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Abstract—In this paper, we investigate the bag-of-feature based
medical image retrieval methods, which represent an image as a
collection of local features, such as image patch and key points
with SIFT descriptor. To improve bag-of-feature method, we
first model the assignment of local descriptor as contribution
functions, and then propose a new multiple assignment strategy.
Assuming the local feature can be reconstructed by its neigh-
boring visual words in vocabulary, we solve the reconstruction
weights using QP problem and use them as contribution func-
tions, resulting a new assignment methods, called QP assignment.
At the same time, we also propose a novel visual weighting
method. We first analysis each visual word by modeling the sub-
similarity or sub-distance function comparing only one single bin
corresponding to the visual word; then we treat each of them
as a weak classifier for triplets and learn a strong classifier,
the resulting weights will be used as visual weighting factors.
We carry our experiments on three medical image datasets:
the ImageCLEFmed dataset, the 304 CT Set and the Basal-Cell
Carcinoma Image set. The vast experiments results show that
our proposed methods have many advantages and work well for
the bag-of-feature based medical image retrieval tasks.

Index Terms—Medical Image Retrieval, Bag-of-Features, Mul-
tiple Assignment, QP Problem, Visual Words Weighting, Boost-
ing.

I. INTRODUCTION1

THROUGHOUT the world, rapid growth of computerized2

medical imagery using picture archiving and communi-3

cation systems (PACS) in hospitals has generated a critical4

need for efficient and powerful search engines. In addition,5

the growing workload on radiologists in recent years increases6

the need for computerized systems which could help the7

radiologist in prioritization and in the diagnosis of findings8

[1].9

As an important complementary search approach, content-10

based image retrieval (CBIR) has been one of the most vivid11

research areas in the field of computer vision over the last12

10 years. In the medical field, CBIR also draws extensive13
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attention [2]. Traditional global features include color features, 14

texture features, and shape features. Recently, along with the 15

rapid progress in the application of local descriptor in pattern 16

recognition, computer vision and image retrieval , the bag-of- 17

features deriving from local features like keypoints or image 18

patches has appeared as promising for object classification and 19

image retrieval [1], [2]. Unlike text retrieval, image retrieval 20

should create visual word first. Usually, k-means is adopted to 21

cluster centers of features which are extracted from all images; 22

then, these cluster centers are used as a vocabulary for all 23

images to obtain word vector representations. 24

Avni Uri etc. once presented an X-ray image categorization 25

and retrieval method using patch-based visual words represen- 26

tation [1], while Zhi Li-Jia etc. developed a medical image 27

retrieval method using SIFT feature [2]. Juan C. Caicedo 28

etc. raised an evaluation of different representations obtained 29

from the bag of features approach to classify histopathology 30

images, including both the image patch and SIFT local features 31

[21]. All the above methods build the histogram for image 32

representation by assigning the local image feature descriptors 33

to the single nearest visual word in the vocabulary, which 34

is called Nearest Neighbor (NN) Assignment in this paper. 35

However, one inherent component of the transitional NN 36

model is the assignment of discrete visual words to continuous 37

image features, which shows a clear mismatch of this hard 38

assignment with the nature of continuous features [9]. By 39

explicitly modeling the ambiguity of visual word assignment 40

, Jan C. van Gemert etc. improved classification performance 41

compared to the hard assignment of the traditional codebook 42

model based bag-of-feature methods [9]. However, the as- 43

signment is based on the usage of Gaussian kernel, which 44

is very sensitive to the smoothing parameter σ. Herve Jegou 45

increased the performance by using multiple assignment of 46

descriptors to visual words at the cost of reduced efficiency [8]. 47

The disadvantage of this method is it treats all the candidate 48

nearest neighboring visual words equally without considering 49

the neighborhood structure of descriptors and visual words. 50

In [26], Yang et al. develop an extension of the spatial 51

pyramid matching (SPM) method, by generalizing the NN 52

assignment based vector quantization to sparse coding (SC) 53

followed by multi-scale spatial max pooling, and propose 54

a linear SPM kernel based on SIFT sparse codes. Yang et 55

al. argued that The NN assignment may be too restrictive, 56

giving rise to often a coarse reconstruction of local feature 57

space. They relax the constraint by instead putting a L1- 58

norm regularization on cluster membership indicators, which 59

enforces cluster membership indicators to have a small number 60
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of nonzero elements. However, this method assume that a1

local feature is reconstructed by all the visual words in the2

vocabulary, bring a redundance and making the computation3

much complex. In this paper, we will develop a new multiple4

assignment method by assuming the local descriptor can be5

linearly constructed by its neighboring visual words. This is6

different from SC basically on the local reconstruction, while7

SC is based on a global reconstruction.8

At the same time, the visual word weighting methods9

assign appropriate weights to the visual words to improve the10

performance of medical image retrieval and classification. For11

example, the weighting scheme provided by inverse document12

frequencies (IDF) is also employed by Juan C. Caicedo etc.13

[21]. However, in their experiment, it is not clear when IDF14

improves the classification performance. In [27], Cai et al.15

present a visual word weighting factors learning approach for16

image classification and retrieval. It corresponds to learning17

a weighted similarity metric to satisfy that the weighted18

similarity between the same labeled images is larger than that19

between the differently labeled images with largest margin.20

In this paper, we try to develop a new visual word weighting21

factor using the boosting methods, which will treat each visual22

word as a weak classifier and combine them together using23

these weighting factors.24

The contributions of this paper are twofold:25

1) Firstly, we model the local descriptor by proposing the26

contribution function, and the other assignment strate-27

gies can be described generally by this model using28

different contribution functions. Then we give the novel29

assignment strategy by using the linear construction30

weighting of neighboring visual words as contribution31

functions. The weighting can be solved by modeling a32

quadratic programming (QP) problem, so we call it QP33

assignment.34

2) Secondly, given the similarity and distance measure35

for the comparison of histogram, we propose the sub-36

similarity and sub-distance to analyze the discriminating37

ability of the visual words. Then we construct the38

weak classifier for triplets of medical images using39

the sub-similarity or distance functions, and learn their40

weighting factors applying the Boostmap algorithm.41

This paper is organized as follows: Section II reviews Bag-42

of-Features Based Medical Image Retrieval Framework. The43

newly proposed descriptor assignment algorithm is described44

in Section III. In Section IV-B, the algorithm for learning the45

weighting of the visual word is presented, which is based on46

the boosting algorithm. Experimental evaluation is presented47

in Section V. In Section VI, we conclude the paper by tracing48

back the origins of our work and point out major differences49

and improvements made here as compared to other well-50

known algorithms.51

II. BAG-OF-FEATURES BASED MEDICAL IMAGE52

RETRIEVAL FRAMEWORK53

The basic steps of the bag-of-features image retrieval algo-54

rithm is illustrated in Fig. 1, where each block represents an55

operation on the objects.56

Fig. 1. Bag-of-Features Based Medical Image Retrieval Framework. For the
compactness of the figure, we only shown the quantization procedure of query
image X . Note that the database images in (a) also should be processed as
X .

• Extracting Local Descriptors. We start by represent- 57

ing an input image as a collection of local feature 58

descriptors. Let X be a bag of features of an image 59

and {xl}, l = 1, · · · L be a collection of local features 60

extracted from X , as is shown in Fig. 1 (e). Typically, the 61

local features or regions xl are detected interest regions 62

with SIFT descriptors [5], [6], or densely sampled image 63

patches [23]. 64

• Constructing Visual words. In the learning phase, we 65

construct a Visual Vocabulary V using a clustering al- 66

gorithm. Usually, k-means is used to cluster centers 67

of features which are extracted from all images in the 68
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database; then, these cluster centers are used as a vo-1

cabulary (codebook) V = {v1, · · · , vK} with K visual2

words for all images to get word vector representation,3

as is shown in Fig. 1 (c).4

• Assigning the Descriptors to Visual Words. Each
local descriptor xl of a given image X is assigned
to the closest visual word vk. So, in this first coding
stage, the image X is represented by the local feature
{(xl, αl)}, l = 1, · · · , L, with each αk identified with the
integers k = 1, · · · ,K.

αl = argmin
k

(D(vk, xl)) (1)

where xl is an image region l, and D(vk, xl) is the dis-5

tance between a codeword vk and region xl, as is shown6

in Fig. 1 (f). The histogram of visual word occurrences7

is subsequently normalized with the L1 norm, generating8

a frequency vector HX = [hX
1 hX

2 · · · hX
K ], as is shown9

in Fig. 1 (g).10

As a variant, instead of choosing the nearest neighbor, a11

given local descriptor is assigned to the several nearest12

visual words. This variant will be referred to as multiple13

assignment (MA). We will improve MA in this paper by14

developing a new assignment method.15

• Weighting frequency vectors. The components of the
frequency vector are then weighted with a strategy similar
to the one in [3]. Denoting by tk the weighting factor for
k-th bin, corresponding to visual word vk, the weighted
component fX

k associated with image X is given by

fX
k = tk · hX

k (2)

A common used weighting factor is inverse document
frequency (idf) factor

tidf = log
n

nk
(3)

where n is the number of images (bags) in the database16

and nk is the number of images containing the k-th visual17

word vk [15]. The resulting visual word frequency vector18

FX = [fX
1 fX

2 · · · fX
K ] or simply visual word vector,19

is a compact representation of the image, as is shown in20

Fig. 1 (h).21

In this paper, we proposed a new frequency vectors22

weighting strategy, which weight each visual word ac-23

cording to its contribution to the classification of the24

query images.25

• Computing Similarity Measure. Frequency vectors is a
kind of histogram, according to [7], Histogram Intersec-
tion Kernel (HIK) is suitable to be a measure to compute
similarity between query image X’s histogram FX and
the image Y ’s histogram FY in database:

SHIK(FX , FY ) =
K∑

k=1

min(fXk, fY
k ) (4)

Then the the images in the database will be ranked26

according to their similarities to the query image, and27

several most similar image will be returned as retrieval28

results.29

Fig. 2. An example illustrating assigning local feature descriptors xl to
visual words vi, i = 1, · · · , 5 in the Visual Vocabulary V , where v1 =
(0.5180, 1.2140), v2 = (0.9460, 1.3260), v3 = (1.1320, 0.8920), v4 =
(0.8460, 0.8060), v5 = (0.3420, 0.4700) and xl = (0.8780, 0.9660).
Beside xl’s neighboring visual words v2, v3 and v4, we also plot their weights
that QP finds to reconstruct xl.

III. QP MULTIPLE ASSIGNMENT 30

In this section, we generalize the bag-of-features based 31

image presentation as a visual word contribution form. First of 32

all, for a local feature descriptor xl in an image X , we define 33

it’s contribution in the constructing of an statistical presenta- 34

tion (histogram) as Visual Word Contribution Function. 35

Here, we define the Visual Word Contribution Function of
xl for vk as its contribution in accumulating the k-th bin as
C(vk, xl), so that for visual vocabulary based histogram can
be rewritten as

hX
k =

mi∑
j=1

C(vk, xl) (5)

With a 2D visual vocabulary V = {vi}, i = 1, 2, · · · , 5 36

of size of 5, we give an illustrative examples of assign- 37

ing local feature descriptor xl in Fig. 2. The Visual Word 38

Contribution Functions C(vi, x) of different assignment strate- 39

gies are shown in Fig. 3. 40

At query time, we assign a local feature x to its nearest 41

visual word vk ∈ V to construct the frequency vector HX . 42

So for the transitional visual word assignment, we define the 43

Nearest Neighbor (NN) contribution function as follows, 44

• Nearest Neighbor Assignment.

CNN (vi, xl) =

{
1, if vk = NN(xl);
0, else.

(6)

where NN(xl) is the nearest neighboring visual word in 45

visual vocabulary V . The NN assignment’s contribution 46

function CNN (vi, xl) is shown in Fig. 3 (a). 47

It is also possible to assign a descriptor to not only one but 48

several nearest visual words (using approximate visual word 49

assignment) [8]. Our strategy is similar to the multiple descrip- 50

tor assignment proposed in [8] or the soft quantization method 51

proposed in [9]. By defining the two different Contribution 52

Functions, we can formula the multiple assignment and soft 53

assignment as follows: 54
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(a) (b)

(c) (d)

(e)

Fig. 3. Contribution functions C(vi, x) for different assignment strate-
gies (with N(x) = {v2, v3, v4}): (a) NN assignment CNN (vi, x);
(b) MA assignment CMA(vi, x)with|N(xl)| = 3; (c) SA CSA(vi, x)
with σ = 0.1; (d) SA CSA(vi, x) with σ = 1; (e) QP assignment
CQP (vi, x)with|N(xl)| = 3.

• Multiple Assignment. Multiple Assignment is proposed
in [8] which can be modeled with a contribution function
as follows,

CMA(vi, xl) =

{
1, if vk ∈ N(xl);
0, else.

(7)

where N(xl) ⊂ V is xl’s neighboring visual words in vi-1

sual vocabulary, and |N(xl)| < |V |. The MA assignment2

contribution function CMA(vi, xl) is shown in Fig. 3 (b).3

The neighbor size |N(xk)| is a very important parameter4

for MA. In [3], experiments are carried out to valuate5

the impact of |N(xk)| to the retrieval performance, and6

|N(xk)| is set as 2 and 3 separately. We also test the7

performance in our experiments using the same neighbor8

size for MA.9

• Soft Assignment. Soft Assignment is proposed in [9]
which can be modeled with a contribution function as

follows,

CSA(vk, xl) =
exp(− 1

2
∥xl−vk∥2

σ2 )∑K
j=1 exp(−

1
2
∥xl−vj∥2

σ2 )
(8)

where σ is the length scale parameter. The MA assign- 10

ment contribution function CSA(vi, xl) is shown in Fig. 3 11

(c) and (d), with different length scale parameter σ = 0.5 12

and σ = 1 separately. 13

As we can see from Fig. 3 (b), the Multiple Assignment 14

(MA) strategy assigns xl to its neighboring visual words 15

N(xl) equally with CMA(vi, xl) = 1 in (7). An important 16

assumption is that a discrete visual word is a characteristic 17

representative of an image feature. To the contrary, based 18

on the with the nature of continuous local features, the Soft 19

Assignment strategy assigns xl to all the visual word with 20

different weights , which is given with a Gaussian-shaped 21

kernel as in (8). One shortage of this strategy is that the 22

contribution function is very sensitive to the kernel size σ, 23

as is shown in Fig. 3 (c) and (d), as also can be seen from the 24

experiments in [9]. 25

To overcome this shortage, we propose a new multiple
assignment strategy, with a new contribution function based
on the QP problem. Following [3] and [8], [10], we also try
to assign a local feature xl to its neighboring visual words
N(xl) in Visual Vocabulary V . To learn a robust contribution
function, we assume the local feature xl can be linearly
constructed by its neighboring visual words N(xl) as

xl =
∑

k∈N(xl)

wlkvk (9)

where wlk are construction weights. We estimate the linear
construction weights by minimizing

El = ∥xl −
∑

k∈N(xl)

wlkvk∥2 (10)

This objective function is similar to the one used in locally 26

linear embedding [11]. To avoid the negative contribution, we 27

further constrain
∑
k∈V

wlk = 1 and wlk ≥ 0. Usually, the more
28

similar xl is to vk, the larger wlk will be. Thus, wlk can be 29

used to measure the similarity degree from xl to vk. 30

It can be easily inferred that

El = ∥xl −
∑

k∈N(xl)

wlkvk∥2

= ∥
∑

k∈N(xl)

wlk(xl − vk)∥2

=
∑

k,j∈N(xl)

wlk(xl − vk)⊤(xl − vj)wlj

=
∑

k,j∈N(xl)

wlkg
l
kjwlj

(11)

where glkj = (xl−vk)⊤(xl−vj) at the local feature xl. Thus,
the reconstruction weights of each data point can be estimated
by solving the following L standard quadratic programming
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(QP) problems:

min
wlk

∑
k,j∈N(xl)

wlkg
l
kjwlj

s.t.
∑

k∈N(xl)

wlk = 1 and wlk ≥ 0
(12)

There exist many standard algorithms to solve these QP1

problems, as introduced in [12]. To solve them efficiently,2

we adopt the active set algorithm [12] with a warm start,3

which usually converges in several iterations. We first compute4

a relaxed solution without involving nonnegative constraints5

using the algorithm, as presented in [11]. Then, we compute a6

warm start by replacing the negative elements of this relaxed7

solution with 0. Finally, we run the active set algorithm on8

this warm start.9

Then we define our QP based multiple assignment contri-10

bution function CQP (vk, xl) as following11

• QP Multiple Assignment.12

CQP (vk, xl) =

{
wlk, if vk ∈ N(xl);
0, else.

(13)

The QP assignment contribution function CQP (vi, xl) is13

shown in Fig. 3 (e).14

One important property of the QP Multiple Assignment is15

that it estimates the contribution to different visual words16

jointly with the solution of QP problem. Other multiple17

assignment estimate the weights for different visual words18

independently, not considering the structure with in the N(i),19

while QP assignment does.20

One important phenomenon we can observe from Fig. 321

(e) is that, although v2 is further away from xl than v3,22

its weight is much larger than v2. This means v2 contribute23

more than v3 in reconstruction of xl, as in (10). Intuitively,24

if v3 is more close to xl than v2, it should contribute more25

than v3. However, if we consider v2, v3 and v4 jointly, and26

analyze the graph structure of v2, v3, v4 and xl, we can27

see that xl lies on the line connecting v2 and v4, making it28

easy to be reconstructed by weighted averaging of v2 and v4,29

without v3. In fact, we can see that to reconstruct xl, v2 is a30

complementary to v4, while v3 is a redundancy to v4, since31

v3 lies so close to v4. We can find this relationship by using32

the QP assignment strategy, which give a characterization33

of the local feature xl from a view of joint distribution of34

the visual words and their relationship to xl. In contrary,35

the traditional soft multiple assignment strategy, computing36

the pairwise similarity between local feature xl and visual37

words v2, v3 independently, neglects the influence of v4. The38

readers should note that, a high pairwise similarity between39

visual word v3 and local feature xl does mean a large weight40

in QP strategy, which is determined by the local contextual41

neighborhood structure of the visual word set.42

Compared with traditional soft multiple assignment, our43

QP assignment strategy provides an insight into the graph44

structure among the local features and the neighboring visual45

words by learning the similarity using context information,46

instead of only consider the pairwise relationship. We find it47

quite similar to the Contextual Dissimilarity Measure (CDM)48

algorithm proposed by Jegou Herve et al. [3], which assumes 49

that the dissimilarity between a query image and database 50

image should be different with different context (the other 51

neighboring images). In fact, a common idea shared by QP 52

assignment and CDM is that, the similarity between two 53

objects should consider the neighborhood distribution, while 54

pairwise similarity doesn’t. However, there are two major 55

differences: 56

1) The objective in this paper is to learn the local neigh- 57

borhood similarity between a local feature xl and visual 58

words vk for the bag-of-based based representation of 59

an medical image, while theirs is to learn the similarity 60

between a query and a database object in image retrieval 61

task. 62

2) We proposed a new and direct way to solve the contex- 63

tual similarity, which solve the weights of neighboring 64

visual words in reconstruction of local features, while 65

their measure takes into account the local distribution 66

of the vectors and iteratively estimates distance update 67

terms in the spirit of Sinkhorn’s scaling algorithm, 68

thereby modifying the neighborhood structure [3]. 69

Recently, some contextual similarity/dissimilarity learning al- 70

gorithm have been proposed for image/shape retrieval tasks 71

[3], [24], [25]. But there are still no such kind of contextual 72

local feature assignment methods. Our QP assignment pro- 73

vides a novel view for this task. 74

IV. BOOSTED VISUAL WORD WEIGHTING 75

An important procedure in bag-of-feature based image re- 76

trieval is to weight the frequency vectors as (2) according to 77

its discriminant ability. Here, we propose a novel weighting 78

strategy using boosting method in a supervised classification 79

scene. We first try to analysis the discriminating power analy- 80

sis of each visual word vk, according to the k-th bin in H , and 81

then select the most powerful visual words and the weights in 82

a iterative way. Each visual words will be considered as a 83

weak classifier and the final strong classifier will be learned 84

using BoostMap framework [13], [14]. 85

A. Visual Word’s Discriminating Power Analysis 86

Visual word frequency hX
k represents a close relationship 87

between the visual word vk and the image X , which contains 88

this visual word. It is observed that if high-frequency visual 89

word are spread widely over a large number of images, we may 90

not retrieve the relevant images from the whole collection. 91

We analyze each visual word vk’s discriminating power
by using individual bin hk in H as a similarity function
for classification of images in a supervised scene. Given a
specific visual word vk in the visual vocabulary V , we define
a similarity subfunction for a pair of images X and Y using
the concept of Histogram Intersection Kernel:

sHIK
k (HX ,HY ) = min(hX

k , hY
k ) (14)

Now let’s consider the relationship between the sub-
HIK functions sHIK

k (HX , HY ) and the final HIK function
SHIK(FX , FY ) between two images X and Y which is given
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Fig. 4. Combining sub-similarities with visual weighting factors for com-
parison between histograms between a pair of image X and Y .

in (4). We can prove that, SHIK(FX , FY ) equals to the sum
of weighted similarity sub-functions sHIK

k (HX ,HY ) as

SHIK(FX , FY ) =

K∑
k=1

tk · sHIK
k (HX ,HY ) (15)

Proof:

SHIK(FX , FY ) =

K∑
k=1

min(fX
k , fY

k )

=
K∑

k=1

min(tk · hX
k , tk · hY

k )

=
K∑

k=1

tk ·min(hX
k , hY

k )

=

K∑
k=1

tk · sHIK
k (HX ,HY )

(16)

1

This visual word weighting strategy combines the sub-2

similarity functions sk with their weighting factors tk in a3

linear way, as is shown in Fig. 4.4

Some other works does not apply Histogram Intersection
Kernel as a similarity measure [2]. According to Puzicha
[16], Jeffrey divergence or Jensen-Shannon divergence(JSD) is
also suitable to be a similarity measure to compute similarity
between query image X and the images Y visual words

histogram in database:

SJSD(HX ,HY ) =
K∑

k=1

[hX
k log

hX
k

hX
k + hY

k

+ hY
k log

hY
k

hY
k + hX

k

]

(17)
where HX and HY are the histograms to be compared and
hX
k is the k-th bin of HX . We can also define the sub-JSD-

function for k-th visual word vk as

sJSD
k (HX , HY ) = hX

k log
hX
k

hX
k + hY

k

+ hY
k log

hY
k

hY
k + hX

k
(18)

Here we do not weight the frequency vector directly as
fX
k = tk ·hX

k . Instead, we weight the sub similarity functions
following (16).

SJSD(HX , HY ) =
K∑

k=1

tk · sJSD
k (HX ,HY ) (19)

In some other works like [1], instead of similarity between
a pair of histograms, distance can also be used for histogram
comparison. Several distance measures can be considered. Uri
Avni etc. [1] have found the using the L1 norm distance
DL1(HX ,HY ) between the visual word histograms of the
two images X and Y yields the good results in this database,

DL1(H
X ,HY ) =

K∑
k=1

|hX
k − hY

k | (20)

similarly, we present DL1(H
X ,HY ) as linear combination

of sub-distance function dL1

k (HX ,HY ) = |hX
k − hY

k |, which
is the distance referring the k-th visual word vk, as

DL1(HX ,HY ) =
K∑

k=1

tk · dL1

k (HX , HY ) (21)

To this point, the learning of weighting factor is an open 5

general problem for each visual word vk’s sub-similarity 6

functions sk. In fact, the visual word’s discriminating power is 7

implemented by the discriminating power of its sub-similarity 8

function. So we can learn the weighting factor of sub-similarity 9

function as the tk. 10

B. Visual Word Weighting Scheme 11

Without ambiguity, for convenience, we denote the simi-
larity S(HX ,HA) and distance D(HX ,HA) between a pair
of histograms of images X and A as S(X,A), and the
sub-similarity sk(H

X , HA) as sk(X,A), the sub-distance
dk(H

X ,HA) as dk(X,A). And the general similarity and
distance function between X and Y is rewritten as

S(X,Y ) =

K∑
k=1

tk · sk(X,Y )

D(X,Y ) =
K∑

k=1

tk · dk(X,Y )

(22)

Now we describe the proposed approach to learning the 12

weighting factors for visual words tk in (22). Our learning 13

scheme is similar to the BoostMap approach [13], [14]. 14

However, there are two major differences: 15
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1) The objective in this paper is to learn the weighting1

factors of visual words , while theirs is to learn an2

embedding in a normed-space for approximating a com-3

putational expensive distance function.4

2) As a unsupervised methods not using the objects class5

information, in BoostMap, an embedding is proximity-6

preserving when it perfectly preserves proximity rela-7

tions between triples of objects. The goal of BoostMap8

is to construct an embedding that is as close to being9

proximity preserving as possible. However, in our meth-10

ods, we learn a similarity function that can preserves the11

inter-class and intra-class similarity as possible, which12

guarantees correctly the nearest neighbor classification13

of images in image triples, with the triplet labels based14

on the class information.15

Inspired by BoostMap [13], [14], to learn the weights tk for16

(22) generalized from (16) and (19), we consider a triplet of17

images (X,A,B) from the image database, and lX is the class18

label of X . A or B are from the same class as X: lX = lB ,19

or lX = lA. At the same time, we add a extra constraint for20

the selection of triplet (X,A,B): A and B are from different21

classes, as lA ̸= lB . With this constraint, one of the following22

two cases must be true:23

• lX = lA while lX ̸= lB ;24

• lX ̸= lA while lX = lB ;25

Our training set Ω consists of I triplet of images:
Ω = ((X1, A1, B1), · · · , (XI , AI , BI)). For each such triplet
(Xi, Ai, Bi), i = 1, · · · , I , a label is attached: If (Xi, Ai)
belongs to the same class, while (Xi, Bi) belongs to different
classes, then the corresponding label of the triplet is 1,
otherwise, the label is −1. We denote the label of (Xi, Ai, Bi)
by yi:

yi =

{
+1, if lXi = lAi , lXi ̸= lBi ;
−1, if lXi = lBi , lXi ̸= lAi .

(23)

with S(X,A) and S(X,B) are visual histogram similarity
functions between (X,A) and (X,B), we can guess whether
X is in the same class with A or with B by checking if
S(X,A) is larger than S(X,B) or not. With the similarities
S(Xi, Ai) and S(Xi, Bi) between visual words’ histograms
of HXi , HAi and HBi , an ordinal function is defined as

Θi =

{
+1, S(Xi, Ai) > S(Xi, Bi);
−1, S(Xi, Ai) ≤ S(Xi, Bi).

(24)

Θi has two discrete output values: +1 and −1, which is a
quantized version of a continuous function Θ̃i, defines as:

Θ̃i = S(Xi, Ai)− S(Xi, Bi) (25)

when distance is used instead of similarity,

Θ̃i = D(Xi, Bi)−D(Xi, Ai) (26)

In spaces where distances can take any value within some
range of real numbers, it is typically unusual for an medical
image to have the exact same histogram distance to two
database images. Consequently, we consider the task of es-
timating Θi to be a binary classification task as yi.

yi ≈ Θi = sign(Θ̃i) (27)

Now, we consider the situation with each individual vi-
sual word. With sk(X,A) and sk(X,B) are sub-similarity
functions between (X,A) and (X,B), we also can guess
whether X is in the same class with A or with B by checking
if sk(X,A) is larger than sk(X,B) or not. More formally,
for every sub-similarity function sk, we define a classifier
θ̃k(Xi, Ai, Bi) as:

θ̃k(Xi, Ai, Bi) = sk(Xi, Ai)− sk(Xi, Bi) (28)

then θk(Xi, Ai, Bi) = sign(θ̃k(Xi, Ai, Bi)) is an estimate 26

of yi. θ̃k(Xi, Ai, Bi) can be regarded as a weak real-valued 27

classifier, and we will employ the real Adaboost learning 28

algorithm [17] to approximate a strong classifier by a number 29

of weak classifiers. 30

When using distance functions D(X,Y ), similar to (28), we
can define a weak classifier for ((Xi, Ai, Bi)) to guess which
is closer to Xi between Ai and Bi, as

θ̃k(Xi, Ai, Bi) = dk(Xi, Bi)− dk(Xi, Ai) (29)

With Adaboost Framework, our goal is to learn a strong
classifier Θ̃i = Θ̃(Xi, Ai, Bi), which is weighted linear com-
bination of binary classifiers θ̃k(Xi, Ai, Bi) which is learned
using only individual visual words,

Θ̃(Xi, Ai, Bi) =
K∑

k=1

tkθ̃k(Xi, Ai, Bi) (30)

The influence of each base classifier with each visual words’s
sub-similarity in the ensemble is governed by the weighting
vector t = [t1 t2 · · · tK ] in (30), which will be learned
by employing Real-Adaboost algorithm. More specifically,
we fit the real-valued classifier Θ̃(Xi, Ai, Bi) by the ad-
ditive composition of its weak classifiers θ̃k(Xi, Ai, Bi) =
sk(Xi, Bi)− sk(Xi, Ai) as

Θ̃i = S(Xi, Ai)− S(Xi, Bi)

=
K∑

k=1

tksk(Xi, Ai)−
K∑

k=1

tksk(Xi, Bi)

=
K∑

k=1

tk[sk(Xi, Ai)− sk(Xi, Bi)]

=

K∑
k=1

tkθ̃k(Xi, Ai, Bi)

(31)

where the coefficients T = {tk}, k = 1, 2, · · · ,K are the 31

outputs of the Adaboost learning procedure. They define a 32

histogram similarity function S , which weights the k-th visual 33

word with tk . 34

The design aim to classify the triples (Xi, Ai, Bi) as cor- 35

rectly as possible, so that sign(Θ(Xi, Ai, Bi)) = yi. This is 36

exactly the problem that boosting methods are designed to 37

solve. 38

Now we introduce the details of the learning procedure. It 39

is known that the Adaboost algorithm [17] takes a number 40

of rounds. At each round, a weak learner is trained with 41

the weighted version of the original training samples. After 42

that, each training sample is re-weighted according to the 43
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confidence of being correctly classified by the weak learner.1

Briefly, the samples that are falsely classified by the weak2

classifier will be assigned to larger weights after this iteration3

and vice versa. The procedure continues until the testing error4

no longer decreases or some pre-determined number of rounds5

is reached.6

To use AdaBoost algorithm, we should first specify the input7

as follows:8

• Training triple data set with class labels Π =
{(oi, yi)}, i = 1, · · · , I, oi ∈ Ω, yi ∈ {+1,−1}. We
denote oi = (Xi, Ai, Bi) as a triple in the training set. Ω
is the set of triple:

Ω ={(Xi, Ai, Bi)|(lXi = lAi and lXi ̸= lBi)

or (lXi = lBi and lXi ̸= lAi)}
(32)

• weak classifiers set Φ = {θ̃k(o) = θ̃k(X,A,B)}, k =
1, · · · ,K as follows

θ̃k(X,A,B) = sk(X,A)− sk(X,B) (33)

where K is the dimension of the visual word histogram,9

also the number of sub-similarity functions, and sk(X,A)10

is the sub-similarity in the k-th bin of the visual word11

histogram between objects X and A, defined in (14) or12

(18).13

Then, at each Adaboost learning round r, a weight Dr(i)14

will be assigned to each triplet oi, satisfying
∑I

i=1 Dr(i) = 1.15

In the beginning, all weights are initialized equally: Dr(i) =16

1
M .17

In the beginning, the composition coefficients of T =18

tk, k = 1, · · · ,K, of the weak classifiers θ̃k are set to 0.19

At the r-th round, we try to select a weak classifier θ̃k∗ from20

the pool Φ = {θ̃k}, k = 1, · · · ,K that best minimizes the21

overall empirical training error. To quantify this notion, a error22

measure εk was proposed [17]:23

εk =
I∑

i=1

Dt(i)
[
yi ̸= θ̃k(oi)

]
(34)

In (34), k = 1, 2, ...,K and i ranges from 1, 2, ..., I , where
K is the dimension of the visual histogram, i.e., the number of
weak classifier and I is the number of triplets (training data).
Generally speaking, εk represent the benefit of adding the k-
th weak classifier θ̃k(o) to the current classifier composition
in minimizing the empirical training error. The smaller the
εk , the larger the benefit. When εk < 0.5, adding θ̃k(o)
actually deteriorates the classification performance. Therefore,
at the r-th iteration, we choose the weak classifier k∗ : k∗ that
minimizes εk:

θ̃k∗ = argmin
θ̃k∈Φ

εk (35)

The overall Adaboost learning procedure is summarized in24

Algorithm 1. This step-sequence is interleaved until εk > 0.5.25

Algorithm 1 The Adaboost algorithm for learning the visual
word weighting factors.
Require: Π = {(oi, yi)}, i = 1, · · · , I , the training data set;
Require: Φ = {θ̃k(o)}, k = 1, · · · ,K, the weak classifiers

set.
Initialize training weights: D1(i) =

1
I ;

Initialize classifier weights: tk = 0;
for r = 1, · · · , R do

Compute the error εk for each weak classifier with respect
to the distribution Dr(i) using (34);
Find the classifier θ̃k∗ that minimizes the error for round
r using (35);
if εk ≥ 0.5 then

Stop;
end if
Update weight tk∗ for θ̃k∗ :

tk∗ = tk∗ +
1

2
ln

1− εk∗

εk∗
(36)

where εk∗ is the weighted error rate of classifier θ̃k∗ .
Re-set the weights associated with the training samples
oi:

Dt+1(i) = Dt(i)
exp(−tk∗ θ̃k∗(oi)yi)

Zr(θ̃k∗ , tk∗)
(37)

end for
Output the visual word weighting factors: {tk}, k =
1, · · · ,K.

V. EXPERIMENTS 26

In this section, we test the proposed techniques through 27

extensive experiments on medical image retrieval. The ex- 28

perimental results suggest that the proposed algorithms have 29

superior performance in general and are especially suited for 30

bag-of-feature based medical image retrieval tasks. 31

A. Experiment I: X-Ray Image Retrieval on ImageCLEFmed 32

dataset 33

In this section we evaluate the proposed methods using the 34

ImageCLEFmed 2007 and 2008 datasets. For comparison, the 35

first experimental setup is exactly the same to the one con- 36

ducted in [1], with similar description. We first investigate the 37

sensitivity to various parameters that define the system, using 38

ImageCLEFmed 2007 dataset. We then show classification 39

and retrieval experiments on large radiograph archives using 40

ImageCLEFmed 2008 dataset. 41

1) Experiment Setup on ImageCLEFmed 2007 Dataset: 42

A database of 12,000 categorized radiographs, which is the 43

basis for the ImageClef 2007 medical image classification 44

competition [18], is used in the first experiment. A set of 45

11,000 images are used for training, and 1000 serve for testing. 46

There are 116 different categories within the archive, differing 47

in either the examined region, the image orientation with 48
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Fig. 5. Sample images from ImageClef medical annotation challenge

(a) (b)

Fig. 6. Representing a ImageCLEFmed image (a) as a bag of collection
image patches (b).

respect to the body or the biological system under evaluation.1

Several of these images are presented in Fig. 5.2

We start by representing an input image as a collection of3

small patches, as is shown in Fig. 6. In this step images are4

sampled with a dense grid. We extract a patch around every5

pixel, using a patch size of 9 × 9 pixels. Patches along the6

border of the image are considered as noise and are ignored.7

The intensity values within a patch are normalized to have zero8

mean and unit variance. Patches that have a single intensity9

value of black are ignored. To reduce both the algorithms10

computational complexity and the level of noise, we apply11

a principal component analysis procedure (PCA) and reduce12

the data dimensionality from 81 to 7.13

The next step of our system is to learn a dictionary of visual14

words based on a representative set on images. To accelerate15

the learning process we randomly take a subset of all the16

patches. The main step in the dictionary building procedure is17

clustering the patches, using the k-means algorithm, to form18

a small-size dictionary of visual words. Using the generated19

dictionary, each image X is represented as a histogram of20

visual words using NN assignment in [1]. Here, we compare21

our QP patch assignment against NN assignment in [1]. The22

MA and SA assignments are also valuated in the experiments.23

A nearest neighbor classifier is a reasonable choice and is24

used in [1], which is also a choice in our experiments for25

comparison. Given a query image the retrieval is based on26

finding the nearest image in the labeled training set. Following27

[1], we use the L1 norm distance to for comparing the28

word histograms of the two images. We tested our boosted29

visual word weighting factor tk with the L1 norm distance30
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Fig. 7. Effect of vocabulary size, for K-NN classifiers with different
assignment methods.

as DL1
Boosted =

∑
k tk · dL1

k , and compare it to the original 31

L1 norm distance DL1 =
∑

k d
L1
k . The classification is based 32

on a set of manually categorized images. We run 20 cross- 33

validation experiments trained on 10000 images and verified 34

on 1000 randomly drawn test images. 35

2) Parameters Validation on ImageCLEFmed 2007 Dataset: 36

There are two main free parameters for the proposed approach, 37

the number of visual words K in the visual vocabulary, the 38

neighbor size N(x) for QP assignment. In order to show the 39

proposed approach is applicable in a reasonable range for 40

parameters, we test the performance of the proposed approach 41

on a range of parameter values. 42

• Validating the Visual Vocabulary Size K. In evalu- 43

ating vocabulary size, we tune vocabulary sizes K in 44

our experiments. The vocabulary sizes we consider are 45

{200, 300, 400, 500, 600, 700, 800}. The results for all 46

types of local assignment evaluated for various vocab- 47

ulary sizes are given in Fig. 7. 48

As illustrated in Fig. 7, increasing the vocabulary size 49

increases the classification performance and the perfor- 50

mance of the four ambiguity types seems to converge 51

up to 700 words. Based on the these experiments, a 52

dictionary size of 700 visual words was selected. 53

In Fig. 7, the vocabulary sizes are relatively small. 54

The largest vocabulary in Fig. 7 has 800 elements and 55

only 0.08 percent of all features used for clustering are 56

comprised. The behavior of relatively small vocabularies 57

may not be identical to relatively large vocabularies. With 58

vocabulary sizes that are relatively large compared to 59

the total number of training image features, different 60

assignment type performance may diverge different again. 61

Different from bag-of-features based natural image re- 62

trieval system, whose typical vocabularies range in the 63

thousands of visual words [8], the vocabulary here seems 64

much too small. In fact, for typical natural image re- 65

trieval, the image’s content is much more complex and 66
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(a) (b)

Fig. 8. Illumination of natural image (a) and medical image (b).

we need a large size visual vocabulary, while in medical1

image retrieval tasks, the contents of medical images are2

somehow simple and thus we don’t need so large vo-3

cabulary. We illuminated this difference between natural4

images and medical images in Fig. 8 for the readers’5

easy understanding. In (a), there are house, tree, road6

and grass etc, so we need more visual words to represent7

this image, while in (b), there a single bone in it, thus8

only a small vocabulary is needed. More evidence can9

be found in reference [19]. Avni et al. obtained the best10

performance in ImageClef 2008 medical image retrieval11

challenge using a small visual vocabulary of 700 visual12

words.13

We continue the analysis comparing our method with the14

different representative methods of each of the assign-15

ment strategies according to the concepts related in local16

feature assignment. In order to perform this comparison,17

we use the MA with |N(x)| = 2 and 3, uncertainty SA18

with σ = 200 which shows a much greater power as a19

soft assignment when classifiers are compared to kernel20

and codebook [9]. The kernel size σ for SA is chosen21

via 10-fold cross validation, following [9]. For each test,22

we recompute the k-NN classification (k = 3) accuracy23

between QP with |N(x)| = 10 and each assignment24

methods. From Fig. 7, it must be noted that QP assign-25

ment with proper |N(x)| performs generally better than26

most of the commonly used assignment strategy. Taking27

into account the number of times a method achieves28

the best mean performance, QP assignment is the first29

choice for all the vocabulary size, followed SA, MA with30

|N(x)| = 2, and MA with |N(x)| = 3. The MA of local31

image patch descriptors to visual words slightly improves32

the accuracy of the search at the cost of an increased33

search time, due to the impact of the method on the34

visual word vector sparsity. For instance, for V = 30, 00035

visual words, the number of multiplications performed is36

seven times higher for MA 3 than for the simple NN37

assignment. It should be used for applications requiring38

high accuracy. Note that the number of assignments39

|N(x)| must be small, e.g., 2 or 3, as we have observed40

that the accuracy decreases for larger values. Regarding41

the worst performances, traditional NN assignment is the42

last option. Observe that QP and SA assignment are never 43

the last choice. 44

To validate if the boosted visual word weighting factor 45

improves the L1 norm distance, we also depicts the 46

averaged classification accuracy of the weighted version 47

of QP assignment methods using different K in Fig. 7. 48

The trends of the curves are similar to those in origi- 49

nal QP assignment. That is, the averaged classification 50

points of boosted weighting methods show a tendency to 51

increase as the number of the vocabulary size K. Among 52

them, the best three averaged classification points 91.60% 53

are reached at the K = 700 vocabulary using boosted 54

weighting strategy. 55

• Validating the Neighbor Size |N(x)|. For evaluation 56

of the Neighbor Size |N(x)|, a performance curve for 57

QP assignment is plotted showing the k-NN classification 58

versus |N(x)|, which is the number of the most nearest 59

visual words vk ∈ V of a visual local feature x. The 60

curves on the ImageCLEFmed 2007 Dataset using image 61

patch as local feature are shown in Fig. 9. From the 62

results, it is clear that larger Neighbor Size |N(x)|, 63

especially when |N(x)| = 1 ∼ 8, outperform smaller 64

ones. The recognition rate achieved by all neighboring 65

sizes when |N(x)| ≥ 20 is relatively stable for a wide 66

range. The best performance is obtained by setting |N(x)| 67

to 20-29. Because a shorter neighbors list N(x) results in 68

an overall speedup across all algorithms that we consider, 69

we fix the neighboring size |N(x)| to 20 visual candidates 70

in all experiments. 71

It is very interesting to note that, for large |N(x)|, the QP 72

assignment algorithm performs similar to a smaller one. 73

This phenomenon is because in the QP assignment, the 74

contribution function of a visual feature x to vk ∈ N(x) 75

is the weights used in the linear reconstruction of the x 76

from vks, among which only a few ones are valid with 77

CQP (vk, x) ̸= 0, although it is learned from a large set 78

of neighbors. To illuminate this, we define a minimum 79

subset of N(x) for a local feature (image patch here) x, 80

whose numbers’ contribution function CQP (vk, x) ̸= 0, 81

call as critical neighbors (CN). The CNs of a local feature 82

is a minimum set to reconstitute the x, while the visual 83

word vk ∈ N(x) and vk ̸∈ CN(x) is not necessary. 84

Here, we give two example image patches x1 and x2 in 85

the first row of Fig. 10(b) with a vocabulary V of size 86

10 as Fig. 10(a). their QP contributions CQP (vi, x) and 87

the CN in N(x) with different neighboring size N(x) is 88

show blow the pathes. As we can see from Fig. 10, with 89

the increasing N(x), the CQP (vi, x) does not change 90

continuously. One interesting fact is, with in a interval 91

of N(x), the CQP (vi, x)s are identical. For example, 92

N(x) = 5 ∼ 7 and N(x) = 8 ∼ 10 for x1, while 93

N(x) = 4 ∼ 7 and N(x) = 8 ∼ 10 for x1. This 94

means that the CQP (vi, x)s do not benefit from enlarging 95

the N(x) in the interval, while spend more computation 96

time, since the time complex is O(|N(x)|3). This can 97

also be observed from the CNs of x1 and x2, which is 98

also identical for the N(x) in some interval. For example, 99

when we varying the N(x) in 4 ∼ 7 for x2, the CN do 100
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Fig. 9. We consider the effect of varying the neighboring size N(x) on
our evaluation methodology. We plot the mean k-NN classification accuracy
(%) obtained by QP assignment (using 20 cross-validated reference metrics,
as described in Section V-A1) for several different neighboring sizes N(x)
on the ImageCLEFmed 2007.

not change at all which means the additional 3 visual1

word have no contribution for x2 in QP reconstruction,2

and sequently, do not effect the assignment of x. So it’s3

not necessary to use a large N(x).4

Another interesting phenomena is that, for some patch5

(like x1), patch neighbor that is further away contributes6

more to the QP then a neighbor that is closer, e.g.7

the difference between step 4 and step 5 for image8

patch x1. As we explained in section III, by saying ’a9

close neighboring visual word’, we implicitly measure10

the similarity between a local feature and a visual word11

using a pairwise distance, which neglects the context12

information in the visual words neighborhood. When we13

utilize the contextual similarity to model the contribution14

function using QP assignment, we may have a quite15

different results. One the other hand, when we enlarge16

the radius of the neighborhood |N(x)|, adding new visual17

words to N(x), the structure of the local neighborhood18

might change. For example, when |N(x) is enlarged from19

4 to 5, the neighborhood of x1 is changed, and x1 find20

a new neighbor which is not included by the previous21

N(x1)–the first visual word, and more importantly, with22

it, x1 can reconstruct itself better than using the last one23

collaborating with other visual words. In this situation,24

QP assignment move the weight from last one to the first25

visual word, although the last one seems quiet similar26

to x1. However, we must note that, the neighborhood27

structure keep stable in most cases (e.g. for x1, when28

|N(x)| is enlarged from 5 to 6, and 6 to 7, etc.). The29

main task, is to find a the minimum neighborhood size30

|N(x)| with the same neighborhood structure (CN), to31

neglect the redundant visual words.32

• Validating Different Multiple Assignment Strategies33

for Various Vocabularies. We can use different data set34

for clustering to generate different various vocabularies.35

(a)

(b)

Fig. 10. Illumination of image patches x1 and x2’s QP Contributions
CQP (vi, x) to the visual words with varying neighboring size |N(x)|

The data set used for the clustering may have an impact 36

on the accuracy. In this section, we also test multiple 37

assignment QP vs. NN, MA and SA for various vocab- 38

ularies on set ImageCELF 2007. The visual vocabularies 39

are generated by clustering two medical image sets: 40

ImageCELF 2007 itself, ImageCELF 2008 [1], and a 41

texture data set CUReT [23]. The visual vocabulary sizes 42

are all set to be K = 700. The classification results 43

are shown in Tables I. For ImageCELF 2007 data set, 44

we compare in column ”clustering data set” k-means 45

clustering on two uncorrelated data set (ImageCELF 2008 46

and CUReT) with k-means clustering on the evaluation 47

data set itself (ImageCELF 2007). In all the cases, the 48

results are improved by generating the visual vocabulary 49

with a subset of the data set on which the experiments are 50

performed. Moreover, compared to using a texture dataset 51

to generate the visual vocabulary, using another medical 52
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TABLE I
CLASSIFICATION RATE (%) OF MULTIPLE ASSIGNMENT QP VS NN, MA

AND SA FOR VARIOUS VOCABULARIES ON IMAGECELF 2007.

Assignment Clustering Data Sets
ImageCELF 2007 ImageCELF 2008 CUReT

[1] NN 87.3000 85.3000 81.7000
[8] MA 87.7000 85.6000 82.1000
[9] SA 90.0000 87.6000 84.0000
QP 90.8000 88.4000 84.8000

TABLE II
COMPARISON OF DIFFERENT VISUAL WORDS WEIGHTING METHODS ON
IMAGECLEFMED 2007: BOOSTED WEIGHTING VS. TF, TF.IDF AND [27]

WEIGHTS.

Assignment Weighting
[15] tf [15] tf.idf [27] Weight Boosted

[1] NN 87.3000 87.3000 88.1000 88.3000
[8] MA 87.7000 87.6000 88.5000 88.7000
[9] SA 90.0000 89.8000 91.0000 90.7000
QP 90.8000 90.6000 91.4000 91.6000

image set (ImageCELF 2008) seems a better choice for1

a medical image task. Base on these results, we use the2

visual vocabulary generated by clustering local feature3

dataset of ImageCELF 2007.4

3) Comparison of Weighting Methods to Different Assign-5

ment Strategies on ImageCLEFmed 2007 Dataset: Using6

the selected parameters, we carry out expriments on Image-7

CLEFmed 2007 Dataset to compare our proposed QP multiple8

assignment and boosted visual words weighting strategies9

against other state-of-the-art. According to the reviewer’s10

advices, we consider the following visual word weighting11

strategies as comparision of boosted weighting:12

• tf. The most popular term frequency representation only13

adopts the raw term frequency (tf) in the document [15].14

• tf.idf. A conventional inverse collection frequency factor15

(idf) [15], as introduced in 3. Here we use idf to weight16

tf, resulting tf.idf as a bag level representation.17

• [27] Weights. A vocabulary weights learning method18

proposed by [27], which is very relevant to this paper.19

The results are summarized in Table II. These results show20

that for all assignment strategies, except for the SA, for which21

[27] method has the best result, the developed method, boosted22

weighting algorithm, have larger discriminative power com-23

pared against tf and tf.idf. Generally, tf and tf.idf are compara-24

ble, tf is relatively better. In most cases, for different weighting25

strategies, the classification performances of unweighed tf and26

the idf weighted tf—tf.idf with different assignment methods27

are generally inferior to those in weighted with using boosted28

or [27] methods. Thus, though the visual vocabulary of data29

in the data set are not large, classification can still benefit30

from discriminative weighting factors learning algorithms. In31

3 out of 4 cases, our boosted algorithm outperform [27]32

algorithm. However, the classification result by using boosted33

weighting factor learning is already quite competitive as only34

the [27] algorithm have better performances when SA is used35

as assignment strategy. We attribute this result to the nonlinear36

property of the SA assignment in the local features.37

4) Large Scale Medical Image Retrieval on Image-38

CLEFmed 2008 Dataset: In ImageClef 2008 a large-scale39
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Fig. 11. Precision vs returned images graph of visual retrieval systems on
ImageClef 2008 medical database. Average precision shown for first 5, 10,
15, 20 and 30 returned images for each query image. Our proposed system’s
result marked with dashed lines.

medical image retrieval competition was conducted [19]. A 40

database of over 66,000 images was used with 30 query topics. 41

Each topic is composed of one or more example images and 42

a short textual description in several languages. The objective 43

is to return a ranked set of 1000 images from the complete 44

database, sorted by their relevance to the presented queries. 45

The retrieved results were manually judged for relevance by 46

medical experts. 47

Based on the above experiments, a dictionary size of 700 48

visual words was selected, where each word contains 7 PCA 49

coefficients. Fig. 11 shows the performances of our proposed 50

retrieval system using QP assignment with |N(x)| = 20 and 51

boosted weighting strategy, marked with (*), along with visual 52

retrieval algorithms submitted by additional groups [19]. From 53

Fig. 11, it must be noted that our system performs generally 54

better than all of the other automatic purely visual retrieval 55

systems making it the first choice in ImageCLEFmed 2008 56

data set. It is also observed that the performance of the 57

proposed system decrees with the addition of more and more 58

returned images, whenever such an decrees is possible. 59

B. Experiment II: Medical Image Retrieval on 304 CT Set 60

The second test data set in this paper contains 304 CT 61

images, so we call it 304 CT set. These images are first 62

used in [2], and compose 6 body parts of different people: 63

foot, abdomen, kidney, lung, head, and heart. These images 64

extracted randomly from 6 CT series, and each subset images 65

is sampled from continuous slices in one series. Thus each 66

subset images can be treated as similar in content. Totally, 67

there are 16 such subsets. One example image in 304 CT 68

Images Set is shown in Fig. 12 (a). For simulate the real 69

condition while can compute result conveniently, we randomly 70

add rotation (in [−60◦, 60◦]) and scale (in [0.5, 2]) on the 71

images in the experiments. 72
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(a) (b)

Fig. 12. One Image in 304 CT (a) and its SIFT local keypoints (b).

Following [2], we extract SIFT (Scale Invariant Feature1

Transform) feature at local keypoints [5], [6] as local features2

of the medical images, as is shown in Fig. 12 (b). This strategy3

uses a keypoint detector based on the identification of inter-4

esting points in the location-scale space. This is implemented5

efficiently by processing a series of difference-of-Gaussian6

images. The final stage of this algorithm calculates a rotation7

invariant descriptor using predefined orientations over a set of8

blocks. We use SIFT points with the most common parameter9

configuration: 8 orientations and 4 × 4 blocks, resulting in a10

descriptor of 128 dimensions.11

The next step is to make visual word vocabulary V . This12

step usually uses k-means clustering method, and use cluster13

centers as visual vocabulary term. We take the local SIFT14

feature descriptors of all the images in training dataset as the15

input to k-means to get all cluster centers vk, and derive a16

vocabulary V = {vk}, k = 1, · · · ,K of |V | = K visual17

words. We do not spend additional effort to tune the value18

of K, but simply set it to 2400.19

After making visual words, images in database file are20

transformed into TDM (Term-document matrix), in which an21

image is represented as a file document vector [2], or as22

refereed as a histogram in our paper. The file document vector23

is build using the NN assignment strategy in [2]. Here, we24

use the QP assignment to build the histogram in our proposed25

system.26

In this group of experiments, we use the Jensen-Shannon27

divergence SJSD =
∑K

k=1 s
JSD
k as the baseline similarity28

measure as in [2]. To improve the retrieval performance, we29

apply our boosted weighting strategy to enhance the original30

JSD similarity measure, resulting SJSD
Boosted =

∑K
k=1 tks

JSD
k31

by learning the weighting factor tk.32

Because the system proposed by [2] used NN assignment33

and JSD similarity for comparison of histograms, we will refer34

it as ’NN+JSD’ in our experiment results in Fig. 13. Here,35

we also use widely used co-occurrence feature as baseline36

to compare different methods’ performance, which will be37

refereed as ’GLCM’ in Fig. 13.38

In this experiment, MAP (Mean Average Precision) [20]
value is used for evaluate performance between different
methods. Average Precision (AP) is computed for every query
image q as

AP (q) =
1

NR

NR∑
n=1

Pq(Rn) (38)
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(d) Add both rotation and scale transformation on images

Fig. 13. Comparison between different transformations on 304 CT set.

where Pq(Rn) is precision recall function value. MAP is the
mean of AP:

MAP =
1

|Q|
∑
q∈Q

AP (q) (39)

For 16 classes in this experiment, randomly choose 3 images 39

in per class as query images, and use the average of this 40

3 query images’ precision as the final precision. We use 41

MAP value as the final value as widely adopted in retrieval 42

experiments. Fig. 13 shows the overall results. 43

From Fig. 13, we can draw that totally speaking SIFT-based 44

methods (NN+JSD and proposed system) are better than co- 45

occurrence feature method (GLCM), especially when faced 46

on rotation and scale transformation which is usually met in 47

medical image. 48

In comparison to various bag-of-feature algorithms in [2], 49
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our proposed system employing the QP assignment and the1

boosted visual word weighting yields the satisfactory perfor-2

mance in general. In particular, the proposed system yields3

the best performance among 4 dataset with different transfor-4

mations on the 304 CT set benchmark, as shown in Fig. 13.5

Since 304 CT set is collected from a real word task [2], the6

intrinsic structures underlying the local features and visual7

words is generally unknown although it seems plausible that8

the features described by SIFT have rather few degrees of9

freedom. Results achieved by QP assignment suggest that this10

local feature set may be of linear neighboring structures. Given11

the fact that our algorithm dominates the performance on12

all the benchmarks, we conclude that our system with QP13

assignment and boosted visual weighting would be highly14

competitive with the existing co-occurrence feature method15

and traditional bag-of-feature algorithms for some specific16

tasks.17

C. Experiment III: Basal-Cell Carcinoma Image Classifica-18

tion19

The third medical image dataset has been previously used20

in an unrelated clinical study to diagnose a special skin cancer21

known as basal-cell carcinoma [21]. Basal-cell carcinoma is22

the most common skin disease in white populations and its23

incidence is growing world wide [22]. Pathologists confirm24

whether or not this disease is present after a biopsied tissue25

is evaluated under microscope. The database is composed of26

1,502 images annotated by experts into 18 categories. One27

example image is shown in Fig. 14 (a). Each label corresponds28

to a histopathology concept which may be found in a basal-cell29

carcinoma image. An image may have one or several labels,30

that is to say, different concepts may be recognized within the31

same image and the other way around.32

Following, the work in [21], in this experiment, the two local33

feature detection strategies with their corresponding feature34

descriptor have both been evaluated:35

• Image patches. The first strategy is dense random sam-36

pled image patches. The goal of this strategy is to select37

points in the image plane randomly and then, define a38

block of pixels around that coordinate. The size of the39

block is set to 9 × 9 pixels, and the descriptor for these40

blocks is the vector with explicit pixel values in gray41

scales, as is shown in Fig. 14. This descriptor will be42

called raw block, but it is also known as, image patch,43

texton or raw pixel descriptor [23]. As in [1], we call it44

image patch in this paper.45

• SIFT. The second strategy is based on Scale-Invariant46

Feature Transform (SIFT) points [5], [6]. This strategy47

uses a keypoint detector based on the identification of48

interesting points in the location-scale space, as is shown49

in Fig. 15.50

The visual vocabulary or codebook V is built using a51

clustering or vector quantization algorithm. The k-means52

algorithm is used in this work to find a set of centroids53

in the local features dataset. An important decision in the54

construction of the codebook is the selection of its size55

K, that is, how many codeblocks are needed to represent56

(a) (b)

Fig. 14. Representing a Basal-Cell Carcinoma image (a) as a collection of
randomly sampled image patches (b).

(a) (b)

Fig. 15. Representing a Basal-Cell Carcinoma image (a) as a collection of
key points with SIFT descriptors(b).

image contents. The final image representation is calculated 57

by counting the histogram of each codeblock in the set of local 58

features of an image, using the transitional NN assignment as 59

in [21] or QP assignment in our system. This representation 60

is known as term frequencies (TF) in text applications and 61

is also adopted in this work. Those are the standard image 62

representations, commonly used for image categorization. In 63

addition, the inverse document frequency (IDF) has also 64

been used as weighting scheme to produce a new image 65

representation in [21], which is given in (3). Classifiers used 66

in this experiment are Support Vector Machines (SVM), that 67

receives as input a data representation implicitly defined by 68

ahistogram intersection kernel (4) function as SHIK(X,Y ) = 69∑K
k=1 s

HIK
k (X,Y ), where sHIK

k (X,Y ) = min(fXk, fY
k ). 70

We improve it with our boosted visual word weighting factor 71

tk as SHIK
Boosted(X,Y ) =

∑K
k=1 tk · sHIK

k (X,Y ), and compare 72

it with the original tf, tf.idf weighting methods in [21], and 73

the weighting methods proposed in [27]. 74

The collection is split into 2 datasets, the first one for 75

training and validation, and the second one for testing. The 76

dataset partition is done using stratified sampling in order to 77

preserve the original distribution of examples in both datasets. 78

This is particularly important due to the high imbalance of 79

classes. In the same way, the performance measures reported 80

in this work are precision, recall and F-measure to evaluate the 81

detection rate of positive examples, since the class imbalance 82

may produce trivial classifiers with high accuracy that do 83

not recognize any positive sample. In addition, since one 84

image can be classified in many classes simultaneously, the 85

classification strategy is based on binary classifiers following 86

the one-against-all rule. Experiments to evaluate different 87
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configurations of the bag of features approach have been done.1

For each experiment, the regularization parameter of the SVM2

is controlled using 10-fold cross validation in the training3

dataset, to guarantee good generalization on the test dataset.4

Reported results are calculated on the test dataset and averaged5

over all 18 classes.6

• Evaluation of Codebook Size K. The first evaluation7

focuses on the codebook size K. We have tested six8

different codebook sizes, starting with 50 codeblocks and9

following with 150, 250, 500, 750 and 1000. Fig. 1610

shows a plot for codebook size K vs. F-measure using11

two different local feature descriptors.12

As can be seen from the Fig. 16, for the methods using13

image patches as local feature, the performance increase14

and then decrease while the vocabulary size K increase.15

The best performance is archived at K = 500 for16

our system. This behavior is explained by the intrinsic17

structure of histopathology images: they are usually com-18

posed of some kinds of textures, that is, the number of19

distinctive patterns in the collection is limited. Perhaps20

surprisingly, for SIFT based methods, the classification21

performance decreases while the vocabulary size K in-22

creases. The readers might doubt that the performance23

goes down when the vocabulary grows is very strange,24

in Fig. 16. This has never been reported before at such25

small vocabulary sizes in natural image retrieval. I suspect26

something is wrong here. As we argued before, the27

medical image only needs a small vocabulary size, not28

like the natural images. This is especially for the Basal-29

Cell Carcinoma dataset, in which most images have much30

simpler patterns. As we can see from Fig. 14 (a), the31

image is composed of some sample texture patterns. In32

this case, if we use a larger visual vocabularies, it means33

the k-means runs a small number of iterations and the34

visual words are not compact enough.35

In our experience, these parameter settings performed36

well; nevertheless, small changes in K can affect the37

performance of each technique as is shown in Fig. 16.38

Approaches for estimating K in bag-of-features method39

are currently under investigation.40

For comparison, the results obtained when using the41

methods proposed by [21], which uses the NN assignment42

and absolute term frequencies (tf) without any visual43

weighting are provided in Fig. 16. These results have been44

computed with the same local descriptors as in the our45

proposed system. The proposed classification approach46

based on QP assignment and boosted weighting for HIK47

similarity yields better performance than a transitional48

bag-of-feature based on NN assignment and absolute (tf)49

[21], although the latter is already quite sophisticated.50

• Comparison of Local Descriptor. The second factor51

to evaluate is the feature descriptor. As is shown in52

Fig. 16, the image patch descriptor has obtained a better53

performance in terms of F-measure among all vocabulary54

sizes except K = 50.55

Table III shows the performance summary of the different56

configurations evaluated in this work. In bold are the best57

values of precision, recall and F-measure, showing that 58

patch-based strategies are more effective in general. 59

An important question here is why SIFT points, that are 60

provided with robust invariant properties, are not a good 61

choice with this type of histopathology images. First, 62

there is some evidence that they were not designed to find 63

the most informative patches for image classification [21], 64

and second, it is possible that all the attempts to increase 65

the invariance of features in histopathology images, lead 66

to a loss of discriminative information. Furthermore, we 67

also suspect that the reason that SIFT does not perform 68

as well is because of the interest point detector. Thus 69

We also plot the results using dense-sampling instead of 70

interest point detection for SIFT in Fig 16. It is interesting 71

to notice that when the dense-sampling is combined with 72

SIFT descriptor, the performance do get better, but is 73

still not as well as row blocks. However, we can notice 74

that it can benefit from a larger vocabulary size, i.e. its 75

best classification results are got when V = 750. This is 76

because when dense-sampling is used to SIFT, more local 77

features are generated and thus makes the vocabulary 78

larger. 79

The nature of the descriptor is also a determinant factor 80

in this behavior since the performance of the interest 81

point detection based SIFT points decreases faster than 82

the performance of raw blocks. This suggests that a SIFT- 83

based vocabulary requires less visual words to express all 84

different patterns in the image collection, which is con- 85

sistent with the rotation and scale invariance properties 86

of that descriptor. On the other hand, a dense-sampled 87

SIFT and image patches-based visual vocabulary requires 88

a larger size because it is representing the same visual 89

patterns using different visual words. 90

• Comparison of Visual Word Weighting Strategies to 91

Multiple Assignments. The next aspect in this evaluation 92

is the image representation, i.e. the use of absolute term 93

frequencies (tf) [7], the use of the weighted scheme 94

provided by inverse document frequencies (tf.idf) [7], the 95

used of weighted scheme provided by [27] to the NN, 96

MA, SA and our QP assignment methods. The results 97

are reported in Table III. Note that in this group of 98

experiments, we utilize image patches as local features, 99

since according to the prevenient experiments, image 100

patches performs better than SIFT as local features. 101

Table III lists the classification accuracy for different 102

assignment and weighting configurations. The results 103

Table III show that for different assailment strategies, 104

boosted weighting outperforms tf, tf.idf, and [27] method. 105

There is no significant difference between tf and tf.idf 106

based on statistical hypothesis test. According to the 107

results presented in Table III, it is not clear when 108

idf improves the original tf’s classification performance. 109

Moreover, our Boosted weighting achieves accuracy per- 110

formance similar to that of classifiers trained on whole 111

training sets using [27] method. Generally speaking, 112

Boosted weighting performs equally as well as [27] 113

method, but much better than tf and tf.idf. This may be 114

due to the different strategies used in different weighting 115
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Fig. 16. Vocabulary size K vs. F-Measure for two bag of features
representation using SIFT points and image patches.

methods. Boosted and [27] method tend to select learn1

weights that lead to maximizing margin between classes.2

The possible explanation for this difference lies in their3

different theoretical rationales. The idf is a unsupervised4

method, which don’t utilize the class information, while5

our boosted weighting is learned under the supervision6

of the class relationships of triplets.7

The summary of the bag-of-features based medical image8

classification experiments using the four different local9

feature assignment strategies is also presented in Table10

III. The methods are the convictional NN assignment used11

by [21], MA [8], SA [9] and out QP assignment Method.12

These experiments are shown for different weighting13

methods, and they clearly and consistently illustrate the14

outperformance of QP assignment with respect to NN,15

MA and SA for almost all the weighting methods. The16

outperformance of our QP assignment essentially comes17

from the inclusion of the contextual visual words; in18

almost all cases, a small context size |N(x)| = 20 was19

sufficient in order to improve the performance of the20

boosted weighting, and a few larger for the other weight-21

ing methods. On the one hand, this corroborates the22

fact that the boosted weighting provides state-of-the-art23

performances, and on the other hand, their performances24

can be consistently improved by including neighboring25

contextual visual words of a local feature.26

In summary, the use of QP assignment as a base visual de-27

scriptor assignment generally leads to the better performance28

than transitional NN strategy for bag-of-feature algorithms29

regardless of visual weighting methods. In contrast to the30

baseline tf and tf.idf visual word weighting’s performance,31

boosted weighting with constantly makes the improvement for32

both local descriptors regardless of NN or QP assignment.33

TABLE III
PERFORMANCE MEASURES FOR THE DIFFERENT VISUAL WORDS

WEIGHTING METHODS ([21] TF, [21] TF.IDF, [27] WEIGHTING AND
BOOSTED WEIGHTING) TO DIFFERENT LOCAL ASSIGNMENT STRATEGIES

([21] NN, [8] MA, [9] SA AND QP ASSIGNMENTS).

Assignment Weighting Precision Recall F-Measure
[21] NN [21] tf 0.610 0.162 0.234
[21] NN [21] tf.idf 0.634 0.152 0.231
[21] NN [27] Weighting 0.6487 0.1604 0.2572
[21] NN Boosted 0.6539 0.1697 0.2695
[8] MA [21] tf 0.6129 0.1634 0.2580
[8] MA [21] tf.idf 0.6233 0.1545 0.2476
[8] MA [27] Weighting 0.6499 0.1689 0.2681
[8] MA Boosted 0.6547 0.1705 0.2705
[9] SA [21] tf 0.6371 0.1653 0.2625
[9] SA [21] tf.idf 0.6380 0.1668 0.2645
[9] SA [27] Weighting 0.6669 0.1745 0.2766
[9] SA Boosted 0.6728 0.1774 0.2808
QP [21] tf 0.6382 0.1666 0.2642
QP [21] tf.idf 0.6474 0.1691 0.2682
QP [27] Weighting 0.6675 0.1763 0.2789
QP Boosted 0.6790 0.1787 0.2829

VI. CONCLUSION 34

This paper has considered the problem of assigning the 35

local descriptors to visual words, and the weighting of vi- 36

sual words to improve the discriminating power in bag-of- 37

feature based medical image retrieval. We have introduced a 38

method to enable efficient multiple assignment of local feature 39

descriptors to visual words for bag-of-feature methods, and 40

experiments show good results for a variety of data sets, rep- 41

resentations, and base descriptor. Our other main contribution 42

is a new visual word weighting factor learning algorithm to 43

construct theoretically sound discriminate weighting strategy 44

functions—for both similarity and distance comparison of 45

histograms representation of images. Experiments demonstrate 46

our technique’s accuracy and flexibility for a number of large- 47

scale medical image search tasks. 48

In future work, we intend to explore online extensions to 49

our algorithm that will allow the local features’ assignment and 50

the visual word weighting to be processed in an incremental 51

fashion, while still allowing intermittent queries. We are also 52

interested in considering generalizations of our medical image 53

retrieval method to accommodate alternative assignment and 54

weights learning algorithms within our framework. 55
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