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Abstract. A coloring of the vertices of a graph is called convex if each
subgraph induced by all vertices of the same color is connected. We
consider three variants of recoloring a colored graph with minimal cost
such that the resulting coloring is convex. Two variants of the problem
are shown to be NP-hard on trees even if in the initial coloring each color
is used to color only a bounded number of vertices. For graphs of bounded
treewidth, we present a polynomial-time (2+ε)-approximation algorithm
for these two variants and a polynomial-time algorithm for the third
variant. Our results also show that, unless NP ⊆ DTIME(nO(log log n)),
there is no polynomial-time approximation algorithm with a ratio of size
(1 − o(1)) ln ln n for the following problem: Given pairs of vertices in an
undirected graph of bounded treewidth, determine the minimal possible
number l for which all except l pairs can be connected by disjoint paths.
Key words: Convex Coloring, Maximum Disjoint Paths Problem

1 Introduction

A colored graph (G, C) is a tuple consisting of a graph G and a coloring C of
G, i.e., a function assigning each vertex v a color that is either 0 or a so-called
real color. A vertex colored with 0 is also called uncolored. A coloring is an
(a, b)-coloring if the color set used for coloring the vertices contains at most a
real colors and if each real color is used to color at most b vertices. Two equal-
colored vertices v and w in a colored graph (G, C) are C-connected if there is
a path from v to w whose vertices are all colored with the color of u and v. A
coloring C is called convex if all pairs of vertices colored with the same real color
are C-connected. For a colored graph (G, C1), another arbitrary coloring C2 of G
is also called a recoloring of (G, C1). We then say that C1 is the initial coloring
of G and that C2 recolors or uncolors a vertex v of G if C2(v) 6= C1(v) and
C2(v) = 0, respectively. The cost of a recoloring C2 of a colored graph (G, C1)
with G = (V, E) is

∑
v∈V :06=C1(v)6=C2(v) w(v), where w(v) denotes the weight of

v with w(v) = 1 in the case of an unweighted graph. This means that we have
to pay for recoloring or uncoloring a real-colored vertex, but not for recoloring
an uncolored vertex. In the minimum convex recoloring problem (MCRP) we are
given a colored graph and search for a convex recoloring with minimal cost.

The MCRP describes a fundamental problem in graph theory with different
applications in practice: a first systematic study of the MCRP on trees is from
Moran and Snir [10] and was motivated by applications in biology. Further ap-
plications are so-called multicast communications in optical wavelength division
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multiplexing networks; see, e.g., [6] for a short discussion of these applications.
Here we focus on the MCRP as a special kind of routing problem. Suppose we
are given a telecommunication or transportation network modeled by a graph
whose vertices represent routers. Moreover, assume that each router can estab-
lish a connection between itself and an arbitrary set of adjacent routers. Then
routers of the same initial color could represent clients that want to be con-
nected by the other routers to communicate with each other or to exchange data
or commodities. More precisely, connecting clients of the same color means find-
ing a connected subgraph of the network containing all the clients, where the
subgraphs for clients of different colors should be disjoint. If we cannot estab-
lish a connection between all the clients, we want to give up connecting as few
clients to the other clients of the same color as possible in the unweighted case
(w(v) = 1 for all v ∈ V ) or to give up a set of clients with minimal total weight
in the weighted case. Hence, our problem reduces to the MCRP, where a recol-
oring colors all those vertices with color c that represent routers used to connect
clients of color c. The case in which routers can connect a constant number of
disjoint sets of adjacent routers can be handled by copying vertices representing
a router.

We also introduce a new relaxed version of the problem that we call the min-
imum restricted convex recoloring problem (MRRP). In this problem we ask for
a convex recoloring C ′ that does not recolor any real-colored vertex with a dif-
ferent real color. In practice clients often cannot be used for routing connections
for other clients so that a clear distinction between clients and routers should
be made. This can be modeled by the MRRP, where a client that cannot be
connected to the other clients of the same color may only be uncolored.

Finally, we consider a variant of the MCRP where we search for a convex
recoloring, but assign costs to each color c. We have to pay the cost for color c
if at least one vertex of color c is recolored. We call this coloring problem the
minimum block recoloring problem or MBRP. In an unweighted version we assign
cost 1 to each color. The MBRP is useful if in an application it is not useful to
connect only a proper subset of clients that want to be connected.

The MCRP, the MRRP, and the MBRP can also be considered as genera-
lizations of the maximum disjoint paths problem (MDPP) and the disjoint paths
problem (DPP), where in the first case a maximum number and in the second
case all pairs of given pairs of vertices of a graph are to be connected by vertex-
disjoint paths, if possible. Indeed any algorithm solving one of our recoloring
problems on (∞, 2)-colorings to optimality also can solve the DPP. Given an
algorithm for the MBRP one can also solve the problem of connecting a subset
of a given set of weighted node pairs (s1, t1), . . . , (sl, tl) by disjoint paths such
that the sum of the weights of the connected pairs is maximized.

Previous results. The NP-hardness of the unweighted MCRP, MRRP,
and MBRP follows directly from the NP-hardness of the MDPP [8, 9]. How-
ever, non-approximability results for our recoloring problems do not follow from
corresponding results for the MDPP since the latter problem is a maximization
and not a minimization problem. Moran and Snir [10] showed that the MCRP on
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(∞,∞)-colorings remains NP-hard on trees, and the same is true for the MRRP,
as follows implicitly from the results in [10] concerning leaf colored trees.

Snir [13] presented a polynomial-time 2-approximation algorithm for the
weighted MCRP on strings and a polynomial-time 3-approximation algorithm
for the weighted MCRP on trees also published in [11]. Bar-Yehuda, Feldman,
and Rawitz [3] could improve the approximation ratio on trees to 2 + ε.

New results. In contrast to the work of Bar-Yehuda et. al. and of Snir here
we consider initial (a, b)-colorings with a and b different from ∞. In addition, we
also consider graphs of bounded treewidth instead of only trees.

Surprisingly, the variants of the three coloring problems all have different
complexities on graphs of bounded treewidth, as we prove in Section 2 and
3. We show that the MCRP is NP-hard even on trees initially colored with
(∞, 2)-colorings whereas the MRRP can be solved in polynomial time for the
more general (∞, 3)-colorings as input colorings even on weighted graphs of
bounded treewidth. We also observe the NP-hardness of the MRRP on trees
colored with (∞, 4)-colorings. Moreover, we present a polynomial-time algorithm
for the MBRP on weighted graphs of bounded treewidth for general colorings.

Extending the result of Bar-Yehuda et. al., we present a polynomial-time
(2 + ε)-approximation algorithm for the MCRP and the MRRP on weighted
graphs of bounded treewidth. However, if we follow their approach in a straight
forward way, we would have to store too much information at each node of a
so-called tree decomposition tree. Therefore, we would obtain a running time of
size Ω(nk) with k being the treewidth of the graph considered. Additional ideas
allows us to guarantee a quadratic running time.

Beside our results on graphs of bounded treewidth we show that the un-
weighted versions of our recoloring problems cannot be approximated within
an approximation ratio of (1 − o(1)) ln ln n in polynomial time unless NP ⊆
DTIME(nO(log log n)) even if the initial coloring is restricted to be an (∞, 2)-
coloring. As a consequence of this result, if we are given pairs of vertices, there
is no good approximation possible for approximating in polynomial-time the
minimal l such that all except l pairs are connected by disjoint paths, unless
NP ⊆ DTIME(nO(log log n)). Determining l can be considered in some kind as
the inverse of the MDPP problem. Due to space limitations some proofs in this
article are omitted. They can be found in the full version of this paper.

2 Hardness Results

Theorem 1. Given an unweighted n-vertex graph with an (∞, 2)-coloring, no
polynomial-time algorithm for the MCRP, the MRRP or the MBRP has an ap-
proximation ratio of (1 − o(1)) ln ln n unless NP ⊆ DTIME(nO(log log n)).

Theorem 2. The MCRP on unweighted graphs is NP-hard even if the problem
is restricted to trees colored by an initial (∞, 2)-coloring.

Proof. The theorem can be proven by a reduction from 3-SAT. Let F be an
instance of 3-SAT, i.e., F is a Boolean formula in 3-CNF. W.l.o.g. we assume
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that each clause in F has exactly three literals. Let n be the number of literals
in F , let m be the number of clauses of F and let r be the minimal number
such that each literal in F appears at most r times in F . For the time being
let us construct a forest G which later can be easily connected to a tree. We
construct G by introducing for each variable x a so-called gadget Gx consisting
of an uncolored vertex vx, leaves vL,i

x , vR,i
x colored with a color ci

x and an edge
{vx, vL,i

x } for each i = {1, 2}, and two internally disjoint paths of length r+1, one
from vx to vR,1

x , and the other from vx to vR,2
x . Let us call the internal vertices of

the path connecting vx and vR,i
x for i = 1 the positive and for i = 2 the negative

vertices in the gadget Gx. For each clause K, we introduce a similar gadget GK

consisting of an uncolored vertex vK , leaves vL,j
K , vR,j

K colored with a color cj
K

and an edge {vK , vL,j
K } for each j ∈ {1, 2, 3}, and three internally disjoint paths

of length 2, all starting in vK but ending in different endpoints, vR,1
K , vR,2

K , and

vR,3
K , respectively. In addition, we also introduce 2nr extra vertices without any

incident edges called the free vertices of G. From this forest we obtain a tree T
if we simply connect all gadgets and all free vertices by the following two steps.
First, add two adjacent vertices v1 and v2 into G that both are colored with the
same new color. Second, for each variable x, connect vx to v1, for each clause
K, connect vK to v2 and finally also all free vertices to v2.

Concerning the coloring C of T , we want to color further vertices of T . For
each literal x or x part of clause K, color in the gadget for x one positive vertex
(in case of literal x) or one negative vertex (in case of literal x) as well as one
of the non-leaves adjacent to vK with a new color cx,K . If after these colorings
there is at least one uncolored positive or negative vertex, we take for each such
vertex y a new color cy and assign it to y as well as to exactly one uncolored free
vertex. One can show that F is satisfiable if and only if (T, C) has a convex recol-
oring C ′ with cost ≤ 2nr+(n+2m). The proof of this equivalence is omitted. �

Although the MCRP is NP-complete when being restricted to initial (∞, 2)-
colorings, this is not the fact for the MRRP as we show in Theorem 6. However,
a slight modification of the reduction above shows that the MRRP on weighted
graphs with an initial (∞, 4)-coloring is also NP-hard even for trees. The idea
is, for each colored non-leaf x, to add two new vertices x1, x2, and edges (x, x1),
(x, x2), to color x1, x2 with the color of x, and finally to uncolor x.

3 Exact algorithms

In this section we present algorithms on graphs with bounded treewidth. For
defining graphs of bounded treewidth we have to define tree decompositions.
Tree decompositions and treewidth were introduced by Robertson and Seymour
[12] and a survey for both is given by Bodlaender [4].

Definition 3. A tree decomposition of treewidth k for a graph G = (V, E) is a
pair (T, B), where T = (VT , ET ) is a tree and B is a mapping that maps each
node w of VT to a subset B(w) of V such that (1)

⋃
w∈VT

B(w) = V , (2) for

4



each edge (u, v) ∈ E, there exists a node w ∈ VT such that {u, v} ⊆ B(w), (3)
B(x) ∩B(y) ⊆ B(w) for all w, x, y ∈ VT with w being a vertex on the path from
x to y in T , (4) |B(w)| ≤ k+1 for all w ∈ VT . Moreover, a tree decomposition is
called nice if (5) T is a rooted and binary tree, (6) B(w) = B(w1) = B(w2) holds
for each node w of T with two children w1 and w2, (7) either |B(w)\B(w1)| = 1
and B(w) ⊃ B(w1) or |B(w1)\B(w)| = 1 and B(w1) ⊃ B(w) holds for all nodes
w of T with exactly one child w1.

The treewidth of a graph G is the smallest number k for which a tree de-
composition of G with treewidth k exists. If k = O(1), G has bounded treewidth.
For an n-vertex graph of constant treewidth k, one can determine a nice tree
decomposition (T, B) with T consisting of O(n) nodes in linear time [5].

In this section we therefore will assume that we are given an n-vertex graph
G = (V, E) and a nice tree decomposition (T, B) of G of treewidth k−1 (k ∈ N)
with T having O(n) nodes. Before presenting our algorithm we introduce some
further notations and definitions. For clarity, overlined vertices—as for example
v—should always denote nodes of T . Moreover, we will refer to nodes and arcs
instead of vertices and edges if we mean the vertices or edges of T . By vl and vr we
denote the left and the right child of v in T , respectively. If v has only one child,
we define it to be a left child. We also introduce a new set consisting of k gray
colors—in the following always denoted by Y —and we allow for each recoloring
additionally to use the gray colors. A gray colored vertex w intuitively means
that w is uncolored and will later be colored with a real color. We therefore define
the cost for recoloring a gray colored vertex to be 0 and do not consider the gray
colors as real colors. A convex coloring from now on should denote a coloring C
where all pairs of vertices of the same gray or real color are C-connected. For
each node v in T , each subset S of vertices of G, each subgraph H of G, and
each coloring C of G we let

– G(v) be the subgraph of G induced by all vertices contained in at least one
set B(w) of a node w contained in the subtree of T rooted in v.

– C(S), C(H) be the set of colors used by a coloring C for coloring the vertices
of S and of H , respectively.

– SEP(C, v) be the set of real colors used to color vertices except from B(v)
in more than one of the subgraphs G(vl), G(vr) and G − G(v).

Finally, for each subgraph H of G, a legal recoloring of (H, C) is a recoloring
C ′ of (H, C) such that for each real color c assigned by C ′ there is a vertex
u of H with c = C(u) = C ′(u). Observe that, if there is a convex recoloring
C ′′ of a colored graph (H, C) of cost k, there is also a legal convex recoloring
C ′ of (H, C) with cost k. C ′ can be obtained from C ′′ without increasing the
cost by uncoloring all vertices colored with a color c for which no vertex u with
C ′′(u) = C(u) = c exists. Hence for solving the MCRP, the MRRP, and the
MBRP we only need to search for legal recolorings solving the problem.

For the rest of this section we assume that our given graph G is colored by
an initial coloring C not using gray colors. We first present an algorithm for
the MCRP. This algorithm considers the nodes of T in a bottom-up strategy
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and computes for each node v a set of so-called characteristics. Intuitively, each
characteristic represents a recoloring C ′ of G(v) that will be stepwise extended
to a convex recoloring of the whole graph G. Extending a (re-)coloring C1 for a
graph H1 means replacing C1 by a new color function C2 for a graph H2 ⊇ H1

with C2(w) = C1(w) for all vertices w of H1 with the following exception: A
vertex colored with a gray color c1 may be recolored with a real color c2 if all
vertices of color c1 are recolored with c2. We next define a characteristic for a
node v precisely as a tuple (P, {PS |S ∈ P}, {cS |S ∈ P}, Z), where

– P is a partition of B(v), i.e., a family of nonempty pairwise disjoint sets
S1, . . . , Sj with

⋃
1≤i≤j Si = B(v). These sets are called macro sets.

– PS is a partition of the macro set S, where the subsets of S contained in PS

are called micro sets.
– cS for each macro set S is a value in SEP(C, v) ∪ Y ∪ {0, b}, where b is an

extra value different from 0 and the real and gray colors.
– Z ⊆ SEP(C, v). The colors in Z are called the forbidden colors.

In the following for a characteristicQ and a macro set S of Q we denote the values
P, PS , cS and Z above by PQ, PQ

S , cQS and ZQ. We next describe a first intuitive
approach of solving the MCRP extending the ideas of Bar-Yehuda et. al. [3] from
trees to graphs of bounded treewidth by introducing macro and micro sets but
not using gray colors or the extra value b.

A characteristic Q for a node v should represent a coloring C ′ of G(v) such
that the following holds: A macro set S of Q denotes a maximal subset of vertices
in B(v) that are colored by C ′ with the same unique color equal to the value
cQS stored with the macro set—maximal means that there is no further vertex in
B(v) \S colored with cQS . A micro set is a maximal subset of a macro set that is
C ′-connected in G(v). When later extending the recoloring C ′ we need to know
which of the colors not in C ′(B(v)) are used by C ′ to color vertices of G(v)
since these colors may not be used any more to color a vertex outside G(v).
These colors are exactly the forbidden colors of the characteristic. Note that
there can be more than one recoloring of G(v) leading to the same characteristic
for v. Hence, a characteristic does not really represent one recoloring, but an
equivalence class of recolorings. The main idea of our algorithm is the following:

Given all characteristics for the children of a node v and, for each equivalence
class E described by one of these characteristics, the minimal cost among all
costs of recolorings in E , our algorithm uses a bottom-up strategy to compute
the same information also for v and its ancestors. Since we only want to compute
convex recolorings, at the root of T we have to remove all characteristics having
a real colored macro set that consists of at least two micro sets. The cost of
an optimal convex recoloring is the minimal cost among all costs computed
for the remaining characteristics. An additional top-down traversal of T can
also determine a recoloring having optimal cost. Unfortunately, the number of
characteristics to be considered by the approach above would be too high for
an efficient algorithm. The problem is that for graphs of bounded treewidth, in
contrary to what is the case for trees, a path connecting two vertices outside G(v)
may use vertices in G(v) and vice versa. Hence, as a further change compared
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to the algorithm of Bar Yehuda et al., we use gray colors and the extra value b.
These colors are intuitively used as follows:

If a color c is used by C only to color vertices outside G(v), a recoloring
C ′ of G may possibly also want to recolor a set S of vertices in G(v) with c in
order to C ′-connect some vertices with color c. The cost for recoloring vertices
of G(v) with c are independent from the exact value of c, and can be computed
as the costs of uncoloring all vertices of S (since C(w) 6= c for all w in G(v))
and of recoloring it (without any cost) with color c. Therefore, when considering
recolorings of the graph G(v), we do not allow to color it with a real color
c 6∈ C(G(v)). Instead of c we use a gray color, since coloring a vertex gray
has the same costs as of uncoloring the vertex but allows us to distinguish the
vertex from vertices colored with another gray color or being uncolored. Note
that our definition of extending a recoloring allows us with zero costs to recolor
gray and uncolored vertices in a later step with a real color, whereas recoloring
real-colored vertices is forbidden when extending a recoloring.

If a recoloring C ′ of G(v) colors a macro set S with a color c that is only
used by C to color vertices of G(v), then for extending the recoloring C ′ to a
recoloring C ′′, we do not need to know the exact color of S. The reason for this
is that, for any vertex w outside G(v), the cost for setting C ′′(w) = c can be
computed again independently from the color of S: We have to pay the weight
of w as costs if w is real-colored by C and zero costs otherwise. Therefore, we
use the extra value b to denote that a macro set S is real-colored with a color c
that with respect to C only appears in G(v) and, in this case, we will set cQS = b
instead of setting cQS = c.

Following the ideas described above we let our algorithm consider only a
restricted class of characteristics. For a node v of T , we define C|G(v) to be the
coloring C restricted to G(v). We call a characteristic Q a good characteristic if
there exists a legal recoloring C ′ of (G(v), C|G(v)) with the properties (A1)-(A7).
C ′ is then said to be consistent with Q.

(A1) C ′(G(v)) ⊆ C(G(v)) ∪ Y ∪ {0}.
(A2) For each macro set S of Q, C ′ colors all vertices of S with one color, namely

with cQS if cQS 6= b, and with a real color not in C(G − G(v)) if cQS = b.
(A3) C ′ colors two different macro sets of Q with different colors.
(A4) A micro set is a maximal subset of B(v) that is C ′-connected in G(v).
(A5) C ′ is a convex recoloring for the graph obtained from G(v) by adding,

for each macro set S, edges of an arbitrary simple path visiting exactly one
vertex of each micro set of S.

(A6) Every gray colored vertex in G(v) is C ′-connected to a vertex in B(v).
(A7) ZQ = SEP(C, v) ∩ (C ′(G(v)) \ C ′(B(v))).

Note that each convex legal recoloring C ′ of the initial colored graph (G, C) is
consistent with a good characteristic Q for the root r of T . More explicitly, we
obtain Q by dividing B(r) into macro sets each consisting of all vertices of one
color with respect to C ′, by defining the partition of each macro set to consist
of only one micro set, by setting ZQ = ∅ and by defining, for each macro set S,
cQS = b if C ′(S) is a real color, or cQS = 0 otherwise.
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Our algorithm computes in a bottom-up process for each node v of T all good
characteristics of v from the good characteristics of the children of v. However
not all pairs of good characteristics of the children can be combined to good
characteristics of v. Therefore we call a characteristicQl of vl and a characteristic
Qr of vr compatible if they satisfy the following three conditions:

– Two vertices v1, v2 ∈ B(vl) = B(vr) belong to the same macro set in Ql if
and only if this is true for Qr.

– Let S be a macro set of Q and hence also of Ql and Qr. Then either
cQl

S = cQr

S 6= b or exactly one of cQl

S and cQr

S is a gray color.
– The sets of forbidden colors of Qr and of Ql are disjoint.

The following algorithm computes for each node v of T a set Mv of character-
istics from which we will show in the full version of this paper that it is exactly
the set of good characteristics of v. First of all, in a preprocessing phase compute
by a bottom-up and a top-down traversal of T , for each node v of T , the set
SEP(C, v) as well as the set of colors that are used by C to color vertices in G(v)
but no vertex outside G(v). The latter set is in the following denoted by U(C, v).
Next, for each leaf v of T , Mv is obtained by taking into account all possible
divisions of the vertices of B(v) into macro sets and all possible colorings of the
macro sets with different colors of C(B(v)) ∪ Y ∪ {0}. More precisely, for each
choice, a characteristic Q is obtained and added to Mv by defining, for each
macro set S colored with c, the micro sets of S to be the connected components
of the subgraph of G induced by the vertices of S, and by setting cQS = b if c is
a real color in U(C, v), and cQS = c otherwise. The set ZQ of forbidden colors is
set to ∅.

Next start a bottom-up traversal of T . At a non-leaf v all already computed
characteristics of the children are considered. In detail, for each characteristic
Ql of Mvl

and—if v has two children—for each compatible good characteristic
Qr of Mvr

, we add to Mv the set of characteristics that also could be obtained
as output by the following non-deterministic algorithm:

– Take for Q and the vertices in B(v)∩B(vl) the same division into macro sets
as for Ql. If v has only one child and there is also a vertex w ∈ B(v) \B(v l),
choose one of the ≤ k possibilities of assigning w to one of the macro sets of
B(v) ∩ B(vl) or choose {w} to be its own new macro set.

– For dividing the vertices of B(v) into micro sets, construct the graph H
consisting of the vertices in B(v) and having an edge between two vertices if
and only if both vertices belong to the same macro set and either this edge
exists in G or both vertices belong to the same micro set in Ql or Qr. Define
the vertices of each connected component in H to be a micro set of Q.

– For each macro set S obtained by the construction above, distinguish be-
tween three cases.
• S ⊆ S′ for a macro set S′ of Ql: If vr does not exist or if cQl

S′ = cQr

S , set

cQS = cQl

S′ . Otherwise, set cQS to the non-gray value in {cQl

S′ , c
Qr

S }.
• S has a vertex w ∈ B(v)\B(vl) and |S| > 1 : Choose cQS ∈ {cQl

S\{w}, C(w)}

if cQl

S\{w} is a gray color, otherwise, cQS = cQl

S\{w}.
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• S = {w} with w ∈ B(v) \B(vl): Choose for cQS a value of Y ∪{0, C(w)}.

After defining cQS as described above, if cQS is a real color and cQS ∈ U(c, v),
redefine cQS = b.

– Reject the computation if there is a micro set S ′ part of a macro set S in Ql

with S′ ∩ B(v) = ∅ and either cQl

S is a gray color or S \ S ′ 6= ∅.

– If there is macro set S = B(vl)\B(v) of Ql and if cQl

S is a real color, set Z ′ =

{cQl

S } and Z ′ = ∅ otherwise. Finally, set ZQ = SEP(C, v)∩ (Z ′∪ZQl ∪ZQr ).

As mentioned before, one can show that our algorithm correctly computes
for each node v the set of all good characteristics of v and that our algorithm
can be extended such that it computes with each good characteristic Q the costs
of a recoloring consistent with Q that among all such recolorings has minimal
costs. One can also show that our algorithm has a running time of O(n2 +4s(k+
s + 2)6k+1(k2 + s)n), where s = maxv node of T |SEP(C, v)|.

After the removal of all characteristics having a real colored macro set that
consists of at least two micro sets or having a gray colored macro set we obtain
the cost of an optimal legal convex recoloring as the minimal costs among all costs
stored with the remaining characteristics constructed for the root of T . Finally by
an additional top-down traversal our algorithm can—beside the minimal costs
of a legal recoloring—also determine the coloring itself within the same time
bound. We obtain the following theorem.

Theorem 4. Given a colored graph (G, C) and a nice tree decomposition (T, B)
of width k−1 as input the MCRP can be solved in O(n2 +4s(k+s+2)6k+1(k2 +
s)n) time, where s = maxv node of T |SEP(C, v)|.

It is easy to modify the algorithm above such that it solves the MRRP within the
same time bound. In each bottom-up step we only have to exclude recolorings
that recolor a real colored vertex with a gray or another real color.

Unfortunately, the algorithms above for the MCRP and the MRRP are ex-
ponential in s since there are 2s different possible lists of forbidden colors. The
good news concerning the MBRP on general initial colorings and the MRRP
with its initial coloring being an (∞, 3)-coloring is that we can omit to store the
forbidden colors explicitly. We next describe the necessary modifications.

For the MBRP we use the same basic algorithm as for the MCRP. However,
we compute as a solution for the MBRP w.l.o.g. only recolorings that, for each
real color c, either recolor all or none of the vertices initially colored with c.
Following this approach, a characteristic of a node v should only represent re-
colorings that, for each real color c, either recolor all or none of the vertices u
in G(v) for which C(u) = c holds. If in the latter case there is a vertex in G(v)
and also a vertex outside G(v) initially colored with c, we therefore claim that
a vertex of B(v) is also colored with c since otherwise the recoloring can not be
extended to a legal convex recoloring not recoloring any vertex of c. This implies
an additional rule for constructing characteristics:

Assume that—as in our basic algorithm—we want to construct a character-
istic Q of a non-leaf v from a characteristic Qu of a child u of v. Then we are
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only allowed to color a macro set S of Q with c if (1) all vertices in B(v) that
are initially colored with c are contained in S and (2) either Qu also contains a
macro set S′ with cQu

S′ = c or c /∈ C(G(u)).
For efficiently testing condition (2), we construct in a preprocessing phase

for each node v an array Av , with the following entries: For each color c ∈
C(G), Av [c] = 1 if G(v) contains a vertex u with C(u) = c. Otherwise Av [c]
is defined to be 0. If the array is computed by a bottom-up traversal of T , the
preprocessing phase takes O(n2) time. After the preprocessing phase we can test
for each characteristic Q of a node v and each color c in O(k) time whether
(1) and (2) hold. Hence, the asymptotic running time of our algorithm does
not increase. Moreover, our additional rules enables us to find out, for each color
c ∈ SEP(C, v), whether a vertex of G(vl) or G(vr) is colored with c by considering
Av [c] and by testing whether a macro set S of Ql or Qr, respectively, is colored
with c. Hence, there is no need to store the forbidden colors.

Theorem 5. On graphs of bounded treewidth the MBRP is solvable in polyno-
mial time.

More complicated modifications are necessary for the MRRP. We assume
w.l.o.g. that, for each color c, there are either no or at least two vertices colored
with c by C. The main idea of our algorithm is the following: For improving
the running time at a node v of T we only want to consider recolorings C ′ of
G(v) such that for each color c ∈ C(G) the following condition (D,c) holds. The
correctness of this step will be discussed later.

(D,c) If u is a vertex in G(v) with C ′(u) = C(u) = c, either there exists a vertex
w outside G(v) with C(w) = c and a vertex w′ ∈ B(v) with C ′(w′) = c,
or there exists another vertex w ∈ G(v) with C ′(w) = C(w) = c.

This property guarantees that, for a node v of highest depths with G(v l)
containing a vertex ul initially colored with c and G(vr) containing a vertex
ur initially colored with c, a recoloring C ′ with property (D,c) colors ul or ur

with c if and only if B(vl) and B(vr), respectively, also contains a vertex colored
with c. Therefore, there is no need to store c explicitly as a forbidden color in
a characteristic of vl and of vr any more. With similar arguments one can show
that for no node its characteristic has to store c explicitly as a forbidden color.

The problem is that some legal recolorings are permitted by (D,c). However,
each convex recoloring Copt of optimal cost either is a recoloring with property
(D,c) or it colors w.l.o.g. exactly one vertex u with c. In the latter case a coloring
with the same cost as Copt can be obtained from a recoloring with property (D,c)
not coloring any vertex with c by undoing the recoloring of the vertex originally
colored with c that among all such vertices has a maximal weight. Therefore, for
computing the costs of an optimal convex recoloring, we only have to consider the
costs of recolorings with property (D,c) and eventually to subtract the maximal
weight over all vertices originally colored with c. Let us call such a subtraction
a c-cost adaption. Our goal now is to describe an algorithm that runs the c-cost-
adaption during the bottom-up traversal of T at a certain node v—called the
c-decision node—having the following property:
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For each characteristicQ of v, either each recoloring C ′ extending a recoloring
consistent with Q and having property (D,c) C ′-connects at least two vertices
initially colored with c (and we therefore must not run a c-cost-adaption) or all
such recolorings uncolor all vertices initially colored with c (and therefore we
have to run a c-cost-adaption).

If, for each color c, we know the c-decision node, our algorithm runs as follows:
For each node v (also above the c-decision node), we only compute characteristics
representing recolorings for which property (D,c) holds for each color c. If we
reach the c-decision node v, for each characteristic Q of v, we test whether all
recolorings extending Q do not use color c and if so, we run a c-cost adaption
for Q. One can show that, for all colors c, a c-decision node exists and that
one can efficiently determine the characteristics representing the recoloring with
property (D,c).

Theorem 6. On graphs of bounded treewidth the MRRP restricted to initial
(∞, 3)-colorings is solvable in polynomial time.

Note that the running times for the MCRP and the MRRP on arbitrary
initial colorings are also polynomial if s—defined as in Theorem 4—is of size
O(log n). This is the case if an (a, b)-coloring with a = O(log n) is given.

Theorem 7. On graphs of bounded treewidth the MCRP and the MRRP, both
restricted to initial (a, b)-colorings with a = O(log n), are solvable in polynomial
time.

4 Approximation algorithms

Since the MCRP is NP-hard even on trees, we can not hope for a polynomial-
time algorithm that solves the problem to optimality—even if we consider graphs
of bounded treewidth. Using the algorithm of the last section we now present for
graphs of bounded treewidth a (2 + ε)-approximation algorithm for the MCRP
and the MRRP given an arbitrary (∞,∞)-coloring. The following algorithm is
inspired by the algorithm of Bar-Yehuda et al. [3]. We extend the algorithm from
trees to graphs of bounded treewidth and present a slightly different description
for proving the correctness of the algorithm.

Given a graph G with a coloring C and a nice tree decomposition (T, B)
of width k − 1 for G our results can be obtained by iteratively modifying the
coloring C and the weights of the vertices such that finally |SEP(C, v)| < s for all
nodes v of T and a fixed s ∈ N with s > k. Let v be a node of T such that there
is a set R′ ⊆ SEP(C, v) containing exactly s colors and let V ′ be a set consisting
of two vertices of color c for all c ∈ R′ such that for each pair of vertices x, y ∈ V ′

of the same color the vertices x and y are in different components in G − B(v).
Moreover, let α be the minimal weight of a vertex in V ′. The size of SEP(C, v) is
decremented by reducing the weight of all vertices in V ′ by α and subsequently
uncoloring the vertices of zero-weight.
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On the one hand, this weight reduction decreases the cost of an optimal
convex (re-)coloring C ′ of G by at least (s − k)α since the at most k vertices
in B(v) allow to color connect only k of the s colors in R′, i.e., s − k vertices
in V ′ can not be C ′-connected. On the other hand, if we have a solution for
the MCRP (or the MRRP) with the reduced weight function, we can simply
take this solution as a solution for the MCRP (or the MRRP) with the original
weights and our costs increase by at most 2sα. Thus, in each iteration our costs
decrease at most by a factor of 2s/(s − k) more than the decrease of the costs
of an optimal solution. If at the end no further reduction is possible, we can use
the exact algorithms from the previous section, i.e., we can solve the instance
obtained by this weight reduction as good as an optimal algorithm. Altogether,
we have only recoloring costs that are a factor of 2s/(s−k) bigger than the costs
of an optimal solution. Choosing s large enough, we obtain the following.

Corollary 8. For graphs of bounded treewidth a (2 + ε)-approximation algo-
rithms exist for the MCRP and the MRRP with quadratic running time.
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