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Abstract— The paper deals with the adaptation of bimanual
assembly tasks. First, the desired policy is shown by human
demonstration using kinesthetic guidance, where both trajec-
tories and interaction forces are captured. Captured entities
are portioned to absolute and relative coordinates. During the
execution, small discrepancies in object geometry as well as the
influence of an imperfect control can result in large contact
forces. Force control can diminish the above mentioned prob-
lems only to some extent. Therefore, we propose a framework
that iteratively modifies the original demonstrated trajectory
in order to increase the performance of the typical assembly
tasks. The approach is validated on bimanual peg in a hole
task using two KUKA LWR robots.

Index Terms— bimanual manipulation, iterative learning con-
trol, task adaptation, real time control

I. INTRODUCTION

Bimanual arm architecture enables the performance of a
variety of assembly tasks, is essential for carrying heavy and
spacious objects and enables the transfer of many human
skills to robots. However, additional flexibility requires more
complex control algorithms. Dual arm manipulation has
been extensively investigated in the nineties. Earlier con-
trol architectures exploited master-slave approach, hybrid-
force-torque and impedance control approach to synchronize
motion of both arms [1], [2]. Today, most of the bimanual
control architectures are based on the concept of symmetric
control [3], which enables portioning of the task to so called
absolute coordinates and relative coordinates and underlying
internal and external forces, which are orthogonal [4]. This
formalism allows the learning, demonstration and adaptation
of bimanual tasks in above mentioned orthogonal subspaces.
Adaptation, being the one of the key features of new gener-
ation of service and humanoid robots, can be accomplished
in several ways. In most cases the adaptation is required to
refine the previously demonstrated motion to different robot
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embodiment. Additionally, adaptation is necessary to cope
with non-modelled environment constraints. Often applied
paradigm for motion adaptation is reinforcement learning
(RL) applying probabilistic algorithms [5], which can deal
with high dimensionality spaces induced by parameterised
policies [6]. Despite of these advances, learning capabilities
of modern robots are still far from the learning capabili-
ties of humans. While humans can quickly adapt to new
situations, robots often have to relearn the whole policy
in a lengthy exploration process, even when a good initial
policy approximation is provided. Therefore, researchers are
trying to find effective solutions to speed up learning. One
of promising paradigms is also Iterative Learning Control
(ILC). The main objective of ILC is to improve the behavior
of the control system that operates repeatedly by iterative
refinement of the feed-forward control input [7]. Due to its
simplicity, effectiveness and robustness when dealing with
repetitive operations, ILC is often applied in robotics [8]. As
many tasks in industry as well as in home environments need
to be executed repeatedly, it represents a natural choice for
adaptation of such tasks.

In this paper we propose a new learning controller that
applies to bimanual task adaptation. Bimanual adaptation was
studied also in [9], where both robot arms were independent
agents coupled only at the force level. In this work, robot
arms are coupled both on kinematical and force level and
treated as a single agent. The structure of the proposed
algorithm allows easy integration into the Dynamic Motion
Primitives (DMP) framework [10]. The proposed algorithm is
general and can be used with both types of bimanual move-
ments that can be represented by DMPs, i. e. discrete and
periodic movements. Our experimental setup was composed
of two KUKA LWR arms equipped with Barret hands. The
performance of the proposed algorithm was evaluated on
long poles insertion task, which is related to the classical
peg-in-hole problem [11], [12], [13], [14], [15]. The paper
is organized as follow. In Section II we outline kinematics
and dynamics of a bimanual system. In Section III, the main
contribution of the paper, we extend our previously presented
trajectory adaptation scheme based on demonstrated position
and force profiles to a bimanual system. We discuss also the
stability of the proposed adaptation scheme. In Section IV
the experimental results and the effectiveness of the proposed
algorithm are given. Discussion and future work regarding
bimanual adaptation are summarized in conslusion.
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Fig. 1. Dual arm manipulator and the corresponding notation used in the
paper.

II. BIMANUAL TASK KINEMATIC CONTROL

In this section we present a task-space control scheme
for a bimanual system. This scheme is an extension of the
previously proposed approach[16]. It fully characterizes a
cooperative operational space and allows the user to spec-
ify the task in terms of geometrically meaningful motion
variables defined at the position/orientation level [17], [16].
The resulting definition of the task variables in terms of the
relative and absolute task motion of the cooperative system
are mathematically well defined and have a clear physical
meaning. Within this framework, both subspaces are orthog-
onal and thus decoupled - motion in relative coordinates does
not affect absolute coordinates and vice versa. Consequently
the control can be applied to both subsystems, relative and
absolute, independently.

The key of our approach is in the definition of the common
base coordinate systems for both subspaces, as illustrated in
Fig. 1. According to this, the common base for the absolute
coordinates is suitably chosen base Tb which applies to both
robots, whereby the base for relative coordinates is placed
in one of the robot’s end effector, e.g. of the first robot.
From now on we will use the notation where superscript
j, j ∈ {1, 2, b} denotes that the given quantity is specified
relative to the coordinate system Tj , while the subscript i,
i ∈ {1, 2} denotes the arm of a bimanual system and i,
i ∈ {a, r} denotes relative and absolute coordinates

According to this notation, absolute and relative task
coordinates can be specified as

pr = p1
2 = Rb

1

T
(pb

2 − pb
1), (1)

Rr = R1
2 = Rb

1

T
Rb

2, (2)
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2
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2), (3)

Ra = Rb
1R

b
kb
21

(ϑ21/2), (4)

where p ∈ R3 applies to positions vector and R ∈ R3×3

to rotational matrices. k and ϑ21 are the axis and angle that
realize the rotation Rb

1 to Rb
2. In quaternion notation, (2) and

(4) are in the form

qr = q1
2 = q̄b

1 ∗ qb
2, (5)

qa = qb
1 ∗ qb

kb
21
, (6)

where the quaternion qb
1 ∈ R4 and qb

2 ∈ R4 expresses the
rotation of the TCP of the first and second robot in the
common base coordinate frame Tb, respectively. q̄ denotes
conjugate quaternion and operator ∗ denotes quaternion
product. qb

kb
21

denotes the unit quaternion corresponding to
Rb

kb
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(ϑ21/2), which can be calculated from
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The corresponding relative and absolute forces and toques
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where f ii ∈ R3 and mi
i ∈ R3 denote the forces and torques

measured at the i-th manipulator tool center point (TCP).
In order to control the robot, we have to map the desired

relative and absolute task coordinates to the corresponding
joint coordinates of both robots, denoted with θθθ ∈ R(N1+N2),
where N1 and N2 is the number of joints of the first and the
second robot, respectively. This transformation is obtained
through relative and absolute geometrical Jacobian, which
maps the corresponding translational and angular velocities
to the joint velocities[

ṗr

ωωωr

]
= Jrθ̇θθ ,

[
ṗa

ωωωa

]
= Jaθ̇θθ. (12)

Relative and absolute Jacobian matrices are obtained with
the time derivation of the set of equations (1–4),

Jr =

[
−Rb

1
T

(J1,p + ST (p2 − p1)J1,ω) Rb
1
T
J2,p

−Rb
1
T
J1,ω Rb

1
T
J2,ω

]
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and
Ja =

[
1
2J1

1
2J2

]
. (14)

Subscript (.)p and (.)ω denotes positional and rotational part
of the Jacobian and S is anti-symmetric matrix [4].

If the task requires control only of the relative coordinates,
the corresponding joint velocities are obtained from

θ̇θθ = J+
r (vr,d + Krer) + (I− J+

r Jr)θ̇θθ0, (15)

where J+
r is the Moore-Penrose pseudo-inverse of the rel-

ative Jacobian Jr, vr,d ∈ R6 are the desired relative
translational and rotational velocities, I is identity matrix,
Kr ∈ R6×6 is a diagonal matrix with the kinematic gains
and er ∈ R6 is the error between the desired and actual
relative task coordinates, calculated as

er =

[
pr,d − pr

log(qr,d ∗ q̄r)

]
. (16)
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The rotational part of the error is calculated using logarithmic
map log, which maps the quaternion describing the rotation
between the desired and current pose to the rotation error
vector. This mapping is defined as

log(q) = log(v,u) =

 arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (17)

Vector θ̇θθ0 ∈ R(N1+N2) is an arbitrary vector of joint
velocities that is projected in the null-space of the primary
task, selected in such a way that it optimizes an additional
secondary task, i.e. obstacle avoidance, joint limit avoidance,
singularity avoidance, etc.

If we would like to control both relative and absolute
task coordinates, this can be accomplished by solving the
equation

θ̇θθ = J+
e (ve,d + Keee) + (I− J+

e Je)θ̇θθ0, (18)

where extended Jacobian is defined as

Je =

[
Jr

Ja

]
(19)

and ve,d is the desired extended task space velocity com-
posed of the desired relative and absolute task velocities.
The ee ∈ R6 is the error between the desired and actual
absolute task coordinates, calculated similar as in (16).
Diagonal matrix Ke ∈ R12×12 contains suitably chosen
positive kinematic control gains. Note that the dimension
of the extended task defined with (19) can be ≤ 12, which
allows to exploit the additional degrees of redundancy for
secondary task(s).

III. BIMANUAL TASK ADAPTATION

Assembly tasks performed by humans are usually ac-
complished with both hands. Humans are very good at
performing bimanual assembly tasks that require compliance
and force control and can quickly adapt to specific tools and
environments. Therefore, we use human demonstration of
the bimanual task as a starting point. Initial task is obtained
with learning by demonstration (LbD) exploiting kinesthetic
guidance. Unlike standard LbD approaches [18], we capture
besides trajectories also forces and torques arising during the
task execution as training data [19]. During the execution
of learned skills, additional adaptation is often needed to
cope with small differences induced by the environment,
the inaccuracies in geometry of the manipulated objects,
grasping tolerances, etc. It has been previously proved that
on-line control alone can not in general provide successful
adaptation in assembly tasks [20]. Therefore, various learn-
ing techniques were applied [21]. In our previous works we
demonstrated that Iterative Learning Control (ILC) frame-
work can efficiently adapt the previously demonstrated task
to a new situation [9], [22], [19]. Therefore, ILC framework
was applied also for bimanual task adaptation.

To learn the optimal control input, which is in our case
the reference trajectory composed of position part vector p

Fig. 2. Block diagram of force based adaptation scheme.

and rotation part quaternion q, we applied ILC in the form

pl(k) = pd(k) +ϕϕϕp,l(k) + Cp(γ)ef,l(k) (20)
ql(k) = exp(Cq(γ)em,l(k)) ∗

exp(ϕϕϕq,l(k)) ∗ qd(k), (21)

where l denotes the learning cycle, k is the time sample
index, Cp(γ) ∈ R3×3 and Cq(γ) ∈ R3×3 are diagonal
matrices composed of transfer function polynomials, γ is
the backward shift operator, which delays a signal for one
time sample and ef,l(k) and em,l(k) are the force and torque
tracking errors, respectively. Terms pd(k) and qd(k) denote
the initially demonstrated trajectory in the form of the de-
sired positions vector and rotations quaternion. Term ϕϕϕp,l(k)
and ϕϕϕq,l(k) denotes position and rotation displacements,
which will be learned by means of ILC. Remaining terms
Cp(γ)ef,l(k) and Cq(γ)em,l(k) belong to the admittance
force controller, which minimizes force and torque tracking
errors in the current iteration cycle. Therefore, the ILC
scheme given by (20) and (21) is often refereed as ”current
iteration” ILC. Force and torque tracking errors are defined
as ef,l(k) = fd(k) − fl(k) and em,l(k) = md(k) −ml(k),
where fd(k) and md(k) are initially demonstrated forces and
torques profiles, respectively. exp denotes the exponential
map exp : R3 7→ S, defined as

exp(r) =

 cos (‖r‖) + sin (‖r‖) r

‖r‖
, r 6= 0

0, otherwise

(22)

The compensation terms are learned with

ϕϕϕp,l(k) = Qp(γ)(ϕϕϕp,l−1(k) + Cp(γ)ef,l−1(k)), (23)
ϕϕϕq,l(k) = Qq(γ)(ϕϕϕq,l−1(k) + Cq(γ)em,l−1(k)), (24)

where Qp(γ) ∈ R3×3 and Qq(γ) ∈ R3×3 are ILC transfer
functions. Initial values of ϕϕϕp,0(k) and ϕϕϕq,0(k) are set to
0 ∀ k. The same adaptation algorithm can be used for
adaptation of both relative and absolute coordinates. In
the above formulation we omitted indexes r and a, which
define weather relative or absolute coordinates are subject of
adaptation.

The stability of the proposed admittance force control law
which iteratively updates the position compensation term
will be analysed in the frequency domain of a time discrete
system. For sake of simplicity, stability will be shown only
for adaptation of the positional part of the trajectory. The
overall ILC scheme for positional trajectories is outlined in
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Fig. 2. Let uppercase letters denote one sided Z transform
of the corresponding time-discrete signal denoted with low
letter. Again, for the sake of simplicity, we will omit explicit
dependence on z in transfer functions and Z transform of the
signals. We define as a system output the force at the TCP of
the robot, which is modelled assuming known environment
stiffness Ks,

Fl = Ks(GPl −Po), (25)

where Ks ∈ R3×3 is a diagonal positive definite environment
stiffness matrix, G ∈ R3×3 is diagonal matrix containing
transfer functions which map the desired position vector Pl

into the actual position and Po denotes the environment
contact positions. In stability analyses we will consider the
case where the robot dynamics is previously decoupled and
linearized within the robot controller [23]. Therefore, G can
be modelled as a diagonal matrix with transfer functions of
second order. According to (20) and (23), Z transform of the
error function El, position update function Pl and learned
offset function ΦΦΦ are

El = Fd − Fl, (26)
Pl = Pd + ΦΦΦl + CEl, (27)
ΦΦΦl = Q(ΦΦΦl−1 + CEl−1). (28)

Now, let express the the error El as a function of the error
in the previous learning cycle El−1,

El = Fd − Fl (29)
= Fd −Ks(GPl −Po)

= Fd −Ks(G(Pd + ΦΦΦl + CEl)−Po)

= Q(Fd −Ks(G(Pd + ΦΦΦl−1 + CEl−1)−Po))−
KsGCEl + (I−Q)(Fd −Ks(GPd −Po))

= Q(Fd − Fl−1)−KsGCEl +

(I−Q)(Fd −Ks(GPd −Po))

= QEl-1 −KsGCEl + (I−Q)(Fd−Ks(GPd−Po)).

In the above equation we added and subtracted the term
Q(Fd−Ks(GPd−Po)) and used (25) – (28). Rearranging
(29) we obtain

El

El−1
=

Q

I + KsGC
+

I−Q

I + KsGC

Fd −Ks(GPd −Po)

El−1
(30)

Asymptotic stability is assured iff El

El−1
< 1 ∀l. Inserting

again the z dependence into transfer functions and signals
and substituting z = ejω in (30), the condition for asymptotic
stability becomes [24]

Q(ejω)

I + KsG(ejω)C(ejω)
+

I−Q(ejω)

I + KsG(ejω)C(ejω)
ε < 1,∀ ω,

(31)
where

ε =
Fd(ejω)−Ks(G(ejω)Pd(ejω)−Po(ejω))

El−1(ejω)
(32)

and ω = [−π, π] is the frequency normalised with the
sampling time of our time-discrete system.

Fig. 3. Experimental platform.

Given the known transfer function G(z) and estimated
environment stiffness Ks we have to design such admittance
control law transfer function C(z) and learning function
Q(z), that the learning error E(z) asymptotically decays
to 0 when l → ∞, Note that the nominator of the term
ε (32) is 0, since Ks(GPd − Po) = Fd, assuming ideal
model for Ks, G and Po. In practice, this is never true and
the denominator of ε is small and bounded value, which
depends only on the desired force Fd, desired trajectory
Pd and environment Po. Therefore, ε increases when the
error E decreases. Consequently, zero learning error can be
guaranteed only with the choice Q(z) = I. On the other
hand, it is generally very hard to fulfill condition (31) with
Q(z) = I. In most cases Q in the form of a low pass
filter will assure the stability, but increase learning error
[25]. Therefore, the design of Q(z) is a tradeoff between
the robustness and stability and performance of the learning
algorithm. The design of the learning algorithm can be thus
summarised in the following steps:

1) calculate the upper bound of ‖ε‖ upon the admissible
error E(ejω),

2) check if (31) is fulfilled, by e.g. Bode or Nyquist plot,
3) tune the parameters of the transfer function C, L and

Q until (31) is fulfilled.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of the proposed learning on
bimanual peg in a hole tasks, where the robot has to insert
one round pole into another, as show in Fig. 3. The outer
diameter of one pole tightly fitted the inner diameter of the
other pole. The experimental platform was composed of two
KUKA LWR robot arms equipped with three finger Barret
hands. The two arms were controlled with an external PC
computer via FRI interface at sampling rate of 500 Hz. The
Cartesian compliance of both robot arms was set to 1000
N/m for positions and to 300 Nm/rd for rotations. For this
experiment, we have applied P type admittance control law
with equal gains for Cp = 0.0002 I. The KUKA built in
controller decouples and linearizes the LWR robot dynamics,
which can be approximated with discrete transfer function
G = 0.011z+0.01

z2−1.7z+0.7289 . For the learning, we have chosen
matrix Q as a diagonal matrices containing 2nd order low
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Fig. 4. Bode plot of the learning transfer functions for two choices of Q.

pass filter with zero at −0.9 and double poles at 0.85 in
the Z plane. First, we verified the stability of the learning
algorithm by drawing the Bode plot for the transfer function

Q(z)
I+KsG(z)C(z) , where Ks was set to 500 N/m, which is
exactly the mutual programmed stiffness of both robot arms.
Fig. 4 shows Bode plot for two cases: in the first case Q is the
2nd order filter, and in the second case Q is unity matrix.
According to (31), magnitude of the Bode plot should be
below (1−ε) for all frequencies. It can be seen, that the Bode
magnitude crosses the stability margin at high frequencies
(above 20s−1) for Q = I, while it stays safe within the
stability region when Q is in the form of a low pass filter.
Note also that the magnitude plot uses logarithmic scale
(dB) . The same result was verified also by the simulation,
where scheme without the filtering starts to oscillate after it
diminishes the tracking error in few initial learning cycles.
The explanation of this phenomena is that at the beginning
of the learning, low frequencies are dominant, whereas the
Bode plot shows that both schemes are stable. When the
algorithm diminishes tracking error, high frequencies become
dominant and we have to use filtering to assure the stability
of the learning.

As explained previously, small tolerances in position tra-
jectory can result in high contact forces during assembly
tasks. Force controller tries to diminish these forces instantly,
while the learning minimizes them gradually during learning
iterations. Force control might become inefficient or even
unstable at rapid changes of the measured force and torque
errors. Therefore, it is good idea to slow down the execution
of the demonstrated policy when large deviation between the
desired and actual forces and torques occurs. This flexibility
to modulate the execution speed of the trajectory is provided
by DMPs using phase stopping technique [10]. Therefore,
time dependent trajectories pd(k) and qd(k) are replaced
with the phase dependent DMP trajectories pDMP (x) and
qDMP (x), where x is the phase variable [10]. Similarly,
also the time dependent learned term ϕϕϕp(k) and ϕϕϕq(k) has
to be replaced with phase dependent signals ϕϕϕp,RBF (x) and

Fig. 5. Demonstration of the relative task with kinesthetic guiding of the
right robot. The left robot does not move during the demonstration.

ϕϕϕq,RBF (x). Subscript RBF denotes, that the corresponding
signal was encoded with radial basis functions (RBF), as
explained in [19]. Accordingly, also force and torque tracking
errors has to be encoded with RBF.

With the real experiment, we had to provide initial tra-
jectories and force profiles in relative coordinates. As only
the relative coordinates matter for this kind of the task
execution, we can demonstrate the task by keeping one of
the robots fixed, while the other was used for demonstra-
tion. This was accomplished with LbD, where we manually
guided one of the robot arms using kinesthetic guidance and
captured resulting relative coordinates calculation of relative
coordinates from both robot poses using (1) and (5). One
instance of the trajectory demonstration is show in Fig. 5.
TCP forces and torques were captured from joint torque
measurement, provided by the KUKA LWR. Within this
setup, forces and torques can not be captured together with
the position/orientation trajectories applying the kinesthetic
guidance [19]. Therefore, we had to rerun the captured
position/orientation trajectory in order to obtain non-distorted
forces and torques. After that, we displaced one long peg in
Barret hands in the local y direction for 5 mm and run 4
adaptation cycles. The results are shown in Fig. 6. Dotted
line in graphs shows the insertion phase. As we can observe
from plots, we have non-zero forces and torques even before
contact. Part of this artefact is due to imprecise dynamics
calculation when estimating TCP forces and torques from
the joint torques. Another part is due to non-neglige inertia
of long poles. However, the proposed adaptation algorithm
effectively diminishes the force and torque tracking errors in
just few learning cycles. For that reason, also the adaptation
scheme with Q = I in practice performs almost equally
good as the scheme with Q in the form of the 2nd order
filter, providing that the adaptation mechanism is switched
off after few adaptation cycles.

V. CONCLUSIONS

In the paper we proposed a new force adaptation scheme
for bimanual systems. The main advantage of the proposed
algorithms is that adaptation act directly in relative and
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Fig. 6. Forces and torques during the long peg insertion tasks. Labels 1–4
show the adaptation cycle. We can observe extremely quick convergence of
the ILC adaptation algorithm.

absolute coordinates. Subdivision of the motion of both
arms to relative and absolute tasks is based on a modified
definition of relative Jacobian, which assures also proper
mapping to the Jacobian null-space, when additional tasks
which exploit kinematic redundancy of the overall system
are defined. The admittance based force adaptation is based
on the ILC framework. The proposed controller belongs to
a class of causal ILC controller, for which it was proved
that the same steady state error can be obtained with stan-
dard feedback controller applying high gains [26]. However,
high gain controllers are not suitable for robots interacting
with humans [27], therefore we consider that ILC is still
favourable. Stability of the proposed learning algorithm was
discussed and proved together with practical notes how to
choose the parameters of the learning algorithm and how
to verify the stability. Theoretical results were verified with
practical implementation of a dual arm peg-in-a-hole task. In
our future work, we will extend the proposed algorithm to
the impedance control law, which will modify control torques
directly in contrast to the proposed algorithm, which adapts
the position and orientation trajectory.
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[8] M. Norrlöf, “An adaptive iterative learning control algorithm with
experiments on an industrial robot,” IEEE Transactions on Robotics
and Automation, vol. 18, no. 2, pp. 245–251, Apr 2002.

[9] A. Gams, B. Nemec, A. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,”
IEEE Transactions on Robotics, vol. 30, no. 4, pp. 816–830, 2014.

[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[11] J. F. Broenink and M. L. J. Tiernego, “Peg-in-Hole assembly using
impedance control with a 6 DOF robot,” in Proceedings of the 8th
European Simulation Symposium, 1996, pp. 504–508.

[12] K. Hirana, T. Suzuki, and S. Okuma, “Optimal motion planning
for assembly skill based on mixed logical dynamical system,” in
7th International Workshop on Advanced Motion Control, Maribor,
Slovenia, 2002, pp. 359–364.

[13] Y. Li, “Hybrid control approach to the peg-in-hole problem,” IEEE
Robotics and Automation Magazine, vol. 4, no. 2, pp. 52–60, 1997.
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