centre Z(H) = [H,H] infinite cyclic. Its growth is
polynomial of degree 4. To see this, we choose a system of three generators {a, b, c},
where

a =

 1 1 0
0 1 0
0 0 1

 , b =

 1 0 0
0 1 1
0 0 1

 , c =

 1 0 1
0 1 0
0 0 1

 .

Here c = [a, b] is central in H: [a, c] = [b, c] = 1. Now it is not difficult to show
that every element of H has a unique ‘normal form’ expression if the form aαbβcγ,
α, β, γ ∈ Z. A näıve deduction from this would be that H has the same growth
rate as Z3, which is cubic. However, for any m,n ∈ Z we have [am, bn] = cmn, so
that the length of cn as a shortest word in the generators grows asymptotically as
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4
√
n, rather than n. (On the other hand, an and bn are shortest words representing

these elements for all n.) Hence the number of words of length n or less grows
approximately like n4/4.
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Lecture 2: Thin triangles and hyperbolic groups

Hyperbolic groups are so-called because they share many of the geometric properties
of hyperbolic spaces. There are a number of possible ways to define hyperbolic
groups, which turn out to be equivalent. I will discuss only two of them. In order
to motivate these, let us first look at some of the properties of the hyperbolic plane
H

2, where these differ substantially from the euclidean plane E2.

Thin triangles in the hyperbolic plane

The incircle of a triangle ∆ (in E2 or H2) is the circle contained in ∆ which is
tangent to all three sides of ∆. The inradius of ∆ is the radius of the incircle. For
example, in E2 if ∆ is an equilateral triangle whose sides have length `, then the
inradius of ∆ is `

2
√

3
. As `→∞, the inradius also tends to ∞.

The situation in H2 is quite different, however. Suppose ∆ = ∆1 is a triangle
in H2 with vertices x, y, z, and let c be the incentre of ∆ (that is, the centre of the
incircle). Now for each t ∈ R+, let xt be the point on the half-line from c through
x, y, z respectively, such that d(c, xt) = t · d(c, x). Define yt, zt in a similar way, and
let ∆t be the triangle whose vertices are xt, yt, zt. The inradius of ∆t is an increasing
function of t. However, this time it does not tend to ∞ as t → ∞. The limiting
situation is an ideal triangle ∆∞, whose vertices all lie on the boundary of H2. Now
all ideal triangles in H2 are congruent, and have area π. This is clearly an upper
bound for the area of the incircle of an ideal triangle, so 1 is an upper bound for the
inradius of ∆∞, and hence also for that of ∆.

In the hyperbolic plane H2, all triangles are thin, in the sense that there is a
bound δ ∈ R (actually, δ = 1) such that the inradius of every triangle is less than
or equal to δ. A consequence of this is that each edge of a hyperbolic triangle is
contained in the 2δ-neighbourhood of the union of the other two edges: if x is a
point on one edge of ∆, then there is a point y on one of the other edges of ∆ such
that d(x, y) ≤ 2δ.

Geodesic and hyperbolic metric spaces

In order to generalise the concept of thin triangles to other metric spaces, and hence
to groups, we need to develop a more general notion of ‘triangle’. A geodesic segment
of length ` in a metric space (X, d) (from x to y) is the image of an isometric
embedding i : [0, `] → X with i(0) = x and i(`) = y. In other words, we have
d(i(a), i(b)) = b − a for all 0 ≤ a ≤ b ≤ `. A (geodesic) triangle ∆ in X (with
vertices x, y, z) is the union of three geodesic segments, from x to y, y to z and z to
x respectively.
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Note that in a metric space (X, d) there may not in general exist a geodesic
segment from x to y (for example, if X is a discrete metric space). If geodesic
segments exist, they need not be unique. For example, in R2 with the `1-metric

d1((a1, a2), (b1, b2)) = |a1 − b1|+ |a2 − b2|,

there are infinitely many geodesic segments from (0, 0) to (1, 1). A geodesic metric
space is one in which there exist geodesic segments between all pairs of points.
(There is no requirement for these geodesic segments to be unique.)

A geodesic metric space X is hyperbolic if all triangles are thin, in the following
sense: there is a (global) constant δ such that each edge of each triangle ∆ in X is
contained in the δ-neighbourhood of the union of the other two sides of ∆.

Examples

1. Every bounded geodesic metric space is hyperbolic. If d(x, y) ≤ B for all x, y,
then automatically any side of a triangle is contained in the B-neighbourhood
of the union of the other two sides.

2. Every tree is a hyperbolic metric space. It is clearly geodesic, since any two
points are connected by a shortest path. Moreover, any side of a triangle is
contained in the union of the other two sides.

3. The hyperbolic plane H2 is a hyperbolic metric space, by the thin triangles
property for H2 described above.

4. More generally, hyperbolic n-space Hn is a hyperbolic metric space by the thin
triangles property for H2 (since any geodesic triangle is contained in a plane.

5. Euclidean space En is not a hyperbolic metric space for n ≥ 2, since E2 does
not satisfy the thin triangles property.

Lemma 3 Let (X, d) and (X ′, d′) be geodesic metric spaces that are quasi-isometric
to one another. If (X, d) is hyperbolic, then so is (X ′, d′) (and conversely).

The proof of this is not difficult, but is quite technical, so I will omit it. Details
can be found, for example, in [4, p. 88]. The key point is that hyperbolicity for
metric spaces is an invariant of quasi-isometry type, which is important because
the metric space defined by a finitely generated group is only well-defined up to
quasi-isometry.
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Hyperbolic groups

If G is a group, with (finite) generating set S, then (G, dS) is not a geodesic metric
space, since dS takes values in N. However, the geometric realization of the Cayley
graph K = |Γ(G,S)| is geodesic, with respect to the natural metric (which is quasi-
isometric to G). If K is hyperbolic as a metric space, then G is called a hyperbolic
group.

The first thing to note is that this property is independent of choice of generating
set, since being hyperbolic is a quasi-isometry invariant. Also, subgroups of finite
index in hyperbolic groups are hyperbolic. Conversely, groups containing subgroups
of finite index that are hyperbolic are themselves hyperbolic.

Examples

1. Every finite group is hyperbolic, because its Cayley graphs are all bounded.

2. Every free group is hyperbolic, because it has Cayley graphs that are trees.
Moreover, if G has a free subgroup of finite index, then G is quasi-isometric
to a free group, and hence hyperbolic.

3. The fundamental group of a surface of genus g ≥ 2 is quasi-isometric to H2,
and hence is hyperbolic.

4. Z× Z is quasi-isometric to E2, and hence is not hyperbolic.

The fact that Z × Z is not hyperbolic shows that not every finitely generated
group is hyperbolic. In fact, a stronger statement than this is true: there are 2ℵ0

isomorphism classes of finitely generated groups, but only ℵ0 of these are hyperbolic.
How do we know this? Not by examining an uncountable set of groups individu-

ally, but by a simple cardinality argument. The set of all finite group presentations is
countable, by the standard countability argument. The following is a simple version
of a theorem due to E Rips (see Théorème 2.3 on page 60 of [2]).

Theorem 2 Every hyperbolic group is finitely presented.

Proof. Let G be a hyperbolic group, and let d = dS be the metric on G determined
by some fixed finite generating set S. For each n ∈ N we define

Xn = { g ∈ G | δ(g, 1) ≤ n }

and

Rn = { xyz | x, y, z ∈ Xn, xyz = 1 in G } ∪ { xx−1 | x ∈ Xn } ⊂ F (Xn).

Then
X1 ⊂ X2 ⊂ . . .
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and
R1 ⊂ R2 ⊂ . . .

so if we define Gn = 〈 Xn | Rn 〉 then we obtain a sequence of group homomorphisms

G1 → G2 → . . .→ G∞ = G.

Note first that these homomorphisms are surjective. If g ∈ Xk+1 \ Xk, with
k ≥ 1, then there exist elements u, v ∈ Xk with uvg = 1 in G. Since u, v, g ∈ Xk+1

it follows that uvg ∈ Rk+1, so uvg = 1 in Gk+1. Hence the image of Gk → Gk+1

contains the generating set Xk+1 and so it is surjective.
Next we show that GN → GN+1 is injective (and hence an isomorphism) for all

sufficiently large N . It follows that G ∼= GN for all large N , or equivalently that
G = 〈 XN | RN 〉, so is finitely presented, as claimed.

We fix N � 2δ. Suppose that xyz ∈ RN+1. In other words, x, y, z ∈ XN+1 with
xyz = 1 in G. We have to show that this relation can be deduced from those in
RN . Unfortunately, the elements x, y, z do not in general belong to XN . To make
sense of this, we first choose, for each x ∈ XN+1 \XN , a canonical splitting x = x1x2

with each of d(x1, 1) > δ, d(x2, 1) > δ and d(x, 1) = d(x1, 1) + d(x2, 1). We then
add the generator x and the relation x1x2x

−1 to the presentation for GN to get an
equivalent presentation. Having done this, we now show how to deduce xyz = 1
from the relations in XN together with the canonical splitting relations.

Case 1 x, y ∈ XN , z 6∈ XN .
Let P be the point of the geodesic segment z corresponding to the canonical

splitting z1z2. By the thin triangle property, this is within distance δ of some point
Q on one of the other edges of the geodesic triangle ∆ with vertices at 1, x, xy. The
geodesic PQ, together with the geodesic from Q to the vertex of ∆ opposite the
edge containing Q, divides the geodesic triangle into three smaller triangles, each of
the edges of which has length N or less. It follows that the relation xyz1z2 = 1 can
be deduced from three relations in RN , as required.

Case 2 y, z 6∈ XN .
By case 1 we can assume all (true) relations of the form abc = 1 with a, b ∈ XN

and c ∈ XN+1. Here we proceed exactly as in case 1, starting from the canonical
splitting of z. The point Q may lie on an edge of length N + 1, in which case it
corresponds to a (possibly non-canonical) splitting of x or y - say x = x′1x

′
2 (but still

with x′1, x
′
2 of lengths less than N + 1). Hence the relation x = x′1x

′
2 is one we are

allowed to assume. Finally, we divide ∆ as before into three smaller triangles. This
time it is possible that one of the three triangles has one side of length N + 1, but
all other sides of the smaller triangles have length N or less. By case 1 we are done.

Similar arguments apply to the relations of the form xx−1, x ∈ XN+1 \ XN ,
completing the proof.

�
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Lecture 3: Isoperimetric inequalities and decision

problems

Consider a Jordan curve C in the euclidean plane E2. The Jordan curve theorem
tells us that C bounds a compact domain D in E2. The isoperimetric inequality
compares the area of D to the length of C. To make sense of this, let us assume that
C is nice (smooth, polygonal, piecewise smooth, . . . ) so that it has a well-defined
(finite) length and D has a well-defined (finite) area. A classical result of calculus
of variations says that, for C of fixed length `, the area of D is maximised when
C is a circle (of radius r = `/2π). This maximal area is πr2 = `2/4π. Hence the
isoperimetric inequality for E2 is:

Area(D) ≤ `2

4π
.

Note that the right hand side of this inequality is a quadratic function of `.

We can look at the same thing in the hyperbolic plane H2. Again the maximal
area occurs when C is a circle. In H2 the length of a circle of radius r is 2π sinh(r),
and its area is ∫ r

0

2π sinh(t)dt = 2π(cosh(r)− 1) ≤ 2π sinh(r)

so in this case we have an isoperimetric inequality

Area(D) ≤ `

for domains D bounded by curves of length `. The important difference here is that
the right hand side of the inequality is a linear function of `.

What is the relevance of this for groups?

Let P : 〈 X | R 〉 be a finite presentation of a group G. If w ∈ F (X) is a word
that represents the identity element 1 ∈ G, then it can be expressed, in F (X), as a
product of conjugates of elements of R and their inverses:

w = (u−1
1 rε11 u1) . . . (u−1

n rεnn un),

where ui ∈ F (X), ri ∈ R and εi = ±1. There will in general be infinitely many such
expressions. The least value of n amongst all such expressions is called the area of
w, Area(w).

The notion of area for words representing 1 ∈ G has a geometric interpretation.

Definition A van Kampen diagram or Dehn diagram over the presentation P con-
sists of the following data:
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• A simply-connected, finite 2-dimensional complex M contained in the plane.

• An orientation of each 1-cell of M .

• A labelling function that labels each 1-cell of M by an element of X, such
that the composite label of the boundary of each 2-cell (read from a suitable
starting point in a suitable direction) is an element of R. (Here, an edge
labelled x ∈ X contributes x to the boundary label of the 2-cell if read in the
direction of its orientation, and x−1 if read in the opposite direction.)

The complement of M in the plane is topologically a punctured disc. It also has
a boundary that is a closed path in the 1-skeleton of M . The label of this path is
called the boundary label of the diagram. Note that it is defined only up to cyclic
permutation and inversion.

Lemma 4 There exists a Dehn diagram with boundary label w if and only if w = 1
in G, in which case the minimum number of 2-cells in all Dehn diagrams with
boundary label w is Area(w).

Example P = 〈 x, y, | [x, y] 〉, (where [x, y] means xyx−1y−1),

w = [x2, y2] = (x[x, y]x−1)([x, y])(yx[x, y](yx)−1)(y[x, y]y−1).

Then Area(w) = 4.

x

x x

x x

x

y

y

y

y

y

y

The function f : N→ N defined by

f(`) = max{Area(w) | w ∈ F (X), w = 1 in G, `(w) = `}
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is called the Dehn function, or isoperimetric function for the presentation P . A given
finitely presented group has (infinitely) many possible finite presentations, which can
have very different Dehn functions. However, there are aspects of Dehn functions
that are independent of the choice of presentation, and hence are invariants of the
group G.

Lemma 5 Let P and Q be two finite presentations for a group G, and let f, g be
the corresponding Dehn functions. Then there exist constants A,B,C,D ∈ N such
that

f(n) ≤ Ag(Bn+ C) +D ∀ n ∈ N.

In particular, if g is bounded above by a function that is linear (or quadratic, or
polynomial, or exponential, . . . ) in n, then the same is true for f . These properties
are thus invariants of the group G.

Definition A finitely presented group G has a linear (quadratic, . . . ) isoperimetric
inequality if for some (and hence for any) finite presentation P with Dehn function
f , there is a linear (quadratic, . . . ) function f̂ such that f(n) ≤ f̂(n) ∀ n ∈ N. A
finitely presented group G is hyperbolic if it has a linear isoperimetric inequality.

We have now given two distinct definitions for hyperbolic group. Implicit in this
is an assertion that these two properties are equivalent: the thin triangles condition
is equivalent to the linear isoperimetric inequality condition.

Examples

1. Every finite group is hyperbolic. If G is a finite group, then the Cayley table
for G is a finite presentation for G. In other words, we take G to be the finite
generating set, and the set of all true equations xy = z in G for the set of
defining relations. Given a word w ∈ F (G) such that w = 1 in G, what is
Area(w)? If w has length 3, then it is a relation in G. If it has length greater
than 3, then it has the form w = xyu, where x, y ∈ G and u is a word. If z ∈ G
with z = xy, then w = (xyz−1)(zu) with zu shorter than w. An inductive
argument shows that Area(w) ≤ `(w).

2. Every free group is hyperbolic. Indeed, if F = 〈X | − 〉 is the standard presen-
tation, then the empty word 1 is the only cyclically reduced word representing
the identity in F , and Area(1) = 0.

3. The fundamental group of a surface of genus g ≥ 2 is hyperbolic.

This is because of a Theorem of Dehn: let

G = 〈 a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] 〉
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and let w be a word in the generators ai, bi such that w = 1 in G. Then
there exist cyclic permutations w′ = uv of w and r′ = us of the relator
r = [a1, b1] · · · [ag, bg] or its inverse r−1, with a common initial segment u of
length greater than half the length of r, that is `(u) > 2g. It follows that
Area(w) = Area(uv) ≤ Area(s−1v) + 1, while `(w) < `(s−1v). An inductive
argument then shows that Area(w) < `(w).

4. Z×Z is not hyperbolic. Under the presentation G = 〈 x, y | [x, y] 〉, the word
wn = [xn, yn] has area at most n2. Indeed there is a Dehn diagram for wn
which is a square of side length n in E2, subdivided into n2 squares of side
length 1. On the other hand, the boundary of this Dehn diagram is a simple
closed path in E2 bounding a square of area n2, so n2 is a lower bound for the
area of w2

n. Now `(wn) = 4n, so this sequence of words shows that no linear
isoperimetric inequality holds for Z× Z.

The word problem

Let G be a group given by a (finite) presentation 〈 X | R 〉. (Much of what follows
can also be done for certain types of infinite presentation, but let us keep things
simple.) The word problem for G is that of deciding algorithmically whether or not
a given word w in the generating set X represents 1 ∈ G. A solution to the word
problem is an algorithm that, when an arbitrary word w is input, will output YES
or NO after a finite time, depending on whether or not w = 1 in G.

As with most of what we have been doing, this problem appears at first sight
to depend on the choice of finite presentation for G. However, it can be shown to
be independent of this choice. Indeed, given two finite presentations 〈 X | R 〉 and
〈 Y | S 〉 of isomorphic groups G and G′, there are functions X → F (Y ) and Y →
F (X) that induce the isomorphisms. Given an algorithm to solve the word problem
for 〈 X | R 〉 and a word w′ in Y , we can apply the function Y → F (X) to rewrite
w′ as a word w in X, then apply our solution to decide whether or not w = 1 in G.
Since this is true if and only if w′ = 1 in G′, we are done. (NB this solution assumes
the existence of isomorphisms G ↔ G′. Although the practical implementation of
the solution uses one of these isomorphisms, it does not assume that we are able to
find it for ourselves. Indeed, the problem of determining whether or not too given
presentations represent isomorphic groups is another insoluble decision problem,
called the isomorphism problem).

At first sight the word problem seems trivial. We have a very good criterion for
deciding whether or not w = 1 in G: namely, can we express w as a product of
conjugates of elements of R (and their inverses) in F (X)? Why can we not use this
criterion as an algorithm? In fact, this criterion supplies part of the answer, but the
other part is missing, in general.
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Since X and R are finite sets, the set F (X) is countable, and hence so is the
set of conjugates of elements of R ∪R−1 by elements of F (X). Hence so also is the
set of all finite products of such conjugates. In principal, the standard proof that
these sets are countable can be transformed into an algorithm to produce an infinite
list that contains all products of conjugates of elements of R ∪ R−1 (possibly with
repetitions). This can be combined with an algorithm to check each element of the
list for equality with w. Once we recognise that w is in the list, we stop and output
the answer YES.

However, what if w 6= 1 in G? Our algorithm will continue to list words forever,
without ever recognising w. It will never give us the desired output NO! We may,
after a long wait, suspect that w 6= 1, but we can never be completely sure. If
our computer runs for 1000 years without producing an output, this could be for
three reasons: w 6= 1; w = 1 but w appears much later than 1000 years in the
computer-generated list; or possibly hardware error.

In fact, it is known that there are finitely presented groups with unsolvable word
problem. In other words, there is no algorithm of the kind we are looking for.
However, for hyperbolic groups there is indeed an algorithm. Because of the linear
isoperimetric inequality, there is a bound on Area(w) for words w such that w = 1
in G, depending only on `(w). Since R is finite, it can easily be shown that there
are only finitely many Dehn diagrams of a given area and length of boundary, and
hence these can be searched in finite time, comparing boundary labels with w. (NB
it is not true that there are only finitely many Dehn diagrams of a given area. For
example, if r ∈ R then there is a Dehn diagram of area 2 for each of the infinitely
many words [r, u], u ∈ F (X). The condition on boundary length is also important
to make this search work.)

Lemma 6 Hyperbolic groups have solvable word problem

This result is not so strong as it might appear. In fact, our argument does not
use the fact that hyperbolic groups have a linear isoperimetric inequality. All that
is required is that the Dehn function be bounded above by some function that we
can compute (a recursive function). This is a much weaker property.

Lemma 7 Let G be a group given by a (finite) presentation with a recursive isoperi-
metric inequality. Then G has soluble word problem.

The conjugacy problem

However, there are other types of decision problem where the stronger hyperbolic
property can be successfully applied.
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Let G be a group with finite presentation 〈 X | R 〉. A solution to the conjugacy
problem for G is an algorithm which, when two words w,w′ in X are input, will
determine in finite time whether or not w,w′ represent conjugate elements of G. As
before, this can be shown to be independent of the choice of presentation.

Lemma 8 If G is hyperbolic, then the conjugacy problem is soluble for G.

Proof. The idea of the proof is roughly as follows. Suppose that w,w′ are words
that represent conjugate elements of G, and that the conjugating element g ∈ G
is represented by some very long word u. Then the relation w′uw−1u−1 = 1 in G
corresponds to a van Kampen diagram of area bounded above by an a priori given
linear function f of `(u). Let x0, . . . , x`(u) and y0, . . . , y`(u) denote the sequences
of vertices along the boundary of the diagram corresponding to the two segments
labelled u. (So that the paths from x0 to x`(u) and from y0 to y`(u) are both labelled
u). Then, roughly speaking, d(xi, yi) is bounded above by some constant multiple
of the constant function f ′(`(u)), where d denotes the path-length metric in the
1-skeleton of the Dehn diagram.

Hence there is a constant N such that, whenever `(u) > N , two of the pairs
(xi, yi) and (xj, yj) of vertices are joined by paths pi, pj of equal lengths and with
equal labels. Cutting the diagram open along pi and pj, and then regluing it by
identifying pi with pj, we get a diagram corresponding to a new relation w′vw−1v−1 =
1 with `(v) < `(u). Hence we can restrict our search for conjugating elements to
those of length less than N . Since there are only finitely many of these, it suffices
to apply the solution to the word problem to a finite number of words. �

The key part of this proof is the notion of the finite bound for the ‘width’ of the
long strip that corresponds to the Dehn diagram for w′uw−1u−1 = 1. The details
of this part of the argument are tricky. The bound has to be calculated without
specific reference to w,w′, except that it depends on m = `(w) and n = `(w′).

For fixed m,n, the area of the potential diagrams under consideration will be
bounded by a linear function of `(u). Since we are working with a given finite
presentation for G, the lengths of relations are also bounded, and hence the number
of edges in the diagram is bounded by a linear function of `(u). If the geodesic
paths connecting the xi to the yi are not of bounded length, then the sums of their
lengths will grow faster than linearly with `(u), leading to arbitrarily complicated
intersections between these paths for very large u, and hence to a contradiction.

An alternative approach to proving this theorem can be found, for example, in
[2, pages 52-56].
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Lecture 4: Further aspects

The Rips Complex

We have already seen that hyperbolic groups are finitely presented, a result I at-
tributed to Rips. It is in fact a special case of a much stronger theorem of Rips,
which I will try to explain in this section. Topologically, the fact that a group G is
finitely presented means that there is a finite simplicial complex Y with G ∼= π1(Y ).
In fact, this condition is both necessary and sufficient for G to be finitely presented.
Moreover, we have a lot of freedom in the choice of Y . For example, we can choose
Y to be 2-dimensional, since the fundamental group of a simplicial complex is de-
termined by its 2-skeleton (the union of all the simplices of dimensions ≤ 2).

Let Y be a finite simplicial complex with G ∼= π1(Y ), and let K be its universal
cover. Then K is a simply connected complex, and there is a simplicial action of G
on K such that Y = K/G is compact. The G-action is free (gx = x⇒ g = 1), and
so in particular it is properly discontinuous. The existence of a simply connected
simplicial complex K and a G-action on K with these properties is yet another
necessary and sufficient condition for G to be finitely generated. (Here the weaker
properly discontinuous condition on the action is sufficient: one can then construct
another simply connected complex K ′ on which G acts freely, again with K ′/G
compact.)

The Rips complex is a particular choice of K for a hyperbolic group G that is
not only simply connected but contractible. Thus the result we want to prove is the
following.

Theorem 3 (Rips) Let G be a hyperbolic group. Then there exists a simplicial
complex K and an action of G on K such that

1. G acts properly discontinuously on K;

2. K/G is compact;

3. K is contractible.

For the proof, we will fix a finite generating set S for G, and a positive real num-
ber δ such that G is δ-hyperbolic. We will actually construct a simplicial complex
Pn(G) on which G acts, for every natural number n.

Define
Pn(G) = {Y ⊂ G | Y 6= ∅ & diamS(Y ) ≤ n}.

Some explanation is required here. Firstly, diamS(Y ) denotes the diameter of
the set Y with respect to the metric dS:

diamS(Y ) = max{dS(x, y) | x, y ∈ Y }.
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Secondly, what we have defined here is a collection of subsets of G. They are all
finite subsets, since each Y ∈ Pn(G) is contained in a ball of radius n, which has only
finitely many elements. They are nonempty sets by definition. We are implicitly
identifying a (k + 1)-element set Y with a k-simplex whose vertex set is Y . Clearly

∅ 6= X ⊂ Y ∈ Pn(G)⇒ X ∈ Pn(G),

so our collection of simplices Pn(G) is closed with respect to faces. It also follows
from this that two simplices of Pn(G) are either disjoint or intersect in a common
face of both. These are the defining properties for simplicial complexes, so Pn(G) is
indeed a simplicial complex, as claimed.

There is a natural action of G on Pn(G): if g ∈ G and Y = {x0, . . . , xk} ∈ Pn(G),
then

Y g = {x0g, . . . , xkg} ∈ Pn(G).

Since G is acting by permuting simplices, the action is simplicial.
We next note that the first two properties in Rips’ Theorem hold automatically

for all natural numbers n.

Claim 1 G acts properly discontinuously on Pn(G) for all n.

To see this, note first that the set of vertices (or 0-simplices) of Pn(G) is just
G (or, more correctly, the set of 1-element subsets of G), with G acting by right
multiplication. If Y is a k-simplex and g ∈ G with Y ∩ Y g 6= ∅, then x = yg for
some x, y ∈ Y , so g = y−1x with x, y ∈ Y . There are only finitely many such g.
Hence G acts properly discontinuously, as claimed.

Claim 2 Pn(G)/G is compact for all n.

It is enough to show that there are only finitely many orbits of simplices in
Pn(G). If Y = {x0, . . . , xk} ∈ Pn(G) then Y ′ = Y x−1

0 ∈ Pn(G) with 1 ∈ Y ′. But
then Y ′ is contained in the n-neighbourhood of 1, which is finite. There are thus
only finitely many possibilities for Y ′, so only finitely many orbits of simplices.

For the third property of Pn(G) the value of n is important. For example, P0(G)
is just the discrete set G regarded as a 0-dimensional simplicial complex, so it is
not even connected (unless G is the trivial group). The point of Rips’ Theorem is
that the hyperbolic property of G ensures that Pn(G) is contractible for large n. To
specify what we mean by large n, recall that we have fixed a metric d = dS on G,
with respect to which G is δ-hyperbolic for some real number δ.

Proposition 1 If n > 4δ + 2, then Pn(G) is contractible.

Proof. If not, then there is a nonzero homotopy group πt(Pn(G)) 6= 0, so a continuous
map f : St → Pn(G) that is not homotopic to a constant. The image of f is compact,
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so contained in a finite subcomplex K of Pn(G). It is therefore sufficient to show
that every finite subcomplex K is contractible to a point 1 within Pn(G).

Let X denote the (finite) set of vertices of the (finite) subcomplex K of Pn(G).
We argue by induction on

ν =
∑
x∈X

d(1, x).

Another useful parameter is

µ = max
x∈X

d(1, x).

If µ ≤ n/2 then for any x, y ∈ X we have

d(x, y) ≤ d(x, 1) + d(1, y) ≤ n

2
+
n

2
= n,

so X is the vertex set of a simplex of Pn(G), which is therefore contractible (to 1),
and K is a union of faces of this simplex. The result is therefore true in this case,
which includes the initial case of the induction.

Suppose then that µ > n/2, and choose x1 ∈ X with d(1, x1) = µ. There is a
geodesic γ in the Cayley graph Γ = Γ(G,S) from 1 to x1, and we define x0 ∈ G to
be the point on this geodesic with d(x0, x1) = [n/2], the integer part of n/2. We
now define a map f : X → G by

f(x) =

{
x (x 6= x1)
x0 (x = x1)

Now f(X) is a finite set whose ν parameter is less than that of X, so we can apply the
inductive hypothesis to any subcomplex of Pn(G) with vertex set f(X). To complete
the inductive argument, it is sufficient to show that f extends to a simplicial map
f : K → Pn(G) that is homotopic to the identity map on K. If ∆ is a simplex of K
that does not contain x1, then f is the identity on ∆, so it is enough to consider the
action of f on simplices that contain x1. Let ∆ be such a simplex, and D its vertex
set. I claim that D ∪ {x0} is the vertex set of a simplex ∆′ of Pn(G). Then ∆ and
f(∆) will be faces of ∆′, so f will be simplicial and homotopic to the identity on ∆.

To prove the existence of ∆′, we need only check that any two of its vertices
are no more than n apart in the metric d = dS. This is true by definition for two
vertices of ∆, so we need only prove that d(x0, y) ≤ n for every vertex y ∈ ∆: in
other words, we must prove that

[d(x1, y) ≤ n & d(1, y) ≤ µ = d(1, x1)]⇒ d(x0, y) ≤ n.

Choose geodesics α from 1 to y and β from y to x1 in Γ. Then α, β, γ are the
sides of a geodesic triangle in Γ, and x0 is a point on γ. By the thin triangle property
there is a point z on α ∪ β such that d(x0, z) < δ.
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Case 1: z ∈ α.

Then d(1, z) = d(1, y)− d(y, z) ≤ µ− d(y, z) and so

µ = d(1, x1) ≤ d(1, z) + d(z, x0) + d(x0, x1) ≤ µ− d(y, z) + δ + [n/2].

Thus d(y, z) ≤ δ + [n/2] and so

d(y, x0) ≤ d(y, z) + d(z, x0) ≤ δ + [n/2] + δ < n.

Case 2: z ∈ β.

Then [n/2] = d(x0, x1) ≤ d(x0, z)+d(z, x1) ≤ δ+d(z, x1), so d(z, x1) ≥ [n/2]−δ.
Moreover, d(y, z)+d(z, x1) = d(y, x1) ≤ n, so d(y, z) ≤ n− [n/2]+δ ≤ [n/2]+1+ δ.
Finally,

d(y, x0) ≤ d(y, z) + d(z, x0) ≤ [n/2] + 1 + δ + δ ≤ n.

�

Boundary of a hyperbolic group

The ordinary hyperbolic plane, when considered in the Poincaré disc model, has a
natural boundary - the ‘circle at infinity’. Similarly, hyperbolic space of dimension n
has a natural boundary which is an (n−1)-sphere. There are analogous constructions
for geodesic metric spaces in general, and for hyperbolic groups in particular.

The purpose of this section is to describe this construction and an application
to the structure of hyperbolic groups. We will omit most of the technical details for
the benefit of expositional clarity. We refer the reader to [2, 4] for more rigorous
treatments.

Consider first the hyperbolic plane H2. In the Poincaré disc model, this is the
interior of the unit disc in R2: {x ∈ R2, ||x|| < 1}. The boundary of the disc,
∂H2 = S1 = {x ∈ R2, ||x|| = 1} is a compact space. Indeed the union

H̄
2 = H2 ∪ ∂H2

is a compact space in which H2 is an open dense subset, so is a natural compactifica-
tion of H2. There are various ways of thinking about the boundary S1, any of which
can be used to produce the analogous constructions for hyperbolic metric spaces in
general.

I will describe only one of these ideas. Fix a basepoint x0 ∈ H2. (In the Poincaré
disc model, one should think of x0 as being the euclidean origin (0, 0).) The set
of geodesic rays starting at x0 is naturally identified with S1 ⊂ E2. Each such ray
meets the boundary in a unique point, so we get an identification ∂H2 ∼= S1. The
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advantage of this approach is that it induces a metric on ∂H2, using the euclidean
or spherical metric on S1. The metric depends on the choice of base-point, but the
underlying topology does not.

From now on, we consider a hyperbolic group G, with a fixed generating set S,
and corresponding Cayley graph Γ = Γ(G,S). For our basepoint x0, we make the
canonical choice of the identity element 1 ∈ G = V (Γ). We then consider geodesic
rays from x0 (that is, isometries [0,∞)→ Γ with 0 7→ x0).

For some purposes, it is useful to be able to vary the starting point of the geodesic,
so that we relax the condition 0 7→ x0.

Two geodesics g, h are said to be equivalent if {d(g(t), h(t)), t ∈ [0,∞) is bounded.
Then ∂G = ∂Γ is defined to be the set of equivalence classes of geodesic rays.

Examples

1. If G is finite, then ∂G = ∅.

2. If G is an infinite cyclic group, then ∂G = {−∞,+∞}.

3. If G is a Fuchsian group, then the Cayley graph Γ embeds quasi-isometrically
in H2. Every geodesic ray in Γ can be approximated by a geodesic ray in
H

2, and vice versa, so that there is a natural identification between ∂G and
∂H2 ∼= S1.

4. Similarly, if G is a Kleinian group, then ∂G = ∂H3 = S2.

5. If G is a nonabelian free group, then Γ is a tree and ∂G is a Cantor set.

Remark In the above examples, we have made no explicit mention of the particular
generating set of G chosen to determine ∂G. It is not difficult to see that the
definition of ∂G does not depend on the choice of generating set. Indeed, ∂G is an
invariant of quasi-isometry, so for example ∂G = ∂H if H is a subgroup of finite
index in G.

Also implicit in the above examples is the existence of a natural topology on ∂G.
In fact, we can define a metric on ∂G. As with the hyperbolic plane H2, the metric
on ∂G will depend on our choice of base-point, although the resulting topology does
not. This is important for what follows. We use the canonical choice of the identity
element of G to be the base-point. Given two elements x, y ∈ G, we define the
Gromov inner product

〈x|y〉 =
d(1, x) + d(1, y)− d(x, y)

2
.

A good way to think of this is as follows. Recalling the thin triangles property
of hyperbolic metric spaces, we see that two travellers moving from 1 to x and y
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respectively along suitable geodesics will remain close together (less than 2δ apart)
for a certain distance, before beginning to diverge rapidly. The inner product 〈x|y〉
measures approximately the length of time that the two travellers remain close
together. In particular, 〈x|y〉 = 0 if and only if the travellers diverge immediately,
that is, iff there is a geodesic from x to y that passes through 1.

The inner product extends to the boundary by taking limits as x and/or y vary
along geodesic rays. The inner product on G is enough to recover the original metric,
but we have to be slightly more subtle to define a metric on ∂G.

Definition Choose ε > 0. Define ρε(a, b) = exp(−ε〈a|b〉) for a, b ∈ ∂G, and

dε(a, b) = inf
n∑
i=1

ρε(ai−1, ai),

the infimum being taken over all finite sequences a0, . . . , an ∈ ∂G with a0 = a and
an = b.

Then dε is a metric on ∂G for sufficiently small ε. In general ρε is not a metric,
because it does not satisfy the triangle inequality. It turns out that Ḡ = Γ ∪ ∂G is
a compact topological space, such that the subspace topology induced on ∂G is the
same as that induced by the metric dε.

To apply the boundary of G to obtain results about its algebraic structure, we
use the fact that elements of G act by isometries on the Cayley graph Γ. This
action extends to Ḡ as an action by homeomorphisms. Not isometries, as we have
not defined a metric on Ḡ! In general, the restriction of the action to ∂G is also not
by isometries, since the metric on ∂G depends on the base-point, which is not fixed
by the isometries of Γ in question.

Lemma 9 Any element of G acts on Γ with bounded orbits if and only if it has
finite order. Any element of infinite order in G fixes a point of ∂G.

Proof. Clearly, if g ∈ G has finite order n, then its orbits have the form

{h, gh, . . . , gn−1h},

and so are bounded. Conversely, an orbit of g is bounded if and only if it is finite,
which can happen if and only if g has finite order. If g has infinite order, then the
sequence 1, g, g2, . . . can be approximated by a geodesic ray, and so tends to a limit
a ∈ ∂G. �

We can apply this fact to the study of centralisers in G. Suppose x has infinite
order, and a = limn7→∞ x

n ∈ ∂G as in the proof of the Lemma. If y belongs to the
centraliser of x in G, then yxn = xny for all n, so

d(yxn, xn) = d(1, x−1yx) = d(1, y)
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is constant. It follows that y maps the geodesic ray that approximates the sequence
1, x, x2 . . . to one a bounded distance from the original (in other words, another
geodesic ray in the same equivalence class). Hence y fixes a ∈ ∂G. We can therefore
study the centraliser of G by analysing the dynamics of the stabiliser of a acting on
∂G.

From the thin triangles property, it is easy to deduce that there is in fact a global
bound on the distance between two equivalent geodesic rays for large t, provided
that one is allowed to vary the starting point of one of the rays. If D is an upper
bound for d(g(t), h(t)), and T � t� D, then the point h(t) on the geodesic for h(0)
to h(T ) must be close to some point y on the geodesic from g(0) to h(T ) (since it is
not close to any point of the geodesic from h(0) to g(0)). Similarly, y is close to some
point on the geodesic from g(0) to g(T ), ie to g(t+u) for some u. Once one analyses
this argument, one obtains the following global bound. If g, h are equivalent rays,
then there are real numbers C, u such that

d(g(t), h(t− u)) ≤ 16δ∀t > C.

Returning to the study of centralisers, one can show that only finitely many of
elements of the centraliser of x give rise to a given value of u in the above inequality,
from which it follows that 〈x〉 has finite index in its centraliser.

Theorem 4 The centraliser of an element x of infinite order in a hyperbolic group
G contains the cyclic group 〈x〉 as a subgroup of finite index.

Corollary 1 No hyperbolic group contains a free abelian subgroup of rank 2.

Corollary 2 The group Z× Z is not hyperbolic

Corollary 3 The only knot group which is hyperbolic is the infinite cyclic group
(the group of the unknot).

Proof. The group of any nontrivial knot contains a peripheral subgroup (that is,
the fundamental group of the boundary of a regular neighbourhood of the knot)
isomorphic to Z× Z. �
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