
Twin – A Design Pattern for Modeling Multiple
Inheritance

Hanspeter Mössenböck

University of Linz, Institute of Practical Computer Science, A-4040 Linz
moessenboeck@ssw.uni-linz.ac.at

Abstract. We introduce an object-oriented design pattern called Twin that
allows us to model multiple inheritance in programming languages that do not
support this feature (e.g. Java, Modula-3, Oberon-2). The pattern avoids many
of the problems of multiple inheritance while keeping most of its benefits. The
structure of this paper corresponds to the form of the design pattern catalogue in
[GHJV95].

1. Motivation

Design patterns are schematic standard solutions to recurring software design
problems. They encapsulate a designer's experience and makes it reusable in similar
contexts. Recently, a great number of design patterns has been discovered and
published ([GHJV95], [Pree95], [BMRSS96]). Some of them are directly supported in
a programming language (e.g. the Prototype pattern in Self or the Iterator pattern
CLU), some are not. In this paper we describe a design pattern, which allows a
programmer to simulate multiple inheritance in languages which do not support this
feature directly.

Multiple inheritance allows one to inherit data and code from more than one base
class. It is a controversial feature that is claimed to be indispensable by some
programmers, but also blamed for problems by others, since it can lead to name
clashes, complexity and inefficiency. In most cases, software architectures become
cleaner and simpler when multiple inheritance is avoided, but there are also situations
where this feature is really needed. If one is programming in a language that does not
support multiple inheritance (e.g. in Java, Modula-3 oder Oberon-2), but if one really
needs this feature, one has to find a work-around. The Twin pattern—introduced in
this paper—provides a standard solution for such cases. It gives one most of the
benefits of multiple inheritance while avoiding many of its problems.

The rest of this paper is structured according to the pattern catalogue in [GHJV95]
so that the Twin pattern could in principle be incorporated into this catalogue.

1.1 Example

As a motivating example for a situation that requires multiple inheritance, consider a
computer ball game consisting of active and passive game objects. The active objects

mailto:Moessenboeck@ssw.uni-linz.ac.at

are balls that move across the screen at a certain speed. The passive objects are
paddles, walls and other obstacles that are either fixed at a certain screen position or
can be moved under the control of the user.

The design of such a game is shown in Fig. 1. All game items (paddles, walls,
balls, etc.) are derived from a common base class GameItem from which they inherit
methods for drawing or collision checking. Methods such as draw() and intersects()
are abstract and have to be refined in subclasses. check() is a template method, i.e. it
consists of calls to other abstract methods that must be implemented by concrete game
item classes later. It tests if an item intersects with some other and calls the other
item's collideWith() method in that case. In addition to being game items, active
objects (i.e. balls) are also derived from class Thread. All threads are controlled by a
scheduler using preemptive multitasking.

GameItem

draw()
bool intersects(otherItem)
collideWith(otherItem)
click()
check()

Paddle

draw()
…

Wall

draw()
…

Ball

draw()
move()
click()
…
run()

Thread

run()
suspend()
resume()
sleep()

for (all items x)
 if (intersects(x))
 collideWith(x);

if (suspended) resume();
else suspend();

while (true) {
 draw(); move(); draw();
}

Fig. 1. Class hierarchy of a computer ball game

The body of a ball thread is implemented in its run() method. When a ball thread is
running, it repeatedly moves and draws the ball. If the user clicks on a ball, the ball
sends itself a suspend() message to stop its movement. Clicking on the ball again
sends a resume() message to make the ball moving again.

The important thing about this example is that balls are both game items and
threads (i.e. they are compatible with both). They can be linked into a list of game
items, for example, so that they can be sent draw() and intersects() messages. But
they can also be linked into a list of threads from which the scheduler selects the next
thread to run. Thus, balls have to be compatible with both base classes. This is a
typical case where multiple inheritance is useful.

Languages like Java don't support multiple inheritance, so how can we implement
this design in Java? In Java, a class can extend only one base class but it can
implement several interfaces. Let's see, if we can get along with multiple interface
inheritance here. Ball could extend Thread and thus inherit the code of suspend() and
resume(). However, it is not possible to treat GameItem just as an interface because
GameItem is not fully abstract. It has a method check(), which contains code. Ball

would like to inherit this code from GameItem and should therefore extend it as well.
Thus Ball really has to extend two base classes.

This is the place where the Twin pattern comes in. The basic idea is as follows:
Instead of having a single class Ball that is derived from both GameItem and Thread,
we have two separate classes BallItem and BallThread, which are derived from
GameItem and Thread, respectively (Fig. 2). BallItem and BallThread are closely
coupled via fields so that we can view them as a Twin object having two ends: The
BallItem end is compatible with GameItem and can be linked into a list of game
items; the BallThread end is compatible with Thread and can be linked into a list of
threads.

GameItem

draw()
…
click()
check()

BallItem

draw()
move()
click()
…

Thread

run()
suspend()
resume()
sleep()

if (suspended)
 twin.resume();
else
 twin.suspend();

while (true) {
 twin.draw();
 twin.move();
 twin.draw();
}

BallThread

run()
twin

twin

twin object

Fig. 2. The class Ball from Fig.1 was split into two classes, which make up a twin object

Twin objects are always created in pairs. When the scheduler activates a BallThread
object by calling its method run(), the object moves the ball by sending its twin the
messages move() and draw(). On the other hand, when the user clicks on a ball with
the mouse, the BallItem object reacts to the click and sends its twin the messages
suspend() and resume() as appropriate.

Using only single inheritance, we have obtained most of the benefits of multiple
inheritance: Active game objects inherit code from both GameItem and Thread. They
are also compatible with both, i.e. they can be treated both as game items (draw,
click) and as threads (run). As a pleasant side effect, we have avoided a major
problem of multiple inheritance, namely name clashes. If GameItem and Thread had
fields or methods with the same name, they would be inherited by BallItem and
BallThread independently. No name clash would occur. Similarly, if GameItem and
Thread had a common base class B, the fields and methods of B would be handed
down to BallItem and to BallThread separately—again without name clashes.

2. Applicability

The Twin pattern can be used

• to simulate multiple inheritance in a language that does not support this feature.
• to avoid certain problems of multiple inheritance such as name clashes.

3. Structure

The typical structure of multiple inheritance is described in Fig.3.

Parent1

v1

M1()

Parent2

v2

M2()

Child

v3

M1()
M2()
M3()

Fig. 3. Typical structure of multiple inheritance

It can be replaced by the Twin pattern structure described in Fig.4.

Parent1

v1

M1()

Parent2

v2

M2()

Child1

v3

M1()
M3()

Child2

M2()
twin

twin

Fig. 4. Typical structure of the Twin pattern

4. Participants

Parent1 (GameItem) and Parent2 (Thread)

• The classes from which you want to inherit.

Child1 (BallItem) and Child2 (BallThread)

• The subclasses of Parent1 and Parent2. They are mutually linked via fields. Each
subclass may override methods inherited from its parent. New methods and fields
are usually declared just in one of the subclasses (e.g. in Child1).

5. Collaborations

• Every child class is responsible for the protocol inherited from its parent. It handles
messages from this protocol and forwards other messages to its partner class.

• Clients of the twin pattern reference one of the twin objects directly (e.g. ballItem)
and the other via its twin field (e.g. ballItem.twin).

• Clients that rely on the protocols of Parent1 or Parent2 communicate with objects
of the respective child class (Child1 or Child2).

6. Consequences

Although the Twin pattern is able to simulate multiple inheritance, it is not identical
to it. There are several problems that one has to be aware of:

1. Subclassing the Twin pattern. If the twin pattern should again be subclassed, it is

often sufficient to subclass just one of the partners, for example Child1. In order to
pass the interface of both partner classes down to the subclass, it is convenient to
collect the methods of both partners in one class. One can add the methods of
Child2 also to Child1 and let them forward requests to the other partner (Fig.5).

Parent1

v1

M1()

Parent2

v2

M2()

Child1

v3

M1()
M2()
M3()

Child2

M2()
twin

twin

Sub

M1()
M2()

twin.M2()

Fig. 5. Subclassing a twin class. Child1.M2() forwards the message to Child2.M2()

This solution has the problem that Sub is only compatible with Child1 but not with
Child2. If one wants to make the subclass compatible with both Child1 and Child2
one has to model it according to the Twin pattern again (Fig.6).

Parent1

v1

M1()

Parent2

v2

M2()

Child1

v3

M1()
M3()

Child2

M2()
twin

twin

GrandChild1

M1()

GrandChild2

M2()

gtwin

gtwin

Fig. 6. The subclass of Child1 and Child2 is again a Twin class

2. More than two parent classes. The Twin pattern can be extended to more than two
parent classes in a straightforward way. For every parent class there must be a
child class. All child classes have to be mutually linked via fields (Fig.7).

Parent1

v1

M1()

Parent2

v2

M2()

Child1

v4

M1()
M4()

Child2

M2()

tw1

tw3

Parent2

v3

M3()

Child3

M3()
tw2

tw1

tw2

tw3

Fig. 7. A Twin class derived from three parent classes

Although this is considerably more complex than multiple inheritance, it is rare
that a class inherits from more than two parent classes.

7. Implementation

The following issues should be considered when implementing the Twin pattern:

1. Data abstraction. The partners of a twin class have to cooperate closely. They

probably have to access each others' private fields and methods. Most languages
provide features to do that, i.e. to let related classes see more about each other than
foreign classes. In Java, one can put the partner classes into a common package and
implement the private fields and methods with the package visibility attribute. In
Modula-3 and Oberon one can put the partner classes into the same module so that
they have unrestricted access to each others' components.

2. Efficiency. The Twin pattern replaces inheritance relationships by composition.

This requires forwarding of messages, which is less efficient than inheritance.
However, multiple inheritance is anyway slightly less efficient than single
inheritance [Str89] so that the additional run time costs of the Twin pattern are not
a major problem.

8. Sample Code

We sketch the implementation of the motivating example (a computer game board
with moving balls) in Java. The board is represented by a class GameBoard. It has a
certain width and height and a reference to a list of game items.

public class Gameboard extends Canvas {
 public int width, height;
 public GameItem firstItem;
 …
}

The game items are derived from an abstract class GameItem. Every item has a
reference to the game board, a position on this board and a reference to the next game
item. It has abstract methods to draw itself, to react on mouse clicks, to check whether
it intersects with some other game item and to take measures for a collision with other
game items.

public abstract class GameItem {
 Gameboard board;
 int posX, posY;
 GameItem next;
 public abstract void draw();
 public abstract void click (MouseEvent e);
 public abstract boolean intersects (GameItem other);
 public abstract void collideWith (GameItem other);
 public void check() { … }
}

The method check() is a template method, which checks if this object intersects with
any other object on the board. If so, it does whatever it has to do for a collision.

public void check() {
 GameItem x;
 for (x = board.firstItem; x != null; x = x.next)
 if (intersects(x)) collideWith(x);
}

Balls are twin objects derived from GameItem and Thread. As shown in Fig. 2 we
implement the twin group as BallItem (a subclass of GameItem) and BallThread (a
subclass of Thread). Ball items move at a certain speed (dx, dy) and have to override
the inherited methods draw, click, intersects and collideWith.

public class BallItem extends GameItem {
 BallThread twin;
 int radius;
 int dx, dy;
 boolean suspended;
 public void draw() {
 board.getGraphics().drawOval(posX-radius,
 posY-radius, 2*radius, 2*radius); }
 public void move() { posX += dx; posY += dy; }
 public void click() {…}
 public boolean intersects (GameItem other) {…}
 public void collideWith (GameItem other) {…}
}

In order to simplify things, we assume that balls can only collide with walls, which
are another kind of game items. The intersects method of a BallItem can then be
implemented as

public boolean intersects (GameItem other) {
 if (other instanceof Wall)
 return posX - radius <= other.posX
 && other.posX <= posX + radius
 || posY - radius <= other.posY
 && other.posY <= posY + radius;
 else return false;
}

A collision with a wall changes the direction of the ball, which can be implemented as

public void collideWith (GameItem other) {
 Wall wall = (Wall) other;
 if (wall.isVertical) dx = - dx; else dy = - dy;
}

When the user clicks on a moving ball it stops; when he clicks on a stopped ball it
starts to move again. This is implemented by suspending and resuming the
corresponding ball thread (the twin object).

public void click() {
 if (suspended) twin.resume(); else twin.suspend();
 suspended = ! suspended;
}

The class BallThread is derived from the standard class java.lang.Thread. It has a
reference to its twin class BallItem. The only method that has to be implemented is
run(). The implementation of other methods such as suspend() and resume() is
inherited from Thread.

public class BallThread extends Thread {
 BallItem twin;
 public void run() {
 while (true) {
 twin.draw(); /*erase*/ twin.move(); twin.draw();
 }
 }
}

When a new ball is needed, the program has to create both a BallItem and a
BallThread object and link them together, for example:

public static BallItem newBall
(int posX, int posY, int radius) {//method of GameBoard
 BallItem ballItem = new BallItem(posX, posY, radius);
 BallThread ballThread = new BallThread();
 ballItem.twin = ballThread;
 ballThread.twin = ballItem;
 return ballItem;
}

The returned ball item can be linked into the list of game items in the game board.
The corresponding ball thread can be started to make the ball move.

9. Known Uses

The motivating example of a ball game (Section 1) was implemented as a teaching
exercise in Oberon-2, a language that does not support multiple inheritance. The
Oberon system uses cooperative multitasking. It maintains a list of user processes that
are activated whenever the system is idle. A ball is a special instance of a process and
at the same time a game object.

Another example can be found in the context of Java applets. Applets are active
objects that live on Web pages and react on user input such as mouse clicks. When a
user clicks on an applet, the applet notifies all registered mouse listeners to react on
the event. If an applet wants to react on the click itself, it has to implement the
MouseListener interface, so that it can be registered as an appropriate listener with
itself. It must also extend the class Applet. The following code shows the declaration
of a class MyApplet:

class MyApplet extends Applet implements MouseListener{
 …
}

The MouseListener interface (a standard interface of the Java libraries) specifies 5
methods that have to be implemented in MyApplet:

interface MouseListener extends EventListener {
 public void mousePressed (MouseEvent event);
 public void mouseClicked (MouseEvent event);
 public void mouseReleased (MouseEvent event);
 public void mouseEntered (MouseEvent event);
 public void mouseExited (MouseEvent event);
}

Some of these methods are often identical in different listener implementations. For
example, several listeners change the shape of the cursor in the same way when it
enters or exits the applet area on the screen. Therefore, we would like to have a
prefabricated mouse listener class (StdMouseListener), which already provides
standard implementations for the methods mouseEntered and mouseExited. Other
listeners could then inherit these standard implementations.

We are now in a situation where we would like to inherit code from two classes,
namely from Applet and StdMouseListener, but this is not possible in Java. We can
only inherit from one class. We can, however, apply the Twin pattern, which results
in the following architecture (Fig.8).

Applet

resize()
paint()
…

StdMouseListener

mouseEntered()
mouseExited()
mousePressed()
mouseClicked()
mouseReleased()

MyApplet

paint()

MyAppletListener

mousePressed()
mouseClicked()
mouseReleased()

applet

listener

Fig. 8. A twin applet that inherits code both from Applet and from StdMouseListener

MyApplet inherits code from Applet; MyAppletListener inherits code from StdMouse-
Listener. A MyAppletListener object will be registered as a mouse listener for
MyApplet. When it is notified about a mouse click it accesses its applet to perform an
appropriate action.

In [CaW98] a similar solution is presented using inner classes. MyAppletListener is
implemented there as an inner class of MyApplet. This allows MyAppletListener to
access all private instance variables of MyApplet. No explicit link between the classes
is necessary. However, this solution is asymmetric. MyApplet cannot access the
private instance variables of MyAppletListener.

10. Related Patterns

The Twin pattern is related to the Adapter pattern, especially to the Two-Way-Adapter
described in [GHJV95], which is recommended when two different clients need to
view an object differently. However, the Two-Way-Adapter is implemented with
multiple inheritance while the Twin avoids this feature.

Acknowledgements

The technique described in this paper was discovered by Robert Griesemer in the
implementation of a game program in Oberon. It was also described—although not as
a design pattern—in [Tem93] and [Moe93].

References

[BMRSS96] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M.: Pattern-oriented
Software Architecture: A System of Patterns. Wiley 1996.

[CaW98] Campione M., Walrath K.: The Java Tutorial, 2nd edition, Addison-Wesley, 1998.
[GHJV95] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns – Elements of

Reusable Object-Oriented Software. Addison-Wesley 1995.
[Moe93] Mössenböck H.: Objektorientierte Programmierung in Oberon-2. Springer-Verlag

1993.
[Pree95] Pree W.: Design Patterns for Object-Oriented Software Development. Addison-

Wesley 1995.
[Str89] Stroustrup B.: Multiple Inheritance for C++. Proceedings EUUG Spring Conference,

Helsinki, May 1989.
[Tem93] Templ J.: A Systematic Approach to Multiple Inheritance Implementation. SIGPLAN

Notices 28 (4): 61-66

