
Boolean functions with long prime implicants

Ondřej Čepek and Petr Kučera and Stanislav Kuřı́k∗

Departement of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Abstract

In this short note we introduce a class of Boolean func-
tions defined by a minimum length of its prime implicants.
We show that given a DNF one can test in polynomial time
whether it represents a function from this class. Moreover, in
case that the answer is affirmative we present a polynomial
time algorithm which outputs a shortest DNF representation
of the given function. Therefore the defined class of func-
tions is a new member of a relatively small family of classes
for which the Boolean minimization problem can be solved in
polynomial time. Finally, we present a generalization of the
above class which is still recognizable in polynomial time,
and for which the Boolean minimization problem can be ap-
proximated within a constatnt factor.

Introduction
One of the most commonly used representations of Boolean
functions are DNFs (disjunctive normal forms). For a given
function there are typically many different DNFs represent-
ing it, which may significantly vary in length. In some ap-
plications an important problem is the following: for a given
function find a shortest DNF among all of its possible DNF
representations. For instance, in artificial intelligence this
problem is equivalent to finding a most compact representa-
tion of a given knowledge base (Hammer and Kogan 1993;
1994). Such a transformation of a knowledge base accom-
plishes a knowledge compression, since the actual knowl-
edge does not change, while the size of the representa-
tion can be significantly reduced. In general, this problem,
known as Boolean minimization (BM), can be stated as fol-
lows: given a DNF Φ find a DNF Φ′ representing the same
function and such that Φ′ consists of a minimum possible
number of terms.

It is easy to see that BM is NP-hard as it contains the
DNF falsifiability problem (FALS) as its special case (a non-
falsifiable Boolean function, i.e. a tautology, can be trivially
recognized from its shortest DNF representation). In fact,
BM was shown to be probably harder than FALS: while
FALS is NP-complete (i.e. Σp

1-complete) (Cook 1971),
BM is Σp

2-complete (Umans 2001) (see also the review pa-
per (Umans, Villa, and Sangiovanni-Vincentelli 2006) for

∗The first two authors gratefully acknowledge a support by the
Czech Science Foundation (grant P202/10/1188)

related results). BM remains NP-hard even for some classes
of Boolean functions for which FALS is solvable in polyno-
mial time. The best known example of such a class are Horn
functions (see (Ausiello, D’Atri, and Sacca 1986; Boros
and Čepek 1994; Čepek 1995; Hammer and Kogan 1993;
Maier 1980) for various BM intractability results).

On the positive side, it is long known that a polynomial
time BM algorithm exists for quadratic DNFs. Later, (Ham-
mer and Kogan 1995) introduced two subclasses of Horn
functions, acyclic and quasi-acyclic functions, for which
BM is solvable in polynomial time as well. This result was
then generalized in (Boros et al. 2010), where a class of
CQ-Horn functions containing both of the above mentioned
subclasses of Horn functions was defined, and a polynomial
time BM algorithm for CQ-Horn functions was presented.

The Boolean minimization problem can be also consid-
ered in a different context, where the input function is not
given by a DNF but instead by a zero-one matrix, where
rows correspond to all truepoints and columns to all prime
implicants of the function (let us call such a matrix a TPI
matrix). An entry of the TPI matrix is one if and only if
the corresponding prime implicant covers the corresponding
truepoint, i.e if the implicant evaluates to one on the given
Boolean vector. Note, that both the number of rows and the
number of columns of a TPI matrix can be exponential with
respect to the size of a DNF representation of the given func-
tion.

Clearly, prime DNF representations of the given function
are then in a one-to-one correspondence to those subsets
of columns (sets of prime implicants) which cover all true-
points. Finding a minimum (prime) DNF is then equivalent
to finding a minimum set cover in an instance where true-
points are the elements of the base set and prime implicates
correspond to the system of subsets from which the mini-
mum cover should be selected. Of course, since the set cover
problem is known to be NP-hard (Garey and Johnson 1979),
this approach does not yield a polynomial time Boolean
minimization algorithm even when the input is given by a
TPI matrix instead of a DNF. However, when searching for
classes of Boolean functions which admit polynomial time
BM, one may try to look at those cases where (a) the TPI
matrix can be generated from the input DNF in polynomial
time, and (b) the resulting set cover problem can be solved
in polynomial time.

One such case arises when each prime implicant of the
input DNF covers at most two truepoints, or in other words
when each prime implicant has length at least n − 1, where
n is the number of variables. We shall call a class of such
DNFs LPI(1). In such a situation the set cover problem on
the TPI matrix reduces to an edge cover problem on an undi-
rected graph, which is solvable in polynomial time (Norman
and Rabin 1959), and so condition (b) holds. We show in
this paper, that also (a) is true by proving that a simple vari-
ant of the consensus method can be used to generate the
TPI matrix in polynomial time with respect to the length of
any input DNF. The same procedure also tests for any input
DNF whether all its prime implicants are long enough, i.e.
the recognition problem for the class LPI(1) is solvable in
polynomial time as well. In fact we show a more general
result. We define a class LPI(k) as the class of those DNFs
which have all prime implicants of length at least n − k,
and we prove that for any constant k both the recognition
problem for LPI(k) and the problem of generating the TPI
matrix are solvable in polynomial time with respect to the
length of the input DNF. Finally, we show that for LPI(k)
(where k > 1 is a constant) a known approximation algo-
rithm for the set cover problem with a bounded set size (Duh
and Fürer 1997) can be turned into an approximation algo-
rithm for BM achieving a constant approximation ratio.

Definitions and results
A Boolean function f on n propositional variables
x1, . . . , xn is a mapping f : {0, 1}n 7→ {0, 1}. Proposi-
tional variables x1, . . . , xn and their negations x1, . . . , xn
are called literals (positive and negative literals, respec-
tively). A conjunction of literals

T =
∧
i∈I

xi ∧
∧
j∈J

xj (1)

is called a term, if every propositional variable appears in it
at most once, i.e. if I ∩ J = ∅. We often do not write the
conjunction operator explicitely, e.g. instead of x∧ y∧ z we
use xyz. For two Boolean functions f and g we write f ≤ g
if

∀(x1, . . . , xn) ∈ {0, 1}n

[f(x1, . . . , xn) = 1 =⇒ g(x1, . . . , xn) = 1].
(2)

Since each term is in itself a Boolean function, formula (2)
also defines the meaning of inequalities T1 ≤ T2, T1 ≤ f ,
and f ≤ T1, where T1, T2 are terms and f is a Boolean
function.

We say that a term T1 absorbs another term T2 if T2 ≤ T1
(i.e. literals in T1 form a subset of literals in T2, e.g. term
xz absorbs term xyz). A term T is called an implicant of a
function f if T ≤ f . An implicant T is called prime, if there
is no distinct implicate T ′ absorbing T , or in other words, an
implicant of a function is prime if dropping any literal from
it produces a term which is not an implicate of that function.
The set of all prime implicants of function f will be denoted
by PI(f).

It is a well-known fact that every Boolean function f can
be represented by a disjunction of terms (see e.g. (Gene-
sereth and Nilsson 1987)). Such an expression is called a

disjunctiove normal form (or DNF) of the Boolean function
f . It should be noted that a given Boolean function may
have many DNF representations. If two distinct DNFs, say
Φ1 and Φ2 represent the same function, we say that they are
equivalent, and denote this fact by Φ1 ≡ Φ2. A DNF Φ
representing function f is called prime if each term of Φ is
a prime implicant of function f . The unique DNF consist-
ing of all prime implicants of function f , i.e. all implicants
in PI(f) is called the canonical DNF of f . We shall often
treat a DNF as a set of its terms.

Boolean minimization problem is defined as follows.
Given DNF Φ representing a function f , find a shortest
equivalent DNF which also represents f . We can measure
length of Φ by various measures, however in this paper we
shall consider only the number of terms in Φ and by “short-
est” we shall always mean “with the least number of terms”.

Now we are ready to define the central notion of this pa-
per. We shall say, that Boolean function f on n variables
belongs to class LPI(k), where LPI stands for long prime
implicants, if every prime implicant of f contains at least
n− k literals.

Consensus method and LPI(k)
In this section we shall recall a well know consensus pro-
cedure (which is called resolution method in case of CNFs)
and we shall investigate its behaviour on a DNF belonging
to class LPI(k).

Definition 1 (Consensus) We say, that terms T1 and T2
have a conflict in variable x, if x appears positively in one
of them and negatively in the other. If T1 and T2 have ex-
actly one conflict, then we say, that they have a consensus.
In this case we can write T1 = xT̃1 and T2 = xT̃2 for some
propositional variable x and some terms T̃1 and T̃2 which
have no conflict. The terms T1 and T2 are called parent
terms and the conjunction CONS(T1, T2) = T̃1T̃2 is called
the consensus of T1 and T2.

The following is an easy lemma (Büning and Letterman
1999; Quine 1955) and it lies at the basis of consensus pro-
cedure, also called Quine’s procedure.

Lemma 2 Let T1 and T2 be two implicans of a Boolean
function f which have a consensus. Then CONS(C1, C2)
is also an implicant of f .

The consensus procedure (Büning and Letterman 1999;
Quine 1955) consists of repeating two basic operations, re-
moving absorbed terms and adding a non-absorbed consen-
sus of two terms. When none of these operations would
modify the current DNF, the procedure stops, and at that
time, the current DNF consists of all prime implicants of the
given Boolean function.

CONSENSUS PROCEDURE(Φ)
Input: DNF Φ, representing Boolean function f
Output: Canonical DNF of f

while one of the following conditions applies do
if there exist two terms C and D in Φ such that
C absorbs D then

Φ← Φ \ {D}
if there exist two terms C and D in Φ

with consensus X = CONS(C,D)
which is not absorbed by any other term in Φ then

Φ← Φ ∨ {CONS(C,D)}
end while
return Φ

It can be shown (Büning and Letterman 1999; Quine
1955), that this algorithm always finishes and that it cor-
rectly returns canonical DNF of function f given by input
DNF Φ. We shall show, that if every implicant of f has
length at least n − k, i.e. if f belongs to class LPI(k), then
the Consensus Procedure runs in polynomial time if k is a
fixed constant. Note, that this is not true in general as there
is a DNF Φ with m terms such that the number of prime
implicant of the function it represents is exponential in m,
an example of such a formula can be found in (Crama and
Hammer 2008). We shall show that this situation cannot oc-
cur if the input DNF represents a function from LPI(k). First
we shall bound number of prime implicants by a polynomial
in the number of truepoints.
Lemma 3 Let f be an n-variable Boolean function which
has m true points. Then in every DNF representation of f ,
the maximum number of distinct terms of length d ≤ n is

2m

2n−d

(
dlog2me
n− d

)
Proof. In the proof we shall use geometric interpretation of a
subcube corresponding to function f . As we already know,
every term of length n is uniquely determined by a single
Boolean point (the only one it covers or vice versa, the only
one which makes it equal 1) or a vertex in the Boolean hy-
percube, every term of length n−1 is determined by a unique
pair of Boolean points (an edge in the Boolean hypercube),
every term of length n− 2 is uniquely determined by a four-
some of Boolean points (a 2-dimensional cube) and so on.
Following this pattern, the number of distinct terms of length
d ≤ n in any DNF representation of f is bounded by the
number of (n − d)-dimensional subcubes in the maximal
possible subcube of an n-dimensional Boolean hypercube
consisting of m vertices. An n-dimensional hypercube con-
sists of 2n vertices and thus the maximum dimension of a
subcube made of m vertices is dlog2me. Notice, that in an
r-dimensional hypercube there is

(
r

r−k
)

=
(
r
k

)
ways to pick

(r−k) coordinates and 2r−k ways to fix these coordinates to
a given vector. Thus an r-dimensional hypercube contains(

r

k

)
2r−k

k-dimensional subcubes. Now if we set r = dlog2 ne and
k = n − d, the number of distinct terms of length d in
any DNF representation of an n-variable Boolean function
which has m true points is bounded from above by

2dlog2 me−(n−d)
(
dlog2me
n− d

)
≤ 2m

2n−d

(
dlog2me
n− d

)
where the inequality follows from a simple fact that
dlog2me ≤ 1 + log2m �

Now we are ready to show, that the number of prime im-
plicants of a function f from LPI(k) represented by a DNF
with r terms is polynomial in r although it may be exponen-
tial in k.

Lemma 4 Let f ∈ LPI(k) and φ be an arbitrary DNF rep-
resentation of f with r terms. Then the number of distinct
implicants of f is at most 2(2k + 2dlog2 re)krk.

Proof. Let us suppose we are given DNF φ representing n-
variable Boolean function f ∈ LPI(k). We will denote by ri
the number of terms of length i present in φ. By assumption,
ri = 0 for i = 0, 1, . . . , n − k − 1. Because every term in
φ of length d determines exactly 2n−d true points of f , it is
clear that f has at most

2krn−k + 2k−1rn−(k−1) + · · ·+ 2rn−1 + rn

≤ 2k(rn−k + rn−(k−1) + · · ·+ rn−1 + rn)

= 2kr

true points. From Lemma 3 we get that there may be at most

2 · 2k+d−nr

(
k + dlog2 re

n− d

)
implicants of length d, for n−k ≤ d ≤ n. In total this gives
the following bound on the number of implicants f can have:

|PI(f)| ≤
n∑

d=n−k

2 · 2k+d−nr

(
k + dlog2 re

n− d

)

≤ 2 · 2kr
n∑

d=n−k

(
k + dlog2 re

n− d

)
≤ 2(2k + 2dlog2 re)krk

which is obviously polynomial in r. �

As an immediate corollary of Lemma 4 we get, that
the Consensus Procedure, if implemented properly, runs in
polynomial time on a DNF which represents a function from
LPI(k). .

Theorem 5 Let k be a fixed constant. Then the Consensus
Procedure can be implemented to run in polynomial time on
DNFs representing functions from class LPI(k).

Proof. Let Φ denote a DNF which consists of r terms and
represents a function from LPI(k). Let Φ be the input of the
Consensus Procedure, and let us consider a variant of the
Consensus Procedure which runs in two phases. In the first
phase, it computes the resolution closure of Φ, i.e. it deter-
mines all implicants, which can be derived by consensuses
from Φ, and in the second phase, all non-prime implicants
are removed from the list.

The first phase can be implemented using a listL of terms,
which at the beginning is initialized with terms from Φ, then
in a cycle procedure traverses L from the beginning and
when considering a term T in the list, it considers every
term S which are before T in L. If T and S have consen-
sus X = CONS(T, S), which is not yet present in L, then

X is appended at the end of the list. When all terms from
the list have been processed, then the first phase stops. It is
not hard to observe, that after the first phase all implicants
which can be derived by consensuses from Φ are present in
list L, moreover running time of this phase is bounded by
polynom in the final size of L, which in case of Φ being in
LPI(k) is at most 2(2k + 2dlog2 re)krk by Lemma 4.

In the second phase the procedure traverses the list an
checks for absorptions, which can be easily done in poly-
nomial time in the length of L.

Together we get, that the running time is polynomial in
2(2k + 2dlog2 re)krk, which is polynomial in r if k is a
fixed constant. �

Note, that the implementation of the Consensus Procedure
described in the proof of Theorem 5 is certainly not the best
one, but it is sufficient to make a polynomial running time
estimate, which is what we need. It is now obvious, how the
Consensus Procedure can be used to check, whether an arbi-
trary DNF Φ belongs to class LPI(k). We reject the input as
soon as an implicant which is shorter than n−k is generated.
If no such implicant occurs during the Consensus Procedure
on Φ, we can answer that Φ indeed represents a function
which belongs to class LPI(k). Moreover, in such a case all
prime implicants of Φ were generated. Since also the num-
ber of truepoints of function f represented by Φ (assuming
that Φ has r terms of length at least n− k) is bounded from
above by r2k, it is obvious that the TPI matrix of f can be
generated from Φ in polynomial time.
Corollary 6 Let k be a fixed constant and Φ an arbitrary
DNF. We can check in polynomial time whether Φ represents
a function from LPI(k), and if so, we can generate the TPI
matrix of the function in polynomial time as well.

Minimization of LPI(k)
It is a long known fact, that finding a shortest (with respect
to the number of terms) representation of a Boolean func-
tion given by the set of its truepoints, can be viewed as a
hyperedge covering problem in a hypergraph. In case of a
general hypergraph this is equal to SET COVER which is a
well-known NP-complete problem, but in case of a graph,
it corresponds to an edge covering problem, which can be
solved in polynomial time by matching techniques. In this
section we shall describe, how this fact can be used to a poly-
nomial minimization of an LPI(1) function and how SET
COVER approximation algorithms can be used to approxi-
mate a shortest representation in case of a general LPI(k)
class.

We shall start by associating a hypergraph to Boolean
function f , whic has a set of truepoints T (f). We shall de-
note this hypergraph Hf = (Vf , Ef). Its vertices will con-
sist of the truepoints, i.e. Vf = T (f), its hyperedges will
correspond to sets of truepoints satisfied by the same prime
implicant of f . In particular, let S be a prime implicant of f
and let us denote

ES = {v ∈ T (f) | S(v) = 1},
now the set of hyperedges is defined as

Ef = {ES | S ∈ PI(f)}.

It can be observed, that the number of terms in a shortest
DNF representantion of f is equal to the minimum num-
ber of hyperedges which cover all vertices, see e.g. (Berge
1985). In case of general hypergraph, this problem is the
same as a well known SET COVER problem. In case Hf

is actually a graph, this problem corresponds to edge cover
problem in a graph, which can be solved in polynomial time
using matching techniques (Norman and Rabin 1959). This
is the case of functions in LPI(1) and thus we get the follow-
ing theorem.

Theorem 7 Let Φ be a DNF representing a function f
which belongs to LPI(1). Then the shortest DNF represen-
tation of f can be found in polynomial time.

Proof. By Corollary 6 the TPI matrix of f which is equal
to the incidence matrix of Hf can be found in polynomial
time. In fact in this case the polynomial bounding the run-
ning time will have a low degree as k = 1. There are two
kinds of prime implicants of f , let I0 denote the set of prime
implicants of f of length n and let I1 denoted the set of
prime implicants of f of length n − 1. Obviously, for a
prime implicant S ∈ I0 then there exists a uniquely defined
truepoint v, such that S(v) = 1, and for any other prime
implicant S′ 6= S of f we have S′(v) = 0. It follows,
that S is actually an essential implicant and that it has to be
present in any DNF representation of f , or in other words,
I0 corresponds to singleton edges which must be in every
hyperedge cover of Hf . Each prime implicant S ∈ I1has
exactly two truepoints v on which it is satisfied and thus in
this case ES is an edge and if we exclude singleton hyper-
edges, H′f = (T (f), E ′ = {ES | S ∈ I1}) is a graph. Its
edge cover can be found in polynomial time (Norman and
Rabin 1959), let us denote it by F ⊆ E ′. Now let us de-
note the set of corresponding implicants by IF ⊆ I1. Then
I0 ∪ IF forms a shortest DNF representation of f . �

If we consider LPI(k) for k > 1 we can use the same ap-
proach, but in this case we get an instance of SET COVER,
which is NP-complete and remains so even if the size of
largest set is bounded by 3 (Garey and Johnson 1979). So
there is little hope for a polynomial time optimization algo-
rithm like for k = 1.

However, for the d-SET COVER problem, a restriction of
the SET COVER problem where every set has size at most d,
(Duh and Fürer 1997) proposed an approximation algorithm
based on a semi-local optimization technique, leading to the
approximation ratio ofHd − 1

2 where

Hd =
∑d

i=1
1
i

is the dth Harmonic number. Since it is a well-known fact
that the values of the sequence Hd − ln(d) decrease mono-
tonically towards the limit

lim
d→∞

(Hd − ln(d)) = γ

(where γ = 0.577... is the Euler-Mascheroni constant) and
every set in the instance of the SET COVER which arises
from minimizing an LPI(k) function has size at most d = 2k,
we get an approximation algorithm with the approximation
ratio ratio(k) such that

lim
k→∞

(ratio(k)− k) = c

where c = γ − 1
2 . This means that the approximation ratio

ratio(k) for BM in the class LPI(k) asymptotically behaves
like k. For instance for k = 2 we get

ratio(2) = H4 −
1

2
=

19

12
< 2.

The approximation factor for the d-SET COVER problem
was improved by increasing the additive constant by Levin
(Levin 2007) and most recently by Athanassopoulos, Cara-
giannis and Kaklamanis (Athanassopoulos, Caragiannis,
and Kaklamanis 2009).

References
Athanassopoulos, S.; Caragiannis, I.; and Kaklamanis, C.
2009. Analysis of approximation algorithms for k-set cover
using factor-revealing linear programs. Theory of Comput-
ing Systems 45:555–576. 10.1007/s00224-008-9112-3.
Ausiello, G.; D’Atri, A.; and Sacca, D. 1986. Minimal
representation of directed hypergraphs. SIAM Journal on
Computing 15(2):418–431.
Berge, C. 1985. Graphs and Hypergraphs. Elsevier Science
Ltd.
Boros, E., and Čepek, O. 1994. On the complexity of horn
minimization. Technical Report 1-94, RUTCOR Research
Report RRR, Rutgers University, New Brunswick, NJ.
Boros, E.; Čepek, O.; Kogan, A.; and Kučera, P. 2010. Ex-
clusive and essential sets of implicates of boolean functions.
Discrete Applied Mathematics 158(2):81 – 96.
Büning, H. K., and Letterman, T. 1999. Propositional
Logic: Deduction and Algorithms. New York, NY, USA:
Cambridge University Press.
Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In STOC ’71: Proceedings of the third annual ACM
symposium on Theory of computing, 151–158. New York,
NY, USA: ACM.
Crama, Y., and Hammer, P. L. 2008. Boolean functions.
Theory, Algorithms and Applications (draft).
Duh, R.-c., and Fürer, M. 1997. Approximation of k-set
cover by semi-local optimization. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of comput-
ing, STOC ’97, 256–264. New York, NY, USA: ACM.
Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
San Francisco: W.H. Freeman and Company.
Genesereth, M., and Nilsson, N. 1987. Logical Foundations
of Artificial Intelligence. Los Altos, CA: Morgan Kaufmann.
Hammer, P., and Kogan, A. 1993. Optimal compression
of propositional horn knowledge bases: Complexity and ap-
proximation. Artificial Intelligence 64:131 – 145.
Hammer, P. L., and Kogan, A. 1994. Knowledge compres-
sion - logic minimization for expert systems. In Proceed-
ings of IISF/ACM Japan International Symposium, 306–
312. Tokyo: World Scientific, Singapore.

Hammer, P., and Kogan, A. 1995. Quasi-acyclic
propositional horn knowledge bases: Optimal compression.
IEEE Transactions on Knowledge and Data Engineering
7(5):751 – 762.
Levin, A. 2007. Approximating the unweighted k-set
cover problem: Greedy meets local search. In Erlebach, T.,
and Kaklamanis, C., eds., Approximation and Online Algo-
rithms, volume 4368 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg. 290–301.
Maier, D. 1980. Minimal covers in the relational database
model. Journal of the ACM 27:664 – 674.
Norman, R. Z., and Rabin, M. O. 1959. An algorithm for a
minimum cover of a graph. Proc. Amer. Math. Soc. 10:315–
319.
Quine, W. 1955. A way to simplify truth functions.
Amer.Math.Monthly 62:627–631.
Umans, C.; Villa, T.; and Sangiovanni-Vincentelli, A. L.
2006. Complexity of two-level logic minimization.
IEEE Trans. on CAD of Integrated Circuits and Systems
25(7):1230–1246.
Umans, C. 2001. The minimum equivalent dnf problem and
shortest implicants. J. Comput. Syst. Sci. 63(4):597–611.
Čepek, O. 1995. Structural Properties and Minimization of
Horn Boolean Functions. Ph.D. dissertation, Rutgers Uni-
versity, New Brunswick, NJ, October 1995.

